Lindström's theorem

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In mathematical logic, Lindström's theorem (named after Swedish logician Per Lindström, who published it in 1969) states that first-order logic is the strongest logic[1] (satisfying certain conditions, e.g. closure under classical negation) having both the (countable) compactness property and the (downward) Löwenheim–Skolem property.[2]

Lindström's theorem is perhaps the best known result of what later became known as abstract model theory,[3] the basic notion of which is an abstract logic;[4] the more general notion of an institution was later introduced, which advances from a set-theoretical notion of model to a category-theoretical one.[5] Lindström had previously obtained a similar result in studying first-order logics extended with Lindström quantifiers.[6]

Lindström's theorem has been extended to various other systems of logic, in particular modal logics by Johan van Benthem and Sebastian Enqvist.


  1. ^ In the sense of Heinz-Dieter Ebbinghaus Extended logics: the general framework in K. J. Barwise and S. Feferman, editors, Model-theoretic logics, 1985 ISBN 0-387-90936-2 page 43
  2. ^ A companion to philosophical logic by Dale Jacquette 2005 ISBN 1-4051-4575-7 page 329
  3. ^ Chen Chung Chang; H. Jerome Keisler (1990). Model theory. Elsevier. p. 127. ISBN 978-0-444-88054-3.
  4. ^ Jean-Yves Béziau (2005). Logica universalis: towards a general theory of logic. Birkhäuser. p. 20. ISBN 978-3-7643-7259-0.
  5. ^ Dov M. Gabbay, ed. (1994). What is a logical system?. Clarendon Press. p. 380. ISBN 978-0-19-853859-2.
  6. ^ Jouko Väänänen, Lindström's Theorem