Magnetic effective resistance

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Constant314 (talk | contribs) at 15:19, 18 September 2016 (Reverted to revision 685269793 by Ushakaron (talk): Rv test edits. (TW)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Magnetic effective resistance (SI Unit: -Ω−1) is the real component of complex magnetic impedance of a circuit in the gyrator-capacitor model. This causes a magnetic circuit to lose magnetic potential energy.[1][2][3]

Active power in a magnetic circuit equals the product of magnetic effective resistance and magnetic current squared .

The magnetic effective resistance on a complex plane appears as the side of the resistance triangle for magnetic circuit of an alternating current. The effective magnetic resistance is bounding with the effective magnetic conductance by the expression

where is the full magnetic impedance of a magnetic circuit.

References

  1. ^ Pohl R. W. ELEKTRIZITÄTSLEHRE. – Berlin-Gottingen-Heidelberg: SPRINGER-VERLAG, 1960.
  2. ^ Popov V. P. The Principles of Theory of Circuits. – M.: Higher School, 1985, 496 p. (In Russian).
  3. ^ Küpfmüller K. Einführung in die theoretische Elektrotechnik, Springer-Verlag, 1959.