Mathisson–Papapetrou–Dixon equations
General relativity |
---|
In physics, specifically general relativity, the Mathisson–Papapetrou–Dixon equations describe the motion of a spinning massive object, moving in a gravitational field. Other equations with similar names and mathematical forms are the Mathisson-Papapetrou equations and Papapetrou-Dixon equations. All three sets of equations describe the same physics.
They are named for M. Mathisson,[1] W. G. Dixon,[2] and A. Papapetrou.[3]
Throughout, this article uses the natural units c = G = 1, and tensor index notation.
For a particle of mass m, the Mathisson–Papapetrou–Dixon equations are:[4][5]
where: u is the four velocity (1st order tensor), S the spin tensor (2nd order), R the Riemann curvature tensor (4th order), and the capital "D" indicates the covariant derivative with respect to the particle's proper time s (an affine parameter).
Mathisson–Papapetrou equations
For a particle of mass m, the Mathisson–Papapetrou equations are:[6][7]
using the same symbols as above.
Papapetrou–Dixon equations
See also
- Introduction to the mathematics of general relativity
- Geodesic equation
- Pauli–Lubanski pseudovector
- Test particle
- Relativistic angular momentum
- Center of mass (relativistic)
References
Notes
- ^ "Neue Mechanik materieller Systeme". Acta Phys. Polonica. Vol. 6. 1937. pp. 163–209.
- ^ W. G. Dixon (1970). "Dynamics of Extended Bodies in General Relativity. I. Momentum and Angular Momentum". Proc. R. Soc. Lond. A. 314. doi:10.1098/rspa.1970.0020.
- ^ A. Papapetrou (1951). "Spinning Test-Particles in General Relativity. I". Proc. R. Soc. Lond. A. 209. doi:10.1098/rspa.1951.0200.
- ^ R. Plyatsko; O. Stefanyshyn; M. Fenyk (2011). "Mathisson-Papapetrou-Dixon equations in the Schwarzschild and Kerr backgrounds". arXiv:1110.1967.
- ^ R. Plyatsko; O. Stefanyshyn (2008). "On common solutions of Mathisson equations under different conditions". arXiv:0803.0121.
- ^ R. M. Plyatsko; A. L. Vynar; Ya. N. Pelekh (1985). "Conditions for the appearance of gravitational ultrarelativistic spin-orbital interaction". Soviet Physics Journal. Vol. 28, no. 10. Springer. pp. 773–776.
- ^ K. Svirskas; K. Pyragas (1991). "The spherically-symmetrical trajectories of spin particles in the Schwarzschild field". Astrophysics and Space Science. Vol. 179, no. 2. Springer. pp. 275–283.
Selected papers
- L. F. O. Costa; J. Natário; M. Zilhão (2012). "Mathisson's helical motions demystified". arXiv:1206.7093. doi:10.1063/1.4734436.
{{cite journal}}
: Cite journal requires|journal=
(help) - C. Chicone; B. Mashhoon; B. Punsly (2005). "Relativistic motion of spinning particles in a gravitational field". Physics Letters A. Vol. 343, no. 1–3. Elsevier. pp. 1–7.
- N. Messios (2007). "Spinning Particles in Spacetimes with Torsion". International Journal of Theoretical Physics. General Relativity and Gravitation. Vol. 46, no. 3. Springer. pp. 562–575.
- D. Singh (2008). "An analytic perturbation approach for classical spinning particle dynamics". International Journal of Theoretical Physics. General Relativity and Gravitation. Vol. 40, no. 6. Springer. pp. 1179–1192.
- L. F. O. Costa; J. Natário; M. Zilhão (2012). "Mathisson's helical motions demystified". arXiv:1206.7093. doi:10.1063/1.4734436.
{{cite journal}}
: Cite journal requires|journal=
(help) - R. M. Plyatsko (1985). "Addition oe the Pirani condition to the Mathisson-Papapetrou equations in a Schwarzschild field". Soviet Physics Journal. Vol. 28, no. 7. Springer. pp. 601–604.
- R.R. Lompay (2005). "Deriving Mathisson-Papapetrou equations from relativistic pseudomechanics". arXiv:gr-qc/0503054.
- R. Plyatsko (2011). "Can Mathisson-Papapetrou equations give clue to some problems in astrophysics?". arXiv:1110.2386.
- M. Leclerc (2005). "Mathisson-Papapetrou equations in metric and gauge theories of gravity in a Lagrangian formulation". arXiv:gr-qc/0505021. doi:10.1088/0264-9381/22/16/006.
{{cite journal}}
: Cite journal requires|journal=
(help)