Ranked pairs
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
A joint Politics and Economics series |
Social choice and electoral systems |
---|
Mathematics portal |
Ranked pairs (RP) or the Tideman method is a voting system developed in 1987 by Nicolaus Tideman that selects a single winner using votes that express preferences. RP can also be used to create a sorted list of winners.
If there is a candidate who is preferred over the other candidates, when compared in turn with each of the others, RP guarantees that candidate will win. Because of this property, RP is, by definition, a Condorcet method.
Procedure
The RP procedure is as follows:
- Tally the vote count comparing each pair of candidates, and determine the winner of each pair (provided there is not a tie)
- Sort (rank) each pair, by the largest strength of victory first to smallest last.
- "Lock in" each pair, starting with the one with the largest number of winning votes, and add one in turn to a graph as long as they do not create a cycle (which would create an ambiguity). The completed graph shows the winner.
RP can also be used to create a sorted list of preferred candidates. To create a sorted list, repeatedly use RP to select a winner, remove that winner from the list of candidates, and repeat (to find the next runner up, and so forth).
Tally
To tally the votes, consider each voter's preferences. For example, if a voter states "A > B > C" (A is better than B, and B is better than C), the tally should add one for A in A vs. B, one for A in A vs. C, and one for B in B vs. C. Voters may also express indifference (e.g., A = B), and unstated candidates are assumed to be equally worse than the stated candidates.
Once tallied the majorities can be determined. If "Vxy" is the number of Votes that rank x over y, then "x" wins if Vxy > Vyx, and "y" wins if Vyx > Vxy.
Sort
The pairs of winners, called the "majorities", are then sorted from the largest majority to the smallest majority. A majority for x over y precedes a majority for z over w if and only if one of the following conditions holds:
- Vxy > Vzw. In other words, the majority having more support for its alternative is ranked first.
- Vxy = Vzw and Vwz > Vyx. Where the majorities are equal, the majority with the smaller minority opposition is ranked first.[vs 1]
Lock
The next step is to examine each pair in turn to determine the pairs to "lock in". This can be visualized by drawing an arrow from the pair's winner to the pair's loser in a directed graph. Using the sorted list above, lock in each pair in turn unless the pair will create a circularity in the graph (for example, where A is more than B, B is more than C, but C is more than A).
This step can be somewhat more complicated if there are equal-weighted pairs which create a cycle: A naïve approach will result in the outcome depending on the (unspecified) method of resolving ties in the sort order. One way to resolve this issue is to allow cycles if they are needed to resolve ties (i.e., if a single new edge would not create a cycle, but multiple tied edges would), and then define the winners as the resulting Schwartz set.
Winner
In the resulting graph, the source corresponds to the winner. A source is bound to exist because the graph is a directed acyclic graph by construction, and such graphs always have sources. In the absence of pairwise ties, the source is also unique (because whenever two nodes appear as sources, there would be no valid reason not to connect them, leaving only one of them as a source).
An example
The situation
Suppose that Tennessee is holding an election on the location of its capital. The population is concentrated around four major cities. All voters want the capital to be as close to them as possible. The options are:
- Memphis, the largest city, but far from the others (42% of voters)
- Nashville, near the center of the state (26% of voters)
- Chattanooga, somewhat east (15% of voters)
- Knoxville, far to the northeast (17% of voters)
The preferences of each region's voters are:
42% of voters Far-West |
26% of voters Center |
15% of voters Center-East |
17% of voters Far-East |
---|---|---|---|
|
|
|
|
The results would be tabulated as follows:
A | |||||
Memphis | Nashville | Chattanooga | Knoxville | ||
B | Memphis | [A] 58% [B] 42% |
[A] 58% [B] 42% |
[A] 58% [B] 42% | |
Nashville | [A] 42% [B] 58% |
[A] 32% [B] 68% |
[A] 32% [B] 68% | ||
Chattanooga | [A] 42% [B] 58% |
[A] 68% [B] 32% |
[A] 17% [B] 83% | ||
Knoxville | [A] 42% [B] 58% |
[A] 68% [B] 32% |
[A] 83% [B] 17% |
||
Pairwise election results (won-lost-tied): | 0-3-0 | 3-0-0 | 2-1-0 | 1-2-0 | |
Votes against in worst pairwise defeat: | 58% | N/A | 68% | 83% |
- [A] indicates voters who preferred the candidate listed in the column caption to the candidate listed in the row caption
- [B] indicates voters who preferred the candidate listed in the row caption to the candidate listed in the column caption
Tally
First, list every pair, and determine the winner:
Pair | Winner |
---|---|
Memphis (42%) vs. Nashville (58%) | Nashville 58% |
Memphis (42%) vs. Chattanooga (58%) | Chattanooga 58% |
Memphis (42%) vs. Knoxville (58%) | Knoxville 58% |
Nashville (68%) vs. Chattanooga (32%) | Nashville 68% |
Nashville (68%) vs. Knoxville (32%) | Nashville 68% |
Chattanooga (83%) vs. Knoxville (17%) | Chattanooga: 83% |
Note that absolute counts of votes can be used, or percentages of the total number of votes; it makes no difference since it is the ratio of votes between two candidates that matters.
Sort
The votes are then sorted. The largest majority is "Chattanooga over Knoxville"; 83% of the voters prefer Chattanooga. Nashville (68%) beats both Chattanooga and Knoxville by a score of 68% over 32% (a tie, unlikely in real life for this many voters). Since Chattanooga > Knoxville, and they are the losers, Nashville vs. Knoxville will be added first, followed by Nashville vs. Chattanooga.
Thus, the pairs from above would be sorted this way:
Pair | Winner |
---|---|
Chattanooga (83%) vs. Knoxville (17%) | Chattanooga 83% |
Nashville (68%) vs. Knoxville (32%) | Nashville 68% |
Nashville (68%) vs. Chattanooga (32%) | Nashville 68% |
Memphis (42%) vs. Nashville (58%) | Nashville 58% |
Memphis (42%) vs. Chattanooga (58%) | Chattanooga 58% |
Memphis (42%) vs. Knoxville (58%) | Knoxville 58% |
Lock
The pairs are then locked in order, skipping any pairs that would create a cycle:
- Lock Chattanooga over Knoxville.
- Lock Nashville over Knoxville.
- Lock Nashville over Chattanooga.
- Lock Nashville over Memphis.
- Lock Chattanooga over Memphis.
- Lock Knoxville over Memphis.
In this case, no cycles are created by any of the pairs, so every single one is locked in.
Every "lock in" would add another arrow to the graph showing the relationship between the candidates. Here is the final graph (where arrows point away from the winner).
In this example, Nashville is the winner using RP, followed by Chattanooga, Knoxville, and Memphis in second, third, and fourth places respectively.
Ambiguity resolution example
For a simple situation involving candidates A, B, and C.
- A > B: 68%
- B > C: 72%
- C > A: 52%
In this situation we "lock in" the majorities starting with the greatest one first.
- Lock B > C
- Lock A > B
- C > A is ignored as it creates an ambiguity or cycle.
Therefore, A is the winner.
Summary
In the example election, the winner is Nashville. This would be true for any Condorcet method.
Using the First-past-the-post voting and some other systems, Memphis would have won the election by having the most people, even though Nashville won every simulated pairwise election outright. Using Instant-runoff voting in this example would result in Knoxville winning even though more people preferred Nashville over Knoxville.
Criteria
Of the formal voting system criteria, the ranked pairs method passes the majority criterion, the monotonicity criterion, the Condorcet criterion, the Condorcet loser criterion, and the independence of clones criterion. Ranked pairs fails the consistency criterion and the participation criterion. While ranked pairs is not fully independent of irrelevant alternatives, it still satisfies local independence of irrelevant alternatives.
Independence of irrelevant alternatives
Ranked pairs fails independence of irrelevant alternatives. However, the method adheres to a less strict property, sometimes called independence of Smith-dominated alternatives (ISDA). It says that if one candidate (X) wins an election, and a new alternative (Y) is added, X will win the election if Y is not in the Smith set. ISDA implies the Condorcet criterion.
See also
References
- ^ In fact, there are different ways how the strength of a victory is measured. The approach used in this article is called winning votes. Another common approach also used by Tideman defining the ranked pairs method in 1987 is the variant using margins of a victory.
- Tideman, T.N. (1987) Independence of clones as a criterion for voting rules. Social Choice and Welfare 4: 185-206.
External links
- Descriptions of ranked-ballot voting methods by Rob LeGrand
- Example JS implementation by Asaf Haddad
- Pair Ranking Ruby Gem by Bala Paranj