Jump to content

Instructions per second

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Oranjelo100 (talk | contribs) at 03:09, 13 November 2016 (See also). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Instructions per second (IPS) is a measure of a computer's processor speed. Many reported IPS values have represented "peak" execution rates on artificial instruction sequences with few branches, whereas realistic workloads typically lead to significantly lower IPS values. Memory hierarchy also greatly affects processor performance, an issue barely considered in IPS calculations. Because of these problems, synthetic benchmarks such as Dhrystone are now generally used to estimate computer performance in commonly used applications, and raw IPS has fallen into disuse.

The term is commonly used in association with a numeric value such as thousand instructions per second (TIPS), million instructions per second (MIPS), and billion instructions per second (GIPS).

Computing

IPS can be calculated using this equation:[1]

IPs per cycle

See "Instructions per cycle" (IPC for microarchitectures).

Thousand instructions per second (kIPS)

Before standard benchmarks were available, average speed rating of computers was based on calculations for a mix of instructions with the results given in kilo Instructions Per Second (kIPS). The most famous was the Gibson Mix,[2] produced by Jack Clark Gibson of IBM for scientific applications. Other ratings, such as the ADP mix which does not include floating point operations, were produced for commercial applications. The thousand instructions per second (kIPS) unit is rarely used today, as most current microprocessors can execute at least a million instructions per second.

Millions of instructions per second (MIPS)

The speed of a given CPU depends on many factors, such as the type of instructions being executed, the execution order and the presence of branch instructions (problematic in CPU pipelines). CPU instruction rates are different from clock frequencies, usually reported in Hz, as each instruction may require several clock cycles to complete or the processor may be capable of executing multiple independent instructions simultaneously. MIPS can be useful when comparing performance between processors made with similar architecture (e.g. Microchip branded microcontrollers). They are difficult to compare between differing CPU architectures.[3]

For this reason, MIPS has become not a measure of instruction execution speed, but task performance speed compared to a reference. In the late 1970s, minicomputer performance was compared using VAX MIPS, where computers were measured on a task and their performance rated against the VAX 11/780 that was marketed as a 1 MIPS machine. (The measure was also known as the VAX Unit of Performance or VUP.) This was chosen because the 11/780 was roughly equivalent in performance to an IBM System/370 model 158-3, which was commonly accepted in the computing industry as running at 1 MIPS.

Many minicomputer performance claims were based on the Fortran version of the Whetstone benchmark, giving Millions of Whetstone Instructions Per Second (MWIPS). The VAX 11/780 with FPA (1977) runs at 1.02 MWIPS.

Effective MIPS speeds are highly dependent on the programming language used. The Whetstone Report has a table showing MWIPS speeds of PCs via early interpreters and compilers up to modern languages. The first PC compiler was for BASIC (1982) when a 4.8 MHz 8088/87 CPU obtained 0.01 MWIPS. Results on a 2.4 GHz Intel Core 2 Duo (1 CPU 2007) vary from 9.7 MWIPS using BASIC Interpreter, 59 MWIPS via BASIC Compiler, 347 MWIPS using 1987 Fortran, 1,534 MWIPS through HTML/Java to 2,403 MWIPS using a modern C/C++ compiler.

For the most early 8-bit and 16-bit microprocessors, performance was measured in thousand instructions per second (1 kIPS = 0.001 MIPS).

zMIPS refers to the MIPS measure used internally by IBM to rate its mainframe servers (zSeries, IBM System z9, and IBM System z10).

Weighted million operations per second (WMOPS) is a similar measurement, used for audio codecs.

Timeline of instructions per second

Processor / System Dhrystone MIPS / MIPS D IPS / clock cycles per second D IPS / clock cycles per second / cores per die Year Source
UNIVAC I 0.002 MIPS at 2.25 MHz 0.0008 0.0008 1951

[4]

Intel 4004 0.092 MIPS at 740 kHz
(Not Dhrystone)
0.124 0.124 1971 [5]
IBM System/370 Model 158 0.64 MIPS at 8.696 MHz 0.0736 0.0736 1972 [6]
Intel 8080 0.29 MIPS at 2 MHz 0.145 0.145 1974 [7]
MOS Technology 6502 0.43 MIPS at 1 MHz 0.43 0.43 1975 [8]
Intel 8080A 0.435 MIPS at 3 MHz 0.145 0.145 1976 [7]
Zilog Z80 0.58 MIPS at 4 MHz 0.145 0.145 1976 [8]
Motorola 6809 0.42 MIPS at 1 MHz 0.42 0.42 1977 [8]
Motorola 6802 0.5 MIPS at 1 MHz 0.5 0.5 1977 [9]
IBM System/370 Model 158-3 0.73 MIPS at 8.696 MHz 0.0839 0.0839 1977 [6]
VAX-11/780 1 MIPS at 5 MHz 0.2 0.2 1977 [6]
Intel 8086 0.33 MIPS at 5 MHz 0.066 0.066 1978 [7]
Fujitsu MB8843 2 MIPS at 2 MHz
(Not Dhrystone)
1 1 1978 [10]
Intel 8088 0.75 MIPS at 10 MHz 0.075 0.075 1979 [7]
Motorola 68000 1.4 MIPS at 8 MHz 0.175 0.175 1979 [8]
Zilog Z8001/Z8002 1.5 MIPS at 6 MHz 0.25 0.25 1979 [11]
Intel 8035/8039/8048 6 MIPS at 6 MHz
(Not Dhrystone)
1 1 1980 [12]
Fujitsu MB8843/MB8844 6 MIPS at 6 MHz
(Not Dhrystone)
1 1 1980 [10]
Zilog Z80/Z80H 1.16 MIPS at 8 MHz 0.145 0.145 1981 [8][13]
Motorola 6802 1.79 MIPS at 3.58 MHz 0.5 0.5 1981 [9][14]
Zilog Z8001/Z8002B 2.5 MIPS at 10 MHz 0.25 0.25 1981 [11]
MOS Technology 6502 2.522 MIPS at 5.865 MHz 0.43 0.43 1981 [8][14]
Intel 286 1.28 MIPS at 12 MHz 0.107 0.107 1982 [6]
Motorola 68000 2.188 MIPS at 12.5 MHz 0.175 0.175 1982 [8]
Motorola 68010 2.407 MIPS at 12.5 MHz 0.193 0.193 1982 [15]
NEC V20 4 MIPS at 8 MHz 0.5 0.5 1982 [16]
LINKS-1 Computer Graphics System (257-processor) 642.5 MIPS at 10 MHz 2.5 0.25 1982 [17]
Texas Instruments TMS32010 5 MIPS at 20 MHz 0.25 0.25 1983 [18]
NEC V30 5 MIPS at 10 MHz 0.5 0.5 1983 [16]
Motorola 68010 3.209 MIPS at 16.67 MHz 0.193 0.193 1984 [15]
Motorola 68020 4.848 MIPS at 16 MHz 0.303 0.303 1984 [19]
Hitachi HD63705 2 MIPS at 2 MHz 1 1 1985 [20][21]
Intel i386DX 2.15 MIPS at 16 MHz 0.134 0.134 1985 [6]
Hitachi-Motorola 68HC000 3.5 MIPS at 20 MHz 0.175 0.175 1985 [8]
Intel 8751 8 MIPS at 8 MHz 1 1 1985 [22]
Sega System 16 (4-processor) 16.33 MIPS at 10 MHz 4.083 0.408 1985 [23]
ARM2 4 MIPS at 8 MHz 0.5 0.5 1986
Texas Instruments TMS34010 6 MIPS at 50 MHz 0.12 0.12 1986 [24]
NEC V70 6.6 MIPS at 20 MHz 0.33 0.33 1987 [25]
Motorola 68030 9 MIPS at 25 MHz 0.36 0.36 1987 [26][27]
Gmicro/200 10 MIPS at 20 MHz 0.5 0.5 1987 [28]
Texas Instruments TMS320C20 12.5 MIPS at 25 MHz 0.5 0.5 1987 [29]
Analog Devices ADSP-2100 12.5 MIPS at 12.5 MHz 1 1 1987 [30]
Texas Instruments TMS320C25 25 MIPS at 50 MHz 0.5 0.5 1987 [29]
Motorola 68020 10 MIPS at 33 MHz 0.303 0.303 1988 [19]
Motorola 68030 18 MIPS at 50 MHz 0.36 0.36 1988 [27]
Namco System 21 (10-processor) 73.927 MIPS at 25 MHz 2.957 0.296 1988 [31]
Intel i386DX 4.3 MIPS at 33 MHz 0.13 0.13 1989 [6]
Intel i486DX 8.7 MIPS at 25 MHz 0.348 0.348 1989 [6]
NEC V80 16.5 MIPS at 33 MHz 0.5 0.5 1989 [25]
Intel i860 25 MIPS at 25 MHz 1 1 1989 [32]
Atari Hard Drivin' (7-processor) 33.573 MIPS at 50 MHz 0.671 0.0959 1989 [33]
NEC SX-3 (4-processor) 680 MIPS at 400 MHz 1.7 0.425 1989 [34]
Motorola 68040 44 MIPS at 40 MHz 1.1 1.1 1990 [35]
Namco System 21 (Galaxian³) (96-processor) 1,660.386 MIPS at 40 MHz 41.51 0.432 1990 [36]
AMD Am386 9 MIPS at 40 MHz 0.225 0.225 1991 [37]
Intel i486DX 11.1 MIPS at 33 MHz 0.336 0.336 1991 [6]
Intel i860 50 MIPS at 50 MHz 1 1 1991 [32]
Intel i486DX2 25.6 MIPS at 66 MHz 0.388 0.388 1992 [6]
Alpha 21064 86 MIPS at 150 MHz 0.573 0.573 1992 [6]
Alpha 21064 135 MIPS at 200 MHz 0.675 0.675 1993 [6][38]
MIPS R4400 85 MIPS at 150 MHz 0.567 0.567 1993 [39]
Gmicro/500 132 MIPS at 66 MHz 2 2 1993 [40]
IBM-Motorola PowerPC 601 157.7 MIPS at 80 MHz 1.971 1.971 1993 [41]
SGI Onyx RealityEngine2 (36-processor) 2,640 MIPS at 150 MHz 17.6 0.489 1993 [42]
Namco Magic Edge Hornet Simulator (36-processor) 2,880 MIPS at 150 MHz 19.2 0.533 1993 [39]
ARM7 40 MIPS at 45 MHz 0.889 0.889 1994 [43]
Intel DX4 70 MIPS at 100 MHz 0.7 0.7 1994 [7]
Motorola 68060 110 MIPS at 75 MHz 1.33 1.33 1994
Intel Pentium 188 MIPS at 100 MHz 1.88 1.88 1994 [44]
Microchip PIC16F 5 MIPS at 20 MHz 0.25 0.25 1995 [45]
IBM-Motorola PowerPC 603e 188 MIPS at 133 MHz 1.414 1.414 1995 [46]
ARM 7500FE 35.9 MIPS at 40 MHz 0.9 0.9 1996
IBM-Motorola PowerPC 603ev 423 MIPS at 300 MHz 1.41 1.41 1996 [46]
Intel Pentium Pro 541 MIPS at 200 MHz 2.7 2.7 1996 [47]
Hitachi SH-4 360 MIPS at 200 MHz 1.8 1.8 1997 [48][49]
IBM-Motorola PowerPC 750 525 MIPS at 233 MHz 2.3 2.3 1997
Zilog eZ80 80 MIPS at 50 MHz 1.6 1.6 1999 [50]
Intel Pentium III 2,054 MIPS at 600 MHz 3.4 3.4 1999 [44]
Sega Naomi Multiboard (32-processor) 6,400 MIPS at 200 MHz 32 1 1999 [51]
Freescale MPC8272 760 MIPS at 400 MHz 1.9 1.9 2000 [52]
AMD Athlon 3,561 MIPS at 1.2 GHz 3.0 3.0 2000
Silicon Recognition ZISC 78 8,600 MIPS at 33 MHz 260.6 260.6 2000 [53]
ARM11 515 MIPS at 412 MHz 1.25 1.25 2002 [54]
AMD Athlon XP 2500+ 7,527 MIPS at 1.83 GHz 4.1 4.1 2003 [44]
Pentium 4 Extreme Edition 9,726 MIPS at 3.2 GHz 3.0 3.0 2003
Microchip PIC10F 1 MIPS at 4 MHz 0.25 0.25 2004 [55][56]
ARM Cortex-M3 125 MIPS at 100 MHz 1.25 1.25 2004 [57]
Nios II 190 MIPS at 165 MHz 1.13 1.13 2004 [58]
MIPS32 4KEc 356 MIPS at 233 MHz 1.5 1.5 2004 [59]
VIA C7 1,799 MIPS at 1.3 GHz 1.4 1.4 2005 [60]
ARM Cortex-A8 2,000 MIPS at 1.0 GHz 2.0 2.0 2005 [61]
AMD Athlon FX-57 12,000 MIPS at 2.8 GHz 4.3 4.3 2005
AMD Athlon 64 3800+ X2 (2-core) 14,564 MIPS at 2.0 GHz 7.3 3.6 2005 [62]
ARM Cortex-R4 450 MIPS at 270 MHz 1.66 1.66 2006 [63]
MIPS32 24K 604 MIPS at 400 MHz 1.51 1.51 2006 [64]
PS3 Cell BE (PPE only) 10,240 MIPS at 3.2 GHz 3.2 3.2 2006
IBM Xenon CPU (3-core) 19,200 MIPS at 3.2 GHz 6.0 2.0 2005
AMD Athlon FX-60 (2-core) 18,938 MIPS at 2.6 GHz 7.3 3.6 2006 [62]
Intel Core 2 Extreme X6800 (2-core) 27,079 MIPS at 2.93 GHz 9.2 4.6 2006 [62]
Intel Core 2 Extreme QX6700 (4-core) 49,161 MIPS at 2.66 GHz 18.4 4.6 2006 [65]
MIPS64 20Kc 1,370 MIPS at 600 MHz 2.3 2.3 2007 [66]
P.A. Semi PA6T-1682M 8,800 MIPS at 1.8 GHz 4.4 4.4 2007 [67]
Qualcomm Scorpion (Cortex A8-like) 2,100 MIPS at 1 GHz 2.1 2.1 2008 [54]
Intel Atom N270 3,846 MIPS at 1.6 GHz 2.4 2.4 2008 [68]
Intel Core 2 Extreme QX9770 (4-core) 59,455 MIPS at 3.2 GHz 18.6 4.6 2008 [65]
Intel Core i7 920 (4-core) 82,300 MIPS at 2.93 GHz 28.089 7.022 2008 [69]
ARM Cortex-M0 45 MIPS at 50 MHz 0.9 0.9 2009 [70]
ARM Cortex-A9 (2-core) 7,500 MIPS at 1.5 GHz 5.0 2.5 2009 [71]
AMD Phenom II X4 940 Black Edition 42,820 MIPS at 3.0 GHz 14.3 3.5 2009 [72]
AMD Phenom II X6 1100T 78,440 MIPS at 3.3 GHz 23.7 3.9 2010 [69]
Intel Core i7 Extreme Edition 980X (6-core) 147,600 MIPS at 3.33 GHz 44.7 7.46 2010 [73]
ARM Cortex A5 1,256 MIPS at 800 MHz 1.57 1.57 2011 [61]
ARM Cortex A7 2,850 MIPS at 1.5 GHz 1.9 1.9 2011 [54]
Qualcomm Krait (Cortex A15-like, 2-core) 9,900 MIPS at 1.5 GHz 6.6 3.3 2011 [54]
AMD E-350 (2-core) 10,000 MIPS at 1.6 GHz 6.25 3.125 2011 [74]
Nvidia Tegra 3 (Quad core Cortex-A9) 13,800 MIPS at 1.5 GHz 9.2 2.5 2011
Samsung Exynos 5250 (Cortex-A15-like 2-core 14,000 MIPS at 2.0 GHz 7.0 3.5 2011 [75]
Intel Core i5-2500K 4-core 83,000 MIPS at 3.3 GHz 25.152 6.288 2011 [76]
Intel Core i7 875K 92,100 MIPS at 2.93 GHz 31.4 7.85 2011 [77]
AMD FX-8150 (8-core) 90,749 MIPS at 3.6 GHz 25.2 3.15 2011 [78]
Intel Core i7 2600K 117,160 MIPS at 3.4 GHz 34.45 8.61 2011 [79]
Intel Core i7 Extreme Edition 3960X (6-core) 176,170 MIPS at 3.3 GHz 53.38 8.89 2011 [80]
AMD FX-8350 97,125 MIPS at 4.2 GHz 23.1 2.9 2012 [78][81]
AMD FX-9590 115,625 MIPS at 5.0 GHz 23.1 2.9 2012 [69]
Intel Core i7 3770K 106,924 MIPS at 3.9 GHz 27.4 6.9 2012 [78]
Intel Core i7 3630QM 113,093 MIPS at 3.2 GHz 35.3 8.83 2012 [82]
Intel Core i7 4770K 133,740 MIPS at 3.9 GHz 34.29 8.57 2013 [78][81][83]
Intel Core i7 5960X 238,310 MIPS at 3.0 GHz 79.4 9.92 2014 [84]
Raspberry Pi 2 4,744 MIPS at 1.0 GHz 4.744 1.186 2014 [85]
Intel Core i7 6950X 317,900 MIPS at 3.0 GHz 106 10.6 2016 [86]
Processor / System Dhrystone MIPS / MIPS D IPS / clock cycles per second D IPS / clock cycles per second / cores per die Year Source

See also

References

  1. ^ "Nodes, Sockets, Cores and FLOPS, Oh, My" by Dr. Mark R. Fernandez, Ph.D.
  2. ^ Gibson, J.C. (1970). The Gibson Mix (Technical Report TR 00.2043). Poughkeepsie, N.Y.: IBM Systems Development Division.
  3. ^ Ted MacNeil. "Don't be Misled by MIPS". IBM magazine.
  4. ^ US Steel News. Vol. 15–20. Industrial Relations Department of The United States Steel Corporation of Delaware. 1950–1955. p. 29.
  5. ^ "MCS4 > IntelP4004".
  6. ^ a b c d e f g h i j k "Cost of CPU Performance Through Time 1944-2003".
  7. ^ a b c d e "Intel Processors". 24 April 2012. Archived from the original on 2012-04-24.
  8. ^ a b c d e f g h Drolez, Ludovic. "Lud's Open Source Corner".
  9. ^ a b 2 cycles per instruction [1]
  10. ^ a b 1 instruction per cycle [2]
  11. ^ a b 4 cycles per instruction [3] = 0.25 instructions per cycle
  12. ^ "intel :: dataSheets :: 8048 8035 HMOS Single Component 8-Bit Microcomputer DataSheet 1980".
  13. ^ "Sega G80 Hardware Reference". 25 October 1997. Archived from the original on 2012-02-19.
  14. ^ a b "System 16 - Irem M27 Hardware (Irem)".
  15. ^ a b 10% faster [4] than 68000 (0.175 MIPS per MHz [5])
  16. ^ a b NEC V20/V30: 250 nanoseconds per instruction @ 8 MHz
  17. ^ LINKS-1 Computer Graphics System: 257× Zilog Z8001 [6] at 10 MHz [7] (2.5 MIPS [8]) each
  18. ^ "TMS320C1x DIGITAL SIGNAL PROCESSORS" (PDF).
  19. ^ a b "32-Bit Microprocessor-NXP".
  20. ^ "ZTAT (ZeroTurnAroundTime) Microcomputers" (PDF). Archived from the original (PDF) on October 6, 2014.
  21. ^ http://www.datasheetarchive.com/dlmain/Datasheets-13/DSA-246134.pdf
  22. ^ 1 instruction per cycle [9]
  23. ^ Sega System 16: Hitachi-Motorola 68000 @ 10 MHz (1.75 MIPS), NEC-Zilog Z80 @ 4 MHz (0.58 MIPS) [10] [11], Intel 8751 @ 8 MHz [12] (8 MIPS [13]), Intel 8048 @ 6 MHz [14] (6 MIPS [15])
  24. ^ Inc, InfoWorld Media Group (23 January 1989). "InfoWorld". InfoWorld Media Group, Inc. – via Google Books. {{cite web}}: |last= has generic name (help)
  25. ^ a b http://ipsj.ixsq.nii.ac.jp/ej/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=59745&item_no=1&page_id=13&block_id=8
  26. ^ Inc, Ziff Davis (24 November 1987). "PC Mag". Ziff Davis, Inc. – via Google Books. {{cite web}}: |last= has generic name (help)
  27. ^ a b "Enhanced 32-Bit Processor-NXP".
  28. ^ "TRON VLSI CPU Introduction".
  29. ^ a b "060 1987 Drivers Eyes + 1989 Winning Run" (PDF). The history of racing games. June 2007.
  30. ^ "Analog Devices - datasheet pdf" (PDF).
  31. ^ Namco System 21 hardware: 5× Texas Instruments TMS320C20 @ 25 MHz (62.5 MIPS [16]), 2× Motorola 68000 @ 12.288 MHz [17] (4.301 MIPS [18]), Motorola 68020 [19] @ 12.5 MHz (3.788 MIPS [20]), Hitachi HD63705 @ 2.048 MHz [21] (2.048 MIPS [22]), Motorola 6809 @ 3.072 MHz [23] (1.29 MIPS [24])
  32. ^ a b "Intel i860-based Bus Boards".
  33. ^ Atari Hard Drivin' hardware: [25] Motorola 68000 @ 7 MHz (1.225 MIPS [26]), Motorola 68010 @ 7 MHz (1.348 MIPS [27]), 3× Texas Instruments TMS34010 @ 50 MHz (18 MIPS [28]), Analog Devices ADSP-2100 @ 8 MHz (8 MIPS [29]), Texas Instruments TMS32010 @ 20 MHz (5 MIPS [30])
  34. ^ "SUPERCOMPUTER". 13 (4). doi:10.1515/piko.1990.13.4.205. {{cite journal}}: Cite journal requires |journal= (help)
  35. ^ "(Including EC, LC, and V)-NXP".
  36. ^ Namco System 21 (Galaxian³) hardware: [31] 80× Texas Instruments TMS320C25 @ 40 MHz (1600 MIPS [32]), 5× Motorola 68020 @ 24.576 MHz (37.236 MIPS [33]) Motorola 68000 @ 12.288 MHz (2.15 MIPS [34]), 10× Motorola 68000 @ 12 MHz (21 MIPS [35])
  37. ^ Enterprise, I. D. G. (25 March 1991). "Computerworld". IDG Enterprise – via Google Books.
  38. ^ Digital's 21064 Microprocessor, Digital Equipment Corporation (c1992) accessdate=2009-08-29
  39. ^ a b "System 16 - Namco Magic Edge Hornet Simulator Hardware (Namco)".
  40. ^ Uchiyama, Kunio; Arakawa, Fumio; Narita, Susumu; Aoki, Hirokazu; Kawasaki, Ikuya; Matsui, Shigezumi; Yamamoto, Mitsuyoshi; Nakagawa, Norio; Kudo, Ikuo (1 September 1993). "The Gmicro/500 Superscalar Microprocessor with Branch Buffers". 13 (5): 12–22. doi:10.1109/40.237998 – via ACM Digital Library. {{cite journal}}: Cite journal requires |journal= (help)
  41. ^ "dhrystone".
  42. ^ 24× MIPS R4400 (2040 MIPS), [36] 12× Intel i860 (600 MIPS) [37]
  43. ^ "DCTP - Saturn Specifications".
  44. ^ a b c "Charts, benchmarks CPU Charts 2004, Sandra - CPU Dhrystone".
  45. ^ "PIC16F84A - 8-bit PIC Microcontrollers".
  46. ^ a b "MOTOROLA P OWER PC 603 E ™ MICROPROCESSOR" (PDF).
  47. ^ "SiSoftware – Windows, GPGPU, Android, iOS analysers, diagnostic and benchmarking apps".
  48. ^ "DCTP - Hitachi's 200 MHz SH-4".
  49. ^ "DCTP - January 1998 News Archives".
  50. ^ "Zilog Sees New Lease of Life for Z80 in Internet Appliances". Computergram International. 1999.
  51. ^ Sega Naomi Multiboard hardware: [38] [39] 16× Hitachi SH-4 at 200 MHz (5760 MIPS [40]), 16× ARM7 at 45 MHz (640 MIPS [41])
  52. ^ Freescale Semiconductor - MPC8272 PowerQUICC II Processor Family
  53. ^ "ZISC78 datasheet & application note - Datasheet Archive".
  54. ^ a b c d Shimpi, Anand Lal. "ARM's Cortex A7: Bringing Cheaper Dual-Core & More Power Efficient High-End Devices".
  55. ^ "PIC10F200 - 8-bit PIC Microcontrollers".
  56. ^ "Microchip Redirect".
  57. ^ "Cortex-M3 Processor - ARM".
  58. ^ Nios II Performance Benchmarks
  59. ^ "MIPS Architecture Enabling Growing List of Mobile Application Processors".
  60. ^ "mini-itx.com - epia px 10000 review".
  61. ^ a b "Cortex-A Series - ARM".
  62. ^ a b c "Charts, benchmarks CPU Charts 2007, Synthetic SiSoft Sandra XI CPU".
  63. ^ "Cortex-R4 Processor - ARM".
  64. ^ 24K
  65. ^ a b "Tom's Hardware Articles - Find and Filter Our Latest Articles".
  66. ^ "Semiconductor IP Cores Companies".
  67. ^ Merritt, Rick (5 February 2007). "Startup takes PowerPC to 25 W". EE Times. UBM Tech. Retrieved 20 November 2012.
  68. ^ "Benchmarks of ECS 945GCT-D with Intel Atom 1.6GHz".
  69. ^ a b c "Charts, benchmarks Desktop CPU Charts 2010, ALU Performance: SiSoftware Sandra 2010 Pro (ALU)".
  70. ^ "Cortex-M0 Processor - ARM".
  71. ^ "EEE Journal: ARM11 vs Cortex A8 vs Cortex A9 - Netbooks processors EEE PC, MSI Wind, HP, Acer Aspire, ARM Cortex vs Intel Atom".
  72. ^ "The Phenom II List of Overclocks - Page 21".
  73. ^ "OC3D :: Review :: Intel 980x Gulftown :: Synthetic Benchmarks".
  74. ^ "Benchmark Results: Sandra 2011 - ASRock's E350M1: AMD's Brazos Platform Hits The Desktop First". 14 January 2011.
  75. ^ "Samsung Semiconductor Global Official Website".
  76. ^ "Core i5 2500K and Core i7 2600K review".
  77. ^ "Charts, benchmarks Desktop CPU Charts 2010, ALU Performance: SiSoftware Sandra 2010 Pro (ALU)".
  78. ^ a b c d "Test: Sandra Dhrystone (MIPS) for i7-4770K, i7-3770K, FX-8350, FX-8150".
  79. ^ "Benchmark Results: SiSoftware Sandra 2011 - The Intel Core i7-990X Extreme Edition Processor Review". 25 February 2011.
  80. ^ "HardOCP - Synthetic Benchmarks".
  81. ^ a b "AMD FX-8350 Black Edition vs Intel Core i7-4770K - Compare CPUs".
  82. ^ "Intel Core i7 3630QM Notebook Processor".
  83. ^ "Intel Core i7-4770K Desktop Processor".
  84. ^ Rob Williams (August 29, 2014). "Core i7-5960X Extreme Edition Review: Intel's Overdue Desktop 8-Core Is Here". Techgage.
  85. ^ By (2015-02-05). "Benchmarking The Raspberry Pi 2". hackaday.com.
  86. ^ Intel InGaAs FTW (October 16, 2016). "Core i7-6950X Extreme Edition Deca Core benchmarks. About 6% IPC gains over Haswell-E". cpubenchmark, passmark, cpuboss,geekbench,cinebench.