Jump to content

Non-renewable resource: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Reverted edits by 209.94.95.56 (talk) to last revision by Mark Arsten (HG)
Line 7: Line 7:
In contrast, resources such as [[timber]] (when [[Sustainable forest management|harvested sustainably]]) and wind (used to power energy conversion systems) are considered [[renewable resource]]s, largely because their localized replenishment can occur within timeframes meaningful to humans.
In contrast, resources such as [[timber]] (when [[Sustainable forest management|harvested sustainably]]) and wind (used to power energy conversion systems) are considered [[renewable resource]]s, largely because their localized replenishment can occur within timeframes meaningful to humans.


==Fossil fuel==
==Fossil guild hi mom

{{See|Oil depletion}}
{{See|Oil depletion}}
{{main|Fossil fuel}}
{{main|Fossil fuel}}

Revision as of 20:31, 6 December 2013

A coal mine in Wyoming. Coal, produced over millions of years, is a finite and non-renewable resource on a human time scale.

A non-renewable resource (also known as a finite resource) is a resource that does not renew itself at a sufficient rate for sustainable economic extraction in meaningful human timeframes. An example is carbon-based, organically-derived fuel. The original organic material, with the aid of heat and pressure, becomes a fuel such as oil or gas. Fossil fuels (such as coal, petroleum, and natural gas), and certain aquifers are all non-renewable resources.

Metal ores are other examples of non-renewable resources. The metals themselves are present in vast amounts in the earth's crust, and are continually concentrated and replenished over millions of years. However their extraction by humans only occurs where they are concentrated by natural processes (such as heat, pressure, organic activity, weathering and other processes) enough to become economically viable to extract. These processes generally take from tens of thousands to millions of years. As such, localized deposits of metal ores near the surface which can be extracted economically by humans are non-renewable in human timeframes, but on a world scale, metal ores as a whole are inexhaustible, because the amount vastly exceeds human demand, on all timeframes. Though they are technically non-renewable, just like with rocks and sand, humans could never deplete the world's supply. In this respect, metal ores are considered vastly greater in supply to fossil fuels because metal ores are formed by crustal scale processes which make up a much larger portion of the earth's near-surface environment than those that form fossil fuels, which are limited to areas where carbon-based life forms flourish, die, and are quickly buried. These fossil fuel-forming environments occurred extensively in the Carboniferous Period.

In contrast, resources such as timber (when harvested sustainably) and wind (used to power energy conversion systems) are considered renewable resources, largely because their localized replenishment can occur within timeframes meaningful to humans.

==Fossil guild hi mom

Natural resources such as coal, petroleum (crude oil) and natural gas take thousands of years to form naturally and cannot be replaced as fast as they are being consumed. Eventually it is considered that fossil-based resources will become too costly to harvest and humanity will need to shift its reliance to other sources of energy. These resources are yet to be named.

An alternative hypothesis is that carbon based fuel is virtually inexhaustible in human terms, if one includes all sources of carbon-based energy such as methane hydrates on the sea floor, which are vastly greater than all other carbon based fossil fuel resources combined. These sources of carbon are also considered non-renewable, although their rate of formation/replenishment on the sea floor is not known. However their extraction at economically viable costs and rates has yet to be determined.

At present, the main energy source used by humans is non-renewable fossil fuels. Since the dawn of internal combustion engine technologies in the 17th century, petroleum and other fossil fuels have remained in continual demand. As a result, conventional infrastructure and transport systems, which are fitted to combustion engines, remain prominent throughout the globe. The continual use of fossil fuels at the current rate is believed to increase global warming and cause more severe climate change.[1]

Radioactive fuel

An open pit uranium mine in Namibia
Annual release of uranium and thorium radioisotopes from coal combustion, predicted by ORNL to cumulatively amount to 2.9 million tons over the 1937-2040 period, from the combustion of an estimated 637 billion tons of coal worldwide.[2]

The use of nuclear technology requires a radioactive fuel. Uranium ore is present in the ground at relatively low concentrations and mined in 19 countries.[3] This mined uranium is used to fuel energy-generating nuclear reactors with fissionable uranium-235 which generates heat that is ultimately used to power turbines to generate electricity.[4]

Nuclear power provides about 6% of the world's energy and 13–14% of the world's electricity.[5] The expense of the nuclear industry remains predominantly reliant on subsidies and indirect insurance subsidies to continue.[6][7] Nuclear energy production is associated with potentially dangerous radioactive contamination as it relies upon unstable elements. In particular, nuclear power facilities produce about 200,000 metric tons of low and intermediate level waste (LILW) and 10,000 metric tons of high level waste (HLW) (including spent fuel designated as waste) each year worldwide.[8]

The use of nuclear fuel and the high-level radioactive waste the nuclear industry generates is highly hazardous to people and wildlife. Radiocontaminants in the environment can enter the food chain and become bioaccumulated.[9] Internal or external exposure can cause mutagenic DNA breakage producing teratogenic generational birth defects, cancers and other damage. The United Nations (UNSCEAR) estimated in 2008 that average annual human radiation exposure includes 0.01 mSv (milli-Sievert) from the legacy of past atmospheric nuclear testing plus the Chernobyl disaster and the nuclear fuel cycle, along with 2.0 mSv from natural radioisotopes and 0.4 mSv from cosmic rays; all exposures vary by location.[10] Some radioisotopes in nuclear waste emit harmful radiation for the prolonged period of 4.5 billion years or more,[11] and storage has risks of containment. The storage of waste, health implications and dangers of radioactive fuel continue to be a topic of debate, resulting in a controversial and unresolved industry.

Renewable resources

Kamieńczyk waterfall in Karkonosze.

Natural resources, called renewable resources, are replaced by natural processes and forces persistent in the natural environment. There are intermittent and reoccurring renewables, and recyclable materials, which are utilized during a cycle across a certain amount of time, and can be harnessed for any number of cycles.

The production of goods and services by manufacturing products in economic systems creates many types of waste during production and after the consumer has made use of it. The material is then either incinerated, buried in a landfill or recycled for reuse. Recycling turns materials of value that would otherwise become waste into valuable resources again.

The natural environment, with soil, water, forests, plants and animals are all renewable resources, as long as they are adequately monitored, protected and conserved. Sustainable agriculture is the cultivation of plant materials in a manner that preserves plant and animal ecosystems over the long term. The overfishing of the oceans is one example of where an industry practice or method can threaten an ecosystem, endanger species and possibly even determine whether or not a fishery is sustainable for use by humans. An unregulated industry practice or method can lead to a complete resource depletion.[12]

The renewable energy from the sun, wind, wave, biomass and geothermal energies are based on renewable resources. Renewable resources such as the movement of water (hydropower, tidal power and wave power), wind and radiant energy from geothermal heat (used for geothermal power) and solar energy (used for solar power) are practically infinite and cannot be depleted, unlike their non-renewable counterparts, which are likely to run out if not used sparingly.

The potential wave energy on coastlines can provide 1/5 of world demand. Hydroelectric power can supply 1/3 of our total energy global needs. Geothermal energy can provide 1.5 more times the energy we need. There is enough wind to power the planet 30 times over, wind power could power all of humanity's needs alone. Solar currently supplies only 0.1% of our world energy needs, but there is enough out there to power humanity's needs 4,000 times over, the entire global projected energy demand by 2050.[13][14]

Renewable energy and energy efficiency are no longer niche sectors that are promoted only by governments and environmentalists. The increasing levels of investment and that more of the capital is from conventional financial actors, both suggest that sustainable energy has become mainstream and the future of energy production, as non-renewable resources decline. This is reinforced by climate change concerns, nuclear dangers and accumulating radioactive waste, high oil prices, peak oil and increasing government support for renewable energy. These factors are commercializing renewable energy, enlarging the market and growing demand, the adoption of new products to replace obsolete technology and the conversion of existing infrastructure to a renewable standard.[15]

Economic models

In economics, a non-renewable resource is defined as goods, where greater consumption today implies less consumption tomorrow.[16] David Ricardo in his early works analysed the pricing of exhaustible resources, where he argued that the price of a mineral resource should increase over time. He argued that the spot price is always determined by the mine with the highest cost of extraction, and mine owners with lower extraction costs benefit from a differential rent. The first model is defined by Hotelling's rule, which is a 1931 economic model of non-renewable resource management by Harold Hotelling. It shows that efficient exploitation of a nonrenewable and nonaugmentable resource would, under otherwise stable conditions, lead to a depletion of the resource. The rule states that this would lead to a net price or "Hotelling rent" for it that rose annually at a rate equal to the rate of interest, reflecting the increasing scarcity of the resources. The Hartwick's rule provides an important result about the sustainability of welfare in an economy that uses non-renewable source.

However, nearly all metal prices have been declining over time in inflation adjusted terms, because of a number of false assumptions in the above. Firstly, metal resources are non-renewable, but on a world scale, largely inexhaustible. This is because they are present throughout the earth's crust on a vast scale, far exceeding human demand on all time scales. Metal ores however, are only extracted in those areas where nature has concentrated the metal in the crust to a level whereby it is locally economic to extract. This also depends on the available technology for both finding the metal ores as well as extracting them, which is constantly changing. If the technology or demand changes, vast amounts of metal previously ignored can become economically extractable. This is why Ricardo's simplistic notion that the price of a mineral resource should increase over time has in fact turned out to be the opposite, nearly all metal ores have decreased in inflation adjusted prices since well before the early 20th century. The main reason he was wrong is that he assumed that metals are exhaustible on a world scale, and he also misunderstood the effect of globally competing markets; in human terms the amount of metal in the earth's crust is essentially limitless. It is only in localized areas that metal ores can become depleted, as these local areas compete with extraction costs of resources elsewhere, which does have ramifications for the sustainability of local economies.

See also

References

  1. ^ America's Climate Choices: Panel on Advancing the Science of Climate Change; National Research Council (2010). Advancing the Science of Climate Change. Washington, D.C.: The National Academies Press. ISBN 0-309-14588-0.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. ^ Coal Combustion - ORNL Review Vol. 26, No. 3&4, 1993
  3. ^ "World Uranium Mining". World Nuclear Association. Retrieved 28 February 2011.
  4. ^ "What is uranium? How does it work?". World Nuclear Association. Retrieved 28 February 2011.
  5. ^ World Nuclear Association. Another drop in nuclear generation World Nuclear News, 5 May 2010.
  6. ^ "Nuclear Power: Still Not Viable without Subsidies". Union of Concerned Scientists. Retrieved 4 February 2012.
  7. ^ "Billions of Dollars in Subsidies for the Nuclear Power Industry Will Shift Financial Risks to Taxpayers" (PDF). Union of Concerned Scientists. Retrieved 4 February 2012.
  8. ^ "Factsheets & FAQs". International Atomic Energy Agency (IAEA). Retrieved 1 February 2012.
  9. ^ "Bioaccumulation of Cesium-137 and Cobalt-60 from Solid Cellulosic-based Radioactive Waste Simulates by Plurotus Pulmonarius (PDF)" (PDF). Academic Journals. Retrieved 3 February 2012.
  10. ^ United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation, UNSCEAR 2008
  11. ^ Mcclain, D.E. (20 December 2007). "Status of Health Concerns about Military Use of Depleted Uranium and Surrogate Metals in Armor-Penetrating Munitions" (pdf). NATO. Retrieved 1 February 2012. {{cite web}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  12. ^ "Illegal, Unreported and Unregulated Fishing In Small-Scale Marine and Inland Capture Fisharies". Food and Agriculture Organization. Retrieved 4 February 2012.
  13. ^ R. Eisenberg and D. Nocera, "Preface: Overview of the Forum on Solar and Renewable Energy," Inorg. Chem. 44, 6799 (2007).
  14. ^ P. V. Kamat, "Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion," J. Phys. Chem. C 111, 2834 (2007).
  15. ^ "Global Trends in Sustainable Energy Investment 2007: Analysis of Trends and Issues in the Financing of Renewable Energy and Energy Efficiency in OECD and Developing Countries (PDF), p. 3" (PDF). United Nations Environment Programme. Retrieved 3 February 2012.
  16. ^ Cremer and Salehi-Isfahani 1991:18