Homosalate

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Homosalate[1]
Skeletal formula
Space-filling model
Names
IUPAC name
3,3,5-Trimethylcyclohexyl 2-hydroxybenzoate
Other names
Homosalate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.003.874
KEGG
UNII
Properties
C16H22O3
Molar mass 262.35 g·mol−1
Density 1.045 g/cm3
Melting point <25 °C
Boiling point 161 to 165 °C (322 to 329 °F; 434 to 438 K) at 4 mmHg
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Homosalate is an organic compound used in some sunscreens. It is an ester formed from salicylic acid and 3,3,5-trimethylcyclohexanol, a derivative of cyclohexanol. Contained in 45% of U.S. sunscreens, it is used as a chemical UV filter.[2] The salicylic acid portion of the molecule absorbs ultraviolet rays with a wavelength from 295 nm to 315 nm, protecting the skin from sun damage. The hydrophobic cyclohexanol portion provides greasiness that prevents it from dissolving in water.

Safety[edit]

Similar to other UV filter compounds,[3] more homosalate is absorbed into the stratum corneum of the face (25% of applied dose) versus back of volunteers.[4] Homosalate has been identified as an antiandrogen in vitro,[5] as well as having estrogenic activity toward estrogen receptors α,[6] and general in vitro estrogenic activity.[7] Homosalate has been shown to be an antagonist toward androgen and estrogen receptors in vitro.[8] There is also evidence that homosalate, (and other UV filters) can break down into more toxic products.[9][not in citation given]

No evidence of toxicity or side effects have been documented in vivo.

References[edit]

  1. ^ Homosalate, Merck Index, 11th Edition, 4660
  2. ^ Homosalate, ChemIDplus
  3. ^ Rougier A, Dupuis D, Lotte C, Roguet R, Wester RC, Maibach HI (1986). "Regional variation in percutaneous absorption in man: measurement by the stripping method". Arch. Dermatol. Res. 278 (6): 465–9. PMID 3789805. doi:10.1007/bf00455165. 
  4. ^ Benson HA, Sarveiya V, Risk S, Roberts MS. "Influence of anatomical site and topical formulation on skin penetration of sunscreens". Ther Clin Risk Manag. 1: 209–18. PMC 1661631Freely accessible. PMID 18360561. 
  5. ^ [1] Ma et al., 2003
  6. ^ Gomez E, Pillon A, Fenet H, Rosain D, Duchesne MJ, Nicolas JC, Balaguer P, Casellas C. "Estrogenic activity of cosmetic components in reporter cell lines: parabens, UV screens, and musks". J Toxicol Environ Health A. 68: 239–51. PMID 15799449. doi:10.1080/15287390590895054. 
  7. ^ Schlumpf M, Schmid P, Durrer S, Conscience M, Maerkel K, Henseler M, Gruetter M, Herzog I, Reolon S, Ceccatelli R, Faass O, Stutz E, Jarry H, Wuttke W, Lichtensteiger W. "Endocrine activity and developmental toxicity of cosmetic UV filters--an update". Toxicology. 205: 113–22. PMID 15458796. doi:10.1016/j.tox.2004.06.043. 
  8. ^ Schreurs RH, Sonneveld E, Jansen JH, Seinen W, van der Burg B (February 2005). "Interaction of polycyclic musks and UV filters with the estrogen receptor (ER), androgen receptor (AR), and progesterone receptor (PR) in reporter gene bioassays". Toxicol. Sci. 83: 264–72. PMID 15537743. doi:10.1093/toxsci/kfi035. 
  9. ^ Klimova, et al. (2013). "Current problems in the use of organic UV filters to protect skin from excessive sun exposure" (PDF). Acta Chimica Slovaca. 6 (1): 82–88. doi:10.2478/acs-2013-0014.