Rosmarinic acid

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Andromeas (talk | contribs) at 12:34, 19 June 2014 (→‎Gallery). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Rosmarinic acid
Rosmarinic acid
Names
IUPAC name
(2''R'')-2-[[(2''E'')-3-(3,4-Dihydroxyphenyl)-1-oxo-2-propenyl]]oxy]-3-(3,4-dihydroxyphenyl)propanoic acid
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.123.507 Edit this at Wikidata
  • InChI=1S/C18H16O8/c19-12-4-1-10(7-14(12)21)3-6-17(23)26-16(18(24)25)9-11-2-5-13(20)15(22)8-11/h1-8,16,19-22H,9H2,(H,24,25)/b6-3+ checkY
    Key: DOUMFZQKYFQNTF-ZZXKWVIFSA-N checkY
  • InChI=1/C18H16O8/c19-12-4-1-10(7-14(12)21)3-6-17(23)26-16(18(24)25)9-11-2-5-13(20)15(22)8-11/h1-8,16,19-22H,9H2,(H,24,25)/b6-3+
    Key: DOUMFZQKYFQNTF-ZZXKWVIFBW
  • O=C(O)C(OC(=O)\C=C\c1ccc(O)c(O)c1)Cc2cc(O)c(O)cc2
Properties
C18H16O8
Molar mass 360.31 g/mol
Appearance red-orange powder
Melting point 171-175 °C
slightly soluble in water, but well soluble in most organic solvents.[1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Rosmarinic acid is a caffeic acid ester found in a variety of plants. It has antioxidant and/or medicinal properties.

History

Rosmarinic acid was first isolated and characterized in 1958 by two Italian chemists ML Scarpatti and G. Oriente from rosemary (Rosmarinus officinalis).[2]

Natural occurrences

Rosmarinic acid accumulation is shown in hornworts, in the fern family Blechnaceae and in species of several orders of mono- and dicotyledonous angiosperms.[3]

It is found most notably in many Lamiaceae (dicotyledons in the order Lamiales), especially in the subfamily Nepetoideae.[4] It is found in species used commonly as culinary herbs such as Ocimum basilicum (basil), Ocimum tenuiflorum (holy basil), Melissa officinalis (lemon balm), Rosmarinus officinalis (rosemary), Origanum majorana (marjoram), Salvia officinalis (sage), thyme and peppermint[5] or in plants with medicinal properties such as common self-heal (Prunella vulgaris) or species in the genus Stachys.

It is also found in other Lamiales such as Heliotropium foertherianum, a plant in the family Boraginaceae.

It is also found in plants in the family Marantaceae (monocotyledons in the order Zingiberales)[3] such as species in the genera Maranta (Maranta leuconeura, Maranta depressa) and Thalia (Thalia geniculata).[6]

Rosmarinic acid and a rosmarinic acid 3′-O-β-D-glucoside can be found in Anthoceros agrestis, a hornwort (Anthocerotophyta).[7]

Biosynthesis

The biosyntheses of caffeoylshikimate, chlorogenic acid and rosmarinic acid use 4-coumaroyl-CoA from the general phenylpropanoid pathway as hydroxycinnamoyl donor. The hydroxycinnamoyl acceptor substrate comes from the shikimate pathway: shikimic acid, quinic acid and hydroxyphenyllactic acid derived from l-tyrosine.[3] Thus, chemically, rosmarinic acid is an ester of caffeic acid with 3,4-dihydroxyphenyl lactic acid, but biologically, it is formed from 4-coumaroyl-4'-hydroxyphenyllactate.[8] Rosmarinate synthase is an enzyme that uses caffeoyl-CoA and 3-(3,4-dihydroxyphenyl)lactate to produce CoA and rosmarinate. Hydroxyphenylpyruvate reductase is also an enzyme involved in this biosynthesis.[9]

The enzymes involved in the biosynthesis pathway probably evolved from those used in the formation of chlorogenic and caffeoylshikimic acids.[3]

In plants, rosmarinic acid is supposed to act as a preformed constitutively accumulated defense compound.[10]

Clinical importance

Rosmarinic acid is a potential anxiolytic as it acts as a GABA transaminase inhibitor, more specifically on 4-aminobutyrate transaminase.[11]

The plant extract of Ocimum basilicum shows high levels of inhibition against MMP-13.

Rosmarinic acid also inhibits the expression of indoleamine 2,3-dioxygenase via its cyclooxygenase-inhibiting properties.[12]

Senescent leaves of Heliotropium foertherianum (Boraginaceae) also known as octopus bush, a plant used in many Pacific islands as a traditional medicine to treat ciguatera fish poisoning, contain rosmarinic acid and derivatives, which are known for their antiviral, antibacterial, antioxidant and anti-inflammatory properties.[13] Rosmarinic acid may remove the ciguatoxins from their sites of action, as well as being an anti-inflammatory.

The use of rosmarinic acid has been shown to be effective in a mouse model of Japanese encephalitis.[14]

Unconjugated rosmarinic acid and its metabolites remain in the bloodstream of rats for enough time to reach the brain and decrease acetylcholinesterase activity.[15] Rosmarinic acid may be transported in the bloodstream bound to human serum albumin and lysozyme.[16]

Gallery

References

  1. ^ MSDS for rosmarinic acid
  2. ^ Isolamento costituzione e dell 'acido rosmarinico (dal rosmarinus off ). ML Scarpati, G. Oriente , Ric. Sci, 1958, volume 28, pages 2329-2333
  3. ^ a b c d Evolution of rosmarinic acid biosynthesis. Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K, Hücherig S, Janiak V, Kim KH, Sander M, Weitzel C and Wolters S, Phytochemistry, Oct-Nov 2009, volume 70, issues 15-16, pages 1663-1679, doi:10.1016/j.phytochem.2009.05.010
  4. ^ Distribution and taxonomic implications of some phenolics in the family Lamiaceae determindes by ESR spectroscopy. J. A. Pedersen, Biochemical Systematics and Ecology, 2000, volume 28, pages 229–253
  5. ^ Clifford, M.N. Chlorogenic acids and other cinnamates. Nature, occurrence and dietary burden. J. Sci. Food. Agric. (79) 362-372, 1999
  6. ^ Occurrence of rosmarinic acid, chlorogenic acid and rutin in Marantaceae species. Yana Abdullah, Bernd Schneider and Maike Petersen, Phytochemistry Letters, 12 December 2008, Volume 1, Issue 4, Pages 199–203, doi:10.1016/j.phytol.2008.09.010
  7. ^ Production of rosmarinic acid and a new rosmarinic acid 3′- O -β-D -glucoside in suspension cultures of the hornwort Anthoceros agrestis Paton. Katharina Vogelsang, Bernd Schneider and Maike Petersen, Planta, Volume 223, Number 2, 369-373, doi:10.1007/s00425-005-0089-8
  8. ^ Rosmarinic acid biosynthesis pathway at bioxyx.org
  9. ^ Two new enzymes of rosmarinic acid biosynthesis from cell cultures of Coleus blumei: hydroxyphenylpyruvate reductase and rosmarinic acid synthase. Petersen M and Alfermann AW, Z. Naturforsch. C: Biosci., 1988, volume 43, pages 501–504
  10. ^ Petersen M, Simmonds MSJ (2003) Rosmarinic acid. Phytochemistry 61: 121-125
  11. ^ Bioassay-guided fractionation of lemon balm (Melissa officinalis L.) using an in vitro measure of GABA transaminase activity. Awad R, Muhammad A, Durst T, Trudeau VL and Arnason JT, Phytother Res., August 2009, volume 23, issue 8, pages 1075-1081, doi:10.1002/ptr.2712
  12. ^ Lee HJ, Jeong YI, Lee TH; et al. (May 2007). "Rosmarinic acid inhibits indoleamine 2,3-dioxygenase expression in murine dendritic cells". Biochem. Pharmacol. 73 (9): 1412–21. doi:10.1016/j.bcp.2006.12.018. PMID 17229401. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  13. ^ Protective effect of Heliotropium foertherianum (Boraginaceae) folk remedy and its active compound, rosmarinic acid, against a Pacific ciguatoxin. Rossi F, Jullian V, Pawlowiez R, Kumar-Roiné S, Haddad M, Darius HT, Gaertner-Mazouni N, Chinain M and Laurent D, J Ethnopharmacol., 30 August 2012, volume 143, issue 1, pages 33-40, doi:10.1016/j.jep.2012.05.045
  14. ^ Swarup V, Ghosh J, Ghosh S, Saxena A, Basu A (September 2007). "Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis". Antimicrob. Agents Chemother. 51 (9): 3367–70. doi:10.1128/AAC.00041-07. PMC 2043228. PMID 17576830.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. ^ Pedro L. V. Falé, Paulo J. Amorim Madeira, M. Helena Florêncio, Lia Ascensão and Maria Luísa M. Serralheiro. Function of Plectranthus barbatus herbal tea as neuronal acetylcholinesterase inhibitor. Food Funct., 2011, 2, 130-136.
  16. ^ Pedro L.V. Falé, Lia Ascensão, Maria L.M. Serralheiro, Parvez I. Haris. Interaction between Plectranthus barbatus herbal tea components and human serum albumin and lysozyme: Binding and activity studies. Spectroscopy, 2011, 26, 79-92.

See also