Mark Z. Jacobson

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Mark Z. Jacobson
Mark Z. Jacobson.jpg
Born Mark Zachary Jacobson
1965 (age 50–51)
Institutions University of California, Los Angeles
Stanford University
Alma mater University of California, Los Angeles
Thesis Developing, coupling, and applying a gas, aerosol, transport, and radiation model to study urban and regional air pollution (1994)
Doctoral advisor Richard P. Turco

Mark Zachary Jacobson (born 1965) is professor of civil and environmental engineering at Stanford University and director of its Atmosphere and Energy Program.[1] Jacobson develops computer models about the effects of different energy technologies and their emissions on air pollution and climate. He has done influential research on the role of aerosols and black carbon on the climate and is regarded as a leading aerosol climate modeler.[2]

According to Jacobson, a speedy transition to clean, renewable energy is required to reduce the potential acceleration of global warming, including the disappearance of the Arctic Sea ice. This change will also eliminate 2.5–3 million deaths worldwide each year, related to air pollution, and reduce disruption associated with fossil fuel shortages.[3]



Current positions[edit]

  • Professor, Civil and Environmental Engineering, Stanford University, 2007–present.
  • Director and co-founder, Atmosphere/Energy Program, Civil and Environmental Engineering, Stanford University, 2004–present.
  • Senior Fellow, Woods Institute for the Environment, January 2008 – present.
  • Senior Fellow, Precourt Institute for Energy, January 2010 – present.


Using computer modeling he developed over 20 years, Jacobson has found that carbonaceous fuel soot emissions (which lead to respiratory illness, heart disease and asthma) have resulted in 1.5 million premature deaths each year, mostly in the developing world where wood and animal dung are used for cooking. Jacobson has also said that soot from diesel engines, coal-fired power plants and burning wood is a "bigger cause of global warming than previously thought, and is the major cause of the rapid melting of the Arctic's sea ice".[1]

Jacobson conducted several studies about 100% renewable energy systems and renewable energy integration and concluded that wind, water, and solar power can be scaled up in cost-effective ways to fulfill our energy demands, freeing human society from dependence on both fossil fuels and nuclear power. In 2009 Jacobson and Mark A. Delucchi published “A Plan to Power 100 Percent of the Planet With Renewables” in Scientific American.[5] The article addressed several issues, such as the worldwide spatial footprint of wind farms, the availability of scarce materials needed for manufacture of new systems, the ability to produce reliable energy on demand, and the average cost per kilowatt hour. A more detailed and updated technical analysis has been published as a two-part article in the journal Energy Policy in 2010.[6] "Providing all global energy with wind, water, and solar power". The articles analyze the feasibility of providing worldwide energy for all purposes (electric power, transportation, heating/cooling, etc.) from wind, water, and sunlight (WWS). In Part I, Jacobson and Delucchi discuss WWS energy system characteristics, current and future energy demand, availability of WWS resources, numbers of WWS devices, and area and material requirements.[7] They estimate that 3,800,000 5 MW wind turbines, 49,000 300 MW concentrated solar plants, 40,000 300 MW solar PV power plants, 1.7 billion 3 kW rooftop PV systems, 5350 100 MW geothermal power plants, and 270 new 1300 MW hydroelectric power plants will be needed. Such a WWS infrastructure reduces world power demand by 30% and requires 0.41% and 0.59% more of the world's land for footprint and spacing, respectively.[7]

In Part II, Jacobson and Delucchi address variability, economics, and policy of WWS energy Jacobson and Delucchi suggest producing all new energy with WWS by 2030 and replacing the pre-existing energy by 2050. Barriers to the plan are primarily social and political, not technological or economic. The energy cost in a WWS world should be similar to today's costs.[7]

More recently, Jacobson and his colleagues have developed detailed proposals for switching to 100% renewable energy produced by wind, water and sunlight, for New York, California and Washington states, by 2050. In 2015 he was the lead author of two connected studies in Energy and Environmental Science and Proceedings of the National Academy of Sciences, that examined the feasibility of transitioning the United States to a 100% energy system, powered exclusively by wind, water and sunlight with also solving the grid reliability problem with high shares of intermittent sources. In 2016 the editorial board of PNAS selected the grid integration study of Jacobson and his co-workers as best paper in the category "Applied Biological, Agricultural, and Environmental Sciences" and awarded awarded him the Cozarelli prize.[8]

Jacobson has also worked on "carbon capture and sequestration technology, concluding that it can reduce carbon dioxide emissions from coal-fired power plants but will increase air pollutants and will extend all the other deleterious effects of coal mining, transport and processing, because more coal must be burned to power the capture and storage steps".[3]

Opinion on energy systems[edit]

Jacobson states that if the United States wants to reduce global warming, air pollution and energy instability, it should invest only in the best energy options, and that nuclear power is not one of them.[9] Jacobson's analyses state that "nuclear power results in up to 25 times more carbon emissions than wind energy, when reactor construction, uranium refining and transport are considered".[3] These calculations are based on a 2009 paper of Jacobson's that was published in Energy and Environmental Science, which report nuclear emissions to be in the range of 68–180.1 g/kWh.[10]

However, like Jan Willem Storm van Leeuwen before him, these figures are considerably higher than the consensus determined by other researchers on that topic. For example, in 2012 Heath and Warner from Yale University and the National Renewable Energy Laboratory analyzed all the previous work on the total life-cycle greenhouse-gas emsssions of nuclear energy and did not arrive at the same nuclear power values or judgements that Jacobson has. Determining instead that nuclear is "comparable [to] renewable energy" systems, in terms of the total life cycle carbon footprint and that the most supported value for nuclear is 12 g/kWh.[11] While Jacobson's results are at the higher end of the two extreme poles of peer-reviewed calculations that the IPCC deemed worthy of consideration (1-220 g/CO2eq/kWh), the Intergovernmental Panel on Climate Change(IPCC) regard Warner and Heath's methodology as the most credible and thus also report that the nuclear power emission is 12 g/kWh, which is comparable to wind energy.[12]

Jacobson has mainly focused his energy advocacy work to calculating how wind, water and solar technologies could provide 100 percent of the world's energy, eliminating all fossil fuels and nuclear power.[13] He advocates a "smart mix" of renewable energy sources to reliably meet electricity demand:

Because the wind blows during stormy conditions when the sun does not shine and the sun often shines on calm days with little wind, combining wind and solar can go a long way toward meeting demand, especially when geothermal provides a steady base and hydroelectric can be called on to fill in the gaps.[3]

In 2015 an assessment of the various strategies that have been proposed to get to a global zero or low carbon economy by circa 2040, determined that the 100 percent renewable world that Jacobson discusses, would be the most costly and difficult to achieve, and that like many of the other scenarios proposed, it requires "more detailed analyses realistically addressing the key constraints", specifically relating to "the costs associated with integration of large amounts of variable generation".[14][15]

Jacobson is also engaged in The Solutions Project, a public relations effort led by Jacobson, actor Mark Ruffalo, and film director Josh Fox, which advocates a transition to a 100% renewable world.[16]



  • Jacobson, M. Z., Fundamentals of Atmospheric Modeling. Cambridge University Press, New York, 656 pp., 1999.
  • Jacobson, M. Z., Fundamentals of Atmospheric Modeling, Second Edition, Cambridge University Press, New York, 813 pp., 2005.
  • Jacobson, M. Z., Atmospheric Pollution: History, Science, and Regulation, Cambridge University Press, New York, 399 pp., 2002.
  • Jacobson, M. Z., Air Pollution and Global Warming: History, Science, and Solutions, Cambridge University Press, New York, 2011.

Important journal publications (selection)[edit]


See also[edit]


  1. ^ a b David Perlman. Scientists say soot a key factor in warming San Francisco Chronicle, July 28, 2010.
  2. ^ a b Bitz, Ginoux, Jacobson, Nizkorodov, and Yang Receive 2013 Atmospheric Sciences Ascent Awards. In: Eos. Transactions of the American Geophysical Union 95, No. 29, (2014), doi:10.1002/2014EO290012.
  3. ^ a b c d Jacobson, Mark Z.; Delucchi, M.A. (November 2009). "A Path to Sustainable Energy by 2030" (PDF). Scientific American. 301 (5): 58–65. doi:10.1038/scientificamerican1109-58. PMID 19873905. 
  4. ^ Mark Z. Jacobson. Stanford University.
  5. ^ A Plan to Power 100 Percent of the Planet With Renewables: Wind, water and solar technologies can provide 100 percent of the world's energy, eliminating all fossil fuels. Here's how, Jacobson, M. Z., and Delucchi, M. A., Scientific American, November 2009
  6. ^ Nancy Folbre (March 28, 2011). "Renewing Support for Renewables". New York Times. 
  7. ^ a b c Mark Z. Jacobson and Mark A. Delucchi (30 December 2010). "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials". Energy Policy. Elsevier Ltd. 
  8. ^ a b PNAS Announces Six 2015 Cozzarelli Prize Recipients. News of the National Academy of Sciences, 1. March 2016.
  9. ^ Mark Z. Jacobson. Nuclear power is too risky, February 22, 2010.
  10. ^ Mark Z. Jacobson: Review of solutions to global warming, air pollution, and energy security. In: Energy and Environmental Science 2, (2009), 148–173, S. 155, doi:10.1039/b809990c.
  11. ^ Warner, Heath, Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation. Journal of Industrial Ecology 16, (2012), doi:10.1111/j.1530-9290.2012.00472.x.
  12. ^ Bruckner et al. 2014: Energy Systems. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  13. ^ Kate Galbraith. 100 Percent Renewables by 2030? Green Inc., December 1, 2009.
  14. ^ [ A critical review of global decarbonization scenarios: what do they tell us about feasibility?, Loftus et. al 2014.WIREs Clim Change 2015, 6:93–112. doi: 10.1002/wcc.324
  15. ^ A critical review of global decarbonization scenarios: what do they tell us about feasibility? Open access PDF
  16. ^ Mark Schwarz (February 26, 2014). "Stanford scientist unveils 50-state plan to transform U.S. to renewable energy". Stanford Report,. 
  17. ^ Profile Jacobson. Stanford University, Retrieved 12. March 2016.

External links[edit]