Jump to content

2023 in paleontology: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 2,297: Line 2,297:


==History of life in general==
==History of life in general==
* Brocks ''et al.'' (2023) report the discovery of abundant protosteroids in sedimentary rocks of mid-Proterozoic age, and interpret this finding as evidence of the existence of a widespread and abundant biota of protosterol-producing bacteria and [[Crown group#Stem groups|stem-group]] [[eukaryote]]s, living in aquatic environments from at least 1,640 to around 800 million years ago.<ref>{{Cite journal |last1=Brocks |first1=J. J. |last2=Nettersheim |first2=B. J. |last3=Adam |first3=P. |last4=Schaeffer |first4=P. |last5=Jarrett |first5=A. J. M. |last6=Güneli |first6=N. |last7=Liyanage |first7=T. |last8=van Maldegem |first8=L. M. |last9=Hallmann |first9=C. |last10=Hope |first10=J. M. |title=Lost world of complex life and the late rise of the eukaryotic crown |year=2023 |journal=Nature |pages=1–7 |doi=10.1038/s41586-023-06170-w }}</ref>
* Kolesnikov ''et al.'' (2023) report the discovery of the fossil material of Ediacara-type soft-bodied organisms, including palaeopascichnids, arboreomorphs, chuariomorphids, microbial colonies, from the Dzhezhim Formation of the Timan Range ([[Komi Republic]], [[Russia]]).<ref>{{Cite journal|last1=Kolesnikov |first1=A. V. |last2=Latysheva |first2=I. V. |last3=Shatsillo |first3=A. V. |last4=Kuznetsov |first4=N. B. |last5=Kolesnikov |first5=A. S. |last6=Desiatkin |first6=V. D. |last7=Romanyuk |first7=T. V. |title=Ediacara-Type Biota in the Upper Precambrian of the Timan Range (Dzhezhim–Parma Hill, Komi Republic) |year=2023 |journal=Doklady Earth Sciences |volume=510 |issue=1 |pages=289–292 |doi=10.1134/S1028334X23600032 }}</ref>
* Kolesnikov ''et al.'' (2023) report the discovery of the fossil material of Ediacara-type soft-bodied organisms, including palaeopascichnids, arboreomorphs, chuariomorphids, microbial colonies, from the Dzhezhim Formation of the Timan Range ([[Komi Republic]], [[Russia]]).<ref>{{Cite journal|last1=Kolesnikov |first1=A. V. |last2=Latysheva |first2=I. V. |last3=Shatsillo |first3=A. V. |last4=Kuznetsov |first4=N. B. |last5=Kolesnikov |first5=A. S. |last6=Desiatkin |first6=V. D. |last7=Romanyuk |first7=T. V. |title=Ediacara-Type Biota in the Upper Precambrian of the Timan Range (Dzhezhim–Parma Hill, Komi Republic) |year=2023 |journal=Doklady Earth Sciences |volume=510 |issue=1 |pages=289–292 |doi=10.1134/S1028334X23600032 }}</ref>
* Servais ''et al.'' (2023) review estimates of taxonomic richness of marine organisms during the early [[Paleozoic]] based on different published datasets, and question the existence of a distinct [[Cambrian explosion]] and global [[Great Ordovician Biodiversification Event|Ordovician biodiversification event]] instead of a single, long-term radiation of life during the early Paleozoic.<ref>{{cite journal |last1=Servais |first1=T. |last2=Cascales-Miñana |first2=B. |last3=Harper |first3=D. A. T. |last4=Lefebvre |first4=B. |last5=Munnecke |first5=A. |last6=Wang |first6=W. |last7=Zhang |first7=Y. |year=2023 |title=No (Cambrian) explosion and no (Ordovician) event: A single long-term radiation in the early Palaeozoic |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=623 |at=111592 |doi=10.1016/j.palaeo.2023.111592 }}</ref>
* Servais ''et al.'' (2023) review estimates of taxonomic richness of marine organisms during the early [[Paleozoic]] based on different published datasets, and question the existence of a distinct [[Cambrian explosion]] and global [[Great Ordovician Biodiversification Event|Ordovician biodiversification event]] instead of a single, long-term radiation of life during the early Paleozoic.<ref>{{cite journal |last1=Servais |first1=T. |last2=Cascales-Miñana |first2=B. |last3=Harper |first3=D. A. T. |last4=Lefebvre |first4=B. |last5=Munnecke |first5=A. |last6=Wang |first6=W. |last7=Zhang |first7=Y. |year=2023 |title=No (Cambrian) explosion and no (Ordovician) event: A single long-term radiation in the early Palaeozoic |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=623 |at=111592 |doi=10.1016/j.palaeo.2023.111592 }}</ref>

Revision as of 16:13, 7 June 2023

List of years in paleontology (table)
In paleobotany
2020
2021
2022
2023
2024
2025
2026
In arthropod paleontology
2020
2021
2022
2023
2024
2025
2026
In paleoentomology
2020
2021
2022
2023
2024
2025
2026
In paleomalacology
2020
2021
2022
2023
2024
2025
2026
In reptile paleontology
2020
2021
2022
2023
2024
2025
2026
In archosaur paleontology
2020
2021
2022
2023
2024
2025
2026
In mammal paleontology
2020
2021
2022
2023
2024
2025
2026
In paleoichthyology
2020
2021
2022
2023
2024
2025
2026

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2023.


Flora

"Algae"

Plants

Fungi

Name Novelty Status Authors Age Type locality Location Notes Images

Porterra[2]

Gen. et sp. nov

Retallack

Tonian

Chuar Group

 United States
( Arizona)

A lichen-like thalli.
The type species is P. dehlerae.

Rhyniomycelium[3]

Gen. et sp. nov

Krings & Harper

Devonian

Rhynie chert

 United Kingdom

A fungal mycelium of uncertain affinities. Genus includes new species R. endoconidiarum.

Mycological research

General floral research

Cnidarians

New cnidarian taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Decimoconularia anisfacialis[4]

Sp. nov

Song et al.

Cambrian (Fortunian)

Kuanchuanpu Formation

 China

A medusozoan, possibly a member of Conulata.

Palaeoconotuba[5]

Gen. et comb. nov

Qu, Li & Ou

Cambrian

 China

A stem-medusozoan; a new genus for "Burithes" yunnanensis Hou et al. (1999).

Parabyronia[6]

Gen et sp. nov

Mergl & Kraft

Devonian (Emsian)

Zlíchov Formation

 Czech Republic

A member of Scyphozoa belonging to the group Byroniida and the family Byroniidae. The type species is P. elegans.

Pidiconularia[6]

Gen. et sp. nov

Mergl & Kraft

Devonian (Emsian)

Zlíchov Formation

 Czech Republic

A member of Conulariida. The type species is P. tubulata.

Prestephanoscyphus branzovensis[6]

Sp. nov

Mergl & Kraft

Devonian (Lochkovian)

Lochkov Formation

 Czech Republic

A member of Scyphozoa belonging to the group Byroniida and the family Byroniidae.

Prestephanoscyphus robustus[6]

Sp. nov

Mergl & Kraft

Devonian (Eifelian)

Srbsko Formation

 Czech Republic

A member of Scyphozoa belonging to the group Byroniida and the family Byroniidae.

Rugoconites reguibatensis[7]

Sp. nov

Hachour et al.

Neoproterozoic

Cheikhia-Bir Amrane Group

 Algeria

A scyphozoan of uncertain affinities.

Sueciatractos[8]

Gen. et sp. nov

Valid

Reich & Kutscher

Silurian

Hemse Group

 Sweden

An octocoral belonging to the group Malacalcyonacea. The type species is S. leipnitzae.

Cnidarian research

  • Conulariid specimens preserved with muscle bundles and a possible gastric cavity are described from the Carboniferous Wewoka and Graham formations (Oklahoma and Texas, United States) by Sendino et al. (2023).[9]
  • Van Iten et al. (2023) describe soft parts of two specimens of Metaconularia manni from the Silurian (Sheinwoodian) Scotch Grove Formation (Iowa, United States), and interpret their anatomy as indicating that at least one species of conulariid might have lacked a free-living, medusoid life phase, and might have produced eggs and sperm within the body of the sessile polyp.[10]
  • Redescription of Conicula striata is published by Zhao et al. (2023), who report that C. striata had features of both anthozoans and medusozoan polyps, and recover it as a stem-medusozoan, potentially indicating that medusozoans had an anemone-like ancestor.[11]
  • Zhang et al. (2023) describe new fossil material of Qinscyphus necopinus from the Cambrian (Fortunian) Kuanchuanpu Formation (China), including the whole apical part and providing complete information on the morphology of Qinscyphus.[12]
  • Plotnick, Young & Hagadorn (2023) classify Essexella asherae as a sea anemone, and reinterpret Reticulomedusa greenei as the pedal or oral disc of E. asherae.[13]

Arthropods

Bryozoans

New bryozoan taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Boardmanella spinigera[14]

Sp. nov

In press

Ernst & Rodríguez

Devonian (Emsian)

 Spain

A trepostome bryozoan belonging to the family Anisotrypidae.

Cordobella[14]

Gen. et sp. nov

In press

Ernst & Rodríguez

Devonian (Pragian)

 Spain

A trepostome bryozoan of uncertain affinities. The type species is C. tenuis.

Diploclemella[14]

Gen. et sp. nov

In press

Ernst & Rodríguez

Devonian (Pragian–Emsian)

 Spain

A cyclostome bryozoan belonging to the family Diploclemidae. The type species is D. serenensis.

Iodictyum akaishiensis[15]

Sp. nov

Valid

Arakawa

Miocene (Langhian)

Moniwa Formation

 Japan

A member of the family Phidoloporidae. Published online in 2022, but the issue date is listed as January 2023.[15]

Leptotrypa modesta[14]

Sp. nov

In press

Ernst & Rodríguez

Devonian (Pragian)

 Spain

A trepostome bryozoan belonging to the family Atactotoechidae.

Leptotrypa parva[14]

Sp. nov

In press

Ernst & Rodríguez

Devonian (Emsian)

 Spain

A trepostome bryozoan belonging to the family Atactotoechidae.

Melicerita imperforata[16]

Sp. nov

Valid

López-Gappa & Pérez

Miocene

Monte León Formation

 Argentina

A member of the family Cellariidae.

Microporina minuta[17]

Sp. nov

In press

Arakawa

Pleistocene

Setana Formation

 Japan

A species of Microporina.

Microporina quadristoma[17]

Sp. nov

In press

Arakawa

Pleistocene

Setana Formation

 Japan

A species of Microporina.

Microporina sakakurai[17]

Sp. nov

In press

Arakawa

Pleistocene

Setana Formation

 Japan

A species of Microporina.

Microporina soebetsuensis[17]

Sp. nov

In press

Arakawa

Pleistocene

Setana Formation

 Japan

A species of Microporina.

Prophyllodictya khrevitsa[18]

Sp. nov

Valid

Tolokonnikova & Fedorov

Ordovician (Sandbian)

 Russia
( Leningrad Oblast)

A cryptostome bryozoan.

Serenella[14]

Gen. et sp. nov

In press

Ernst & Rodríguez

Devonian (Pragian–Emsian)

 Spain

A cryptostome bryozoan belonging to the group Rhabdomesina. The type species is S. dubia.

Toomipora[19]

Gen. et sp. nov

Valid

Ernst

Ordovician (Sandbian)

Viivikonna Formation

 Estonia

A trepostome bryozoan belonging to the family Monticuliporidae. The type species is T. kohtlaensis.

Bryozoan research

  • Yang et al. (2023) reinterpret putative Cambrian bryozoan Protomelission as an early dasycladalean green alga, and conclude that there are no unequivocal bryozoans of Cambrian age.[20]

Brachiopods

New brachiopod taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Acculina zhongliangziensis[21]

Sp. nov

In press

Wang et al.

Ordovician

Huadan Formation

 China

Bulgariarhynchia[22]

Gen. et sp. nov

Valid

Radulović et al.

Jurassic

 Bulgaria

Genus includes new species B. ponorensis.

Capillirhynchia brezenensis[22]

Sp. nov

Valid

Radulović et al.

Jurassic

 Bulgaria

Celdobolus skrikus[23]

Sp. nov

Valid

Lavié & Benedetto

Ordovician (Tremadocian)

Pupusa Formation

 Argentina

A member of Siphonotretida belonging to the family Siphonotretidae.

Cisnerospira antipoda[24]

Sp. nov

Valid

MacFarlan

Early Jurassic

 New Zealand

A member of Spiriferinida belonging to the group Paralaballidae.

Cyclothyris bitririca[25]

Sp. nov

Baeza-Carratalá, Berrocal-Casero & García Joral

Early Cretaceous (Albian)

Represa Formation

 Spain

Cyclothyris ementitum[26]

Sp. nov

In press

Berrocal-Casero, Baeza-Carratalá & García Joral

Cretaceous (Albian–Cenomanian)

Represa Formation

 Spain

Discinisca messii[27]

Sp. nov

Valid

Pérez et al.

Miocene

Gaiman Formation

 Argentina

A species of Discinisca.

Discinisca porvenir[27]

Sp. nov

Valid

Pérez et al.

Miocene

Gaiman Formation

 Argentina

A species of Discinisca.

Hirsutella sulcata[28]

Sp. nov

Wu et al.

Early Triassic (Olenekian)

Nanpanjiang Basin

 China

A member of Spiriferinida belonging to the family Bittnerulidae.

Jigunsania[29]

Gen. et 2 sp. nov

Valid

Oh et al.

Ordovician (Darriwilian)

Jigunsan Formation

 South Korea

A member of Strophomenoidea belonging to the family Rafinesquinidae. The type species is J. guraeriensis; genus also includes J. hambaeksanensis.

Kassinella (Trimurellina) minuta[21]

Sp. nov

In press

Wang et al.

Ordovician

Huadan Formation

 China

Ningnanmena[21]

Gen. et sp. nov

In press

Wang et al.

Ordovician

Huadan Formation

 China

Genus includes new species N. longisepta.

Paradoxothyris flatus[28]

Sp. nov

Wu et al.

Early Triassic (Olenekian)

Nanpanjiang Basin

 China

A member of Terebratulida belonging to the family Angustothyrididae.

Sellithyris binalubensis[25]

Sp. nov

Baeza-Carratalá, Berrocal-Casero & García Joral

Cretaceous (Albian–Cenomanian transition)

Represa Formation

 Spain

A member of Terebratulida belonging to the family Sellithyrididae.

Spiriferina arakiwa[24]

Sp. nov

Valid

MacFarlan

Early Jurassic

 New Zealand

A member of Spiriferinida belonging to the family Spiriferinidae.

Spiriferina sophiaealbae[24]

Sp. nov

Valid

MacFarlan

Early Jurassic

 New Zealand

A member of Spiriferinida belonging to the family Spiriferinidae.

Sulcatinella elongata[28]

Sp. nov

Wu et al.

Early Triassic (Olenekian)

Nanpanjiang Basin

 China

A member of Terebratulida belonging to the family Dielasmatidae.

Tasmanospirifer jervisbayensis[30]

Sp. nov

Valid

Waterhouse & Lee in Lee et al.

Permian (Kungurian)

Snapper Point Formation

 Australia

Brachiopod research

Molluscs

Echinoderms

New echinoderm taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Agaricocrinus murphyi[31]

Sp. nov

Valid

Ausich & Wilson

Carboniferous (Tournaisian)

Cuyahoga Formation

 United States
( Ohio)

A camerate crinoid belonging to the group Monobathrida and the family Coelocrinidae.

Arbacia larraini[32]

Sp. nov

Valid

Courville et al.

Pliocene

 Chile

A species of Arbacia.

Arbacia quyllur[32]

Sp. nov

Valid

Courville et al.

Miocene

 Chile

A species of Arbacia.

Arbacia terraeignotae[32]

Sp. nov

Valid

Courville et al.

Pliocene

 Chile

A species of Arbacia.

Bohemiacinctus[33]

Gen. et comb. nov

Valid

Zamora, Wright & Nohejlová

Cambrian (Wuliuan)

 Czech Republic

A member of the group Cincta belonging to the family Sucocystidae. The type species is "Asturicystis" havliceki Fatka & Kordule (2001).

Cactocrinus woosterensis[31]

Sp. nov

Valid

Ausich & Wilson

Carboniferous (Tournaisian)

Cuyahoga Formation

 United States
( Ohio)

A camerate crinoid belonging to the group Monobathrida and the family Actinocrinitidae.

Cosmocyphus cantaber[34]

Sp. nov

Schlüter et al.

Late Cretaceous (Santonian)

 Spain

A sea urchin belonging to the family Phymosomatidae.

Coulonia hokahira[35]

Sp. nov

Gale et al.

Early Cretaceous (Albian)

Enokuchi Formation

 Japan

An astropectinid starfish.

Cusacrinus brushi[31]

Sp. nov

Valid

Ausich & Wilson

Carboniferous (Tournaisian)

Cuyahoga Formation

 United States
( Ohio)

A camerate crinoid belonging to the group Monobathrida and the family Actinocrinitidae.

Dadocrinus montellonis[36]

Sp. nov

Valid

Saucède et al.

Early Triassic (Olenekian)

Thaynes Group

 United States
( Nevada)

A crinoid belonging to the group Articulata and the family Dadocrinidae.

Decadocrinus inordinatus[31]

Sp. nov

Valid

Ausich & Wilson

Carboniferous (Tournaisian)

Cuyahoga Formation

 United States
( Ohio)

A crinoid belonging to the group Cladida and the family Decadocrinidae.

Decadocrinus laevis[31]

Sp. nov

Valid

Ausich & Wilson

Carboniferous (Tournaisian)

Cuyahoga Formation

 United States
( Ohio)

A crinoid belonging to the group Cladida and the family Decadocrinidae.

Dehmicystis ariasi[37]

Sp. nov

Valid

Zamora & Gutiérrez-Marco

Silurian (Ludlow)

Llagarinos Formation

 Spain

A member of Soluta belonging to the group Dendrocystitida and the family Dendrocystitidae.

Dentatocrinus serratus[38]

Sp. nov

In press

Gale

Late Cretaceous (Cenomanian)

Chalk Group
(Grey Chalk Subgroup,
Zig Zag Formation)

 United Kingdom

A crinoid belonging to the family Roveacrinidae.

Dubrisicrinus[38]

Gen. et sp. nov

In press

Gale

Late Cretaceous (Cenomanian)

Chalk Group
(Grey Chalk Subgroup,
Zig Zag Formation)

 United Kingdom

A crinoid belonging to the family Roveacrinidae. The type species is D. minutus.

Edrioblastocystis[39]

Nom. nov

Ceccolini & Cianferoni

Ordovician

 Russia

A replacement name for Blastocystis Jaekel (1918). Sałamatin & Kaczmarek (2022) coined a replacement name Astroblastocystis for the same genus.[40]

Euzonohymenosoma[39]

Nom. nov

In press

Ceccolini & Cianferoni

Devonian

 Germany

A replacement name for Hymenosoma Lehmann (1957).

Goryeocrinus[41]

Gen. et sp. nov

Valid

Park & Lee

Ordovician (Darriwilian)

Jigunsan Formation

 South Korea

A camerate crinoid belonging to the group Diplobathrida and the family Rhodocrinitidae. Genus includes new species G. pentagrammos.

Micraster quebrada[34]

Sp. nov

Schlüter et al.

Late Cretaceous (Santonian)

 Spain

A sea urchin belonging to the family Micrasteridae.

Ophiozonella tumidasquama[35]

Sp. nov

Gale et al.

Early Cretaceous (Albian)

Enokuchi Formation

 Japan

A hemieuryalid brittle star.

Pennsylvanicycloscapus[39]

Nom. nov

In press

Ceccolini & Cianferoni

Carboniferous

 United States
( Texas)

A replacement name for Cycloscapus Moore & Jeffords (1968).

Pleurocystites? scylla[42]

Sp. nov

Valid

Sweeney & Sumrall

Ordovician (Sandbian)

Benbolt Formation

 United States
( Tennessee)

A rhombiferan belonging to the group Glyptocystitida and the family Pleurocystitidae.

Roveacrinus aboudensis[38]

Sp. nov

In press

Gale

Late Cretaceous (Cenomanian)

Aït Lamine Formation

 Morocco
 United Kingdom

A crinoid belonging to the family Roveacrinidae.

Roveacrinus precarinatus[38]

Sp. nov

In press

Gale

Late Cretaceous (Cenomanian)

Chalk Group
(Grey Chalk Subgroup,
Zig Zag Formation)

 United Kingdom

A crinoid belonging to the family Roveacrinidae.

Sergipecrinus[43]

Gen. et sp. nov

Poatskievick Pierezan, Gale & Fauth

Early Cretaceous (Aptian–Albian)

Sergipe-Alagoas Basin

 Brazil

A crinoid belonging to the family Roveacrinidae. Genus includes new species S. reticulatus.

Stegophiura takaisoensis[44]

Sp. nov

In press

Ishida et al.

Pliocene

Hatsuzaki Formation

 Japan

A brittle star.

Styracocrinus shakespearensis[38]

Sp. nov

In press

Gale

Late Cretaceous (Cenomanian)

Chalk Group
(Grey Chalk Subgroup,
Zig Zag Formation)

 United Kingdom

A crinoid belonging to the family Roveacrinidae.

Triadoleucella[45]

Gen. et sp. nov

Ishida et al.

Late Triassic (Carnian)

 Vietnam

A brittle star belonging to the group Ophioleucida. Genus includes new species T. meensis. Published online in 2022, but the issue date is listed as April 2023.[45]

Echinoderm research

  • Álvarez-Armada et al. (2023) describe a specimen of Hyperoblastus reimanni preserved with structures interpreted as three larvae and a gonad, and interpret this finding as indicative of the presence of sexual dimorphism in blastoids, as well as of early evolution of internal brooding of larvae in this group.[46]
  • A study on the evolution of plate systems in the calyx of crinoids, based on data from early crinoids from Tremadocian, is published by Guensburg, Mooi & Mongiardino Koch (2023).[47]
  • Gorzelak et al. (2023) report the presence of microstructure similar to the diamond-type triply periodic minimal surfaces in the skeleton of a specimen of Haplocrinites from Devonian, similar to microstructure reported in extant Protoreaster nodosus, and representing the oldest record of such microstructure in echinoderms reported to date.[48]
  • Thuy et al. (2023) report the discovery of an assemblage of brittle star microfossils from Carboniferous deep-water sediments of Oklahoma (United States), including fossils of basal representatives of Amphilepidida and Ophioscolecida, and interpret this finding as indicating that a significant part of the early diversification of the brittle star crown group might have taken place in deep-water settings.[49]

Hemichordates

Name Novelty Status Authors Age Type locality Location Notes Images

Gothograptus berolinensis[50]

Sp. nov

In press

Maletz

Silurian

 Germany

A graptolite belonging to the family Retiolitidae.

Gothograptus osgaleae[50]

Sp. nov

In press

Maletz

Silurian

 Germany

A graptolite belonging to the family Retiolitidae.

Paraplectograptus hermanni[50]

Sp. nov

In press

Maletz

Silurian

 Germany

A graptolite belonging to the family Retiolitidae.

Hemichordate research

  • Lopez et al. (2023) describe graptolite fossil material from the Silurian Rinconada Formation (Argentina), representing the first Pridolian graptolite assemblage from South America reported to date, and possibly providing evidence of faunal recovery interval after the Kozlowskii-Lau Event.[51]

Conodonts

New conodont taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Erismodus saltaensis[52]

Sp. nov

Albanesi et al.

Ordovician (Darriwilian)

Santa Gertrudis Formation

 Argentina

Erraticodon aldridgei[52]

Sp. nov

Albanesi et al.

Ordovician (Darriwilian)

Santa Gertrudis Formation

 Argentina

Gallinatodus[52]

Gen. et sp. nov

Albanesi et al.

Ordovician (Darriwilian)

Santa Gertrudis Formation

 Argentina

Genus includes new species G. elegantissimus.

Gladigondolella luodianensis[53]

Sp. nov

Chen et al.

 China

Icriodus edentatus[54]

Sp. nov

In press

Yuan & Sun

Devonian (Famennian)

Xiejingsi Formation

 China

Pandorinellina exigua lingliensis[55]

Ssp. nov

Valid

Lu in Lu et al.

Devonian (Lochkovian)

Nahkaoling Formation

 China

Pelekysgnathus arcuatus[54]

Sp. nov

In press

Yuan & Sun

Devonian (Famennian)

Xiejingsi Formation

 China

A member of Prioniodontida belonging to the family Icriodontidae.

Pelekysgnathus ziqiuensis[54]

Sp. nov

In press

Yuan & Sun

Devonian (Famennian)

Xiejingsi Formation

 China

A member of Prioniodontida belonging to the family Icriodontidae.

Pohlerodus[56]

Gen. et comb. nov

Valid

Zhen

Ordovician

 Canada
 United States

Genus erected to substitute Texania Pohler (1994), which is a junior homonym of Texania Casey (1909). Includes species previously assigned to the genus Texania, as well as species previously assigned to the genus Fahraeusodus other than F. adentatus.

Polygnathus dispersus[54]

Sp. nov

In press

Yuan & Sun

Devonian (Famennian)

Xiejingsi Formation

 China

Polygnathus peltatus[54]

Sp. nov

In press

Yuan & Sun

Devonian (Famennian)

Xiejingsi Formation

 China

Polygnathus sagittiformis[54]

Sp. nov

In press

Yuan & Sun

Devonian (Famennian)

Xiejingsi Formation

 China

Polylophodonta curvata[54]

Sp. nov

In press

Yuan & Sun

Devonian (Famennian)

Xiejingsi Formation

 China

A member of the family Polygnathidae.

Polylophodonta nodulosa[54]

Sp. nov

In press

Yuan & Sun

Devonian (Famennian)

Xiejingsi Formation

 China

A member of the family Polygnathidae.

Polynodosus changyangensis[54]

Sp. nov

In press

Yuan & Sun

Devonian (Famennian)

Xiejingsi Formation

 China

A member of the family Polygnathidae.

Pyramidens[52]

Gen. et 2 sp. nov

Albanesi et al.

Ordovician (Darriwilian)

Santa Gertrudis Formation

 Argentina

Genus includes new species P. cactus and P. spinatus.

Zentagnathus gertrudisae[52]

Sp. nov

Albanesi et al.

Ordovician (Darriwilian)

Santa Gertrudis Formation

 Argentina

Zieglerodina? tuojiangensis[55]

Sp. nov

Valid

Lu in Lu et al.

Devonian (Lochkovian)

Nahkaoling Formation

 China

Conodont research

  • Evidence indicating that co-occurring Late Triassic conodonts Metapolygnathus communisti and Epigondolella rigoi differed in their diets is presented by Kelz et al. (2023).[57]
  • A study on the diversity and biostratigraphy of late Norian conodont faunas from the Dashuitang and Nanshuba formations in the Baoshan area (Yunnan, China) is published by Zeng et al. (2023), who report evidence of a decline of conodont diversity during the late Norian, interpreted by the authors as the first crisis of the protracted suite of end-Triassic conodont extinctions.[58]
  • Evidence from the Kastuyama section in the Inuyama area in Honshu (Japan), argued to the indicative of the survival of the conodont species Misikella posthernsteini into the Early Jurassic, is presented by Du et al. (2023).[59]

Fish

Amphibians

New amphibian taxa

Name Novelty Status Authors Age Type locality Location Notes Images
Compsocerops tikiensis[60] Sp. nov. Chakravorti & Sengupta Late Triassic Tiki Formation  India A member of Chigutisauridae.
Funcusvermis[61] Gen. et sp. nov. Valid Kligman et al. Late Triassic (Norian) Chinle Formation  United States ( Arizona) A stem-caecilian. The type species is F. gilmorei.

Gansubatrachus[62]

Gen. et sp. nov

Valid

Zhang et al.

Early Cretaceous

Zhonggou Formation

 China

A frog, possibly a basal member of Lalagobatrachia. The type species is G. qilianensis.

Lepidobatrachus dibumartinez[63]

Sp. nov

Valid

Turazzini & Gómez

Pliocene

 Argentina

A ceratophryid frog, a species of Lepidobatrachus.

Amphibian research

  • New reconstruction of the skull of Crassigyrinus scoticus is presented by Porro, Rayfield & Clack (2023).[64]
  • Groenewald et al. (2023) describe body impressions and associated swim trails of rhinesuchid temnospondyls from the Permian Karoo Basin (South Africa), providing evidence that rhinesuchids used their tails for propulsion and held their legs tucked in next to the body while swimming.[65]
  • A study comparing the probable maximum sizes that could be reached by specimens belonging to the Early Triassic temnospondyl taxa from Eastern Europe is published by Morkovin (2023), who reports the discovery of an unusually large lower jaw of Vladlenosaurus alexeyevi from the Skoba locality (Komi Republic, Russia), and argues that the size differences characteristic of the standard adult states of the studied temnospondyl taxa were likely reduced in individuals belonging to very late age categories.[66]
  • A study on the histology of large temnospondyl humeri from the Late Triassic Krasiejów site (Poland) is published by Teschner et al. (2023), who report that the humeri of Cyclotosaurus intermedius and Metoposaurus krasiejowensis might show only minor differences in morphology, making histology a valuable tool for taxonomic assignment.[67]
  • Review of the fossil record of the genus Mioproteus in Southeastern Europe is published by Syromyatnikova (2023).[68]
  • Description of the anatomy of the metamorphosing larvae, juveniles and fully grown adults of Genibatrachus is published by Roček, Dong & Wang (2023).[69]
  • Lemierre et al. (2023) describe a skeleton of a member of the genus Pelophylax from the lowest Oligocene of Chartres-de-Bretagne (western France), representing one of the oldest occurrences of the genus reported to date.[70]
  • Bazzana-Adams et al. (2023) reconstruct the first virtual cranial endocast of Seymouria.[71]
  • Bulanov (2023) reinterprets putative bolosaurid "Bolosaurus" traati as a diadectomorph, transfers it to the genus Stephanospondylus, and considers Ambedus to be a non-diadectomorph tetrapod of uncertain affinities.[72]

Reptiles

Synapsids

Non-mammalian synapsids

New synapsid taxa

Name Novelty Status Authors Age Type locality Location Notes Images
Inostrancevia africana[73] Sp. nov Kammerer et al. Permian Balfour Formation  South Africa A gorgonopsid.

Koksharovia[74]

Gen. et sp. nov

Valid

Suchkova, Golubev & Shumov

Permian

 Russia
( Kirov Oblast)

A therocephalian. The type species is K. grechovi. Published online in 2023, but the issue date is listed as December 2022.[74]

Melanedaphodon[75]

Gen. et sp. nov

Valid

Mann et al.

Carboniferous (Moscovian)

Allegheny Group

 United States
( Ohio)

A member of the family Edaphosauridae. The type species is M. hovaneci.

Santagnathus[76] Gen. et sp. nov Schmitt et al. Late Triassic (Carnian) Santa Maria Formation (Hyperodapedon Assemblage Zone)  Brazil A cynodont in the family Traversodontidae. The type species is S. mariensis
Woznikella[77] Gen. et sp. nov Valid Szczygielski & Sulej Late Triassic
(Carnian–?Norian)
Grabowa Formation  Poland
 Germany
A dicynodont closely related to the family Stahleckeriidae. The type species is W. triradiata.

Synapsid research

  • Calábková et al. (2023) describe tracks assignable to the ichnogenus Dimetropus and produced by "pelycosaur"-grade synapsids from the Permian (Asselian) Padochov and Letovice formations (Boskovice Basin, Czech Republic), including a specimen with preserved skin impressions, and providing new information on the diversity of the earliest Permian equatorial tetrapod faunas.[78]
  • Maho, Bevitt & Reisz (2023) describe fossil material of Varanops brevirostris from the Dolese Brother Limestone Quarry (Oklahoma, United States), confirming the presence of this taxon at Richards Spur, and interpret this finding as indicating that, although less abundant than Cacops and Acheloma, V. brevirostris was not as rare taxon as previously thought.[79]
  • Gônet et al. (2023) present a model which can be used to determine posture from humeral parameters in extant mammals, and use it to infer a sprawling posture for Dimetrodon natalis.[80]
  • Bazzana-Adams, Evans & Reisz (2023) describe the brain and inner ear of Dimetrodon loomisi, and interpret their findings as indicating that Dimetrodon was sensitive to a greater range of frequencies beyond the ultra-low-frequency ground-borne sounds anticipated in previous estimates.[81]
  • Partial humerus of a synapsid of uncertain affinities, with anatomical traits blurring the distinction between the "pelycosaur"-grade synapsids and therapsids, is described from the Permian (Capitanian) Main Karoo Basin (South Africa) by Bishop et al. (2023).[82]
  • Benoit, Norton & Jirah (2023) describe the maxillary canal of Jonkeria truculenta, reporting that is structure shares more similarities with the maxillary canal of the tapinocephalid Moschognathus than with that of Anteosaurus.[83]
  • Redescription of the holotype of Nythosaurus larvatus is published by Pusch et al. (2023), who interpret N. larvatus as a taxon distinct from Thrinaxodon liorhinus.[84]
  • Hoffmann, de Andrade & Martinelli (2023) redescribe the skeletal anatomy of "Probelesodon" kitchingi, and transfer this species to the genus Chiniquodon.[85]
  • Stefanello et al. (2023) describe a new, complete and exceptionally well-preserved skull of Prozostrodon brasiliensis from the Upper Triassic strata in Brazil, a name a new endemic clade of South American cynodonts – Prozostrodontidae, including Prozostrodon and Pseudotherium.[86]
  • A study on the endocranial anatomy of Prozostrodon brasiliensis and Therioherpeton cargnini is published by Kerber et al. (2023).[87]
  • A study on the evolution of cynodont skulls is published by Lautenschlager et al. (2023), who find no evindence for an increase in cranial strength and biomechanical performance during the cynodont–mammalian transition.[88]

Mammals

Other animals

Other new animal taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Acanthochaetetes reitneri[89]

Sp. nov

Valid

Sánchez-Beristain, Rodrigo & Schlagintweit

Early Cretaceous (Aptian-Albian)

Tuburan Limestone

 Philippines

A chaetetid demosponge.

Aetholicopalla grandipora[90]

Sp. nov

Valid

Luzhnaya et al.

Cambrian

 Mongolia

A sponge of uncertain affinities.

Archiasterella anchoriformis[91]

Sp. nov

Valid

Peng et al.

Cambrian (Wuliuan)

Kaili Formation

 China

A chancelloriid.

Chancelloria zhaoi[91]

Sp. nov

Valid

Peng et al.

Cambrian (Wuliuan)

Kaili Formation

 China

A chancelloriid.

Floraconformis[92]

Gen. et sp. nov

Valid

Goñi et al.

Cambrian Stage 3

Erkhelnuur Formation

 Mongolia

A palaeoscolecid. The type species is F. egiinensis.

Gaoloufangchaeta[93]

Gen. et sp. nov

Valid

Zhao, Li & Selden

Cambrian Stage 4

Wulongqing Formation

 China

A polychaete. The type species is G. bifurcus.

Iotuba[94]

Gen. et sp. nov

Zhang & Smith in Zhang, Smith & Ren

Cambrian Stage 3

Yu'anshan Formation

 China

Probably an annelid belonging to the group Sedentaria, related to the families Flabelligeridae and Acrocirridae. The type species is I. chengjiangensis. The name was used in earlier publications, but the taxon wasn't formally described before 2023.[94]

Kalpinella fragilis[95]

Sp. nov

In press

Świerczewska-Gładysz & Jurkowska

Late Cretaceous (Campanian)

 Poland

A demosponge belonging to the family Phymatellidae.

Longibirotula[96]

Gen. et sp. nov

Valid

Pronzato & Manconi in Samant et al.

Late Cretaceous–Paleocene

Naskal intertrappean beds

 India

A demosponge belonging to the family Palaeospongillidae. The type species is L. antiqua Manconi & Samant.

Monoshanites[97]

Gen. et sp. nov

Valid

Demidenko

Cambrian

Bayangol Formation

 Mongolia

Sclerites of an animal of uncertain affinities, belonging to the family Siphogonuchitidae. The type species is M. dentatus.

Phakeloides[98]

Gen. et sp. nov

Valid

Wierzbowski & Błażejowski

Devionian (Famennian)

 Poland

A member of Chaetognatha of uncertain affinities. The type species is P. polonicus.

Pickettispongia[99]

Gen. et comb. nov

Valid

Pisera, Bitner & Fromont

Eocene

Pallinup Formation

 Australia

A demosponge belonging to the family Phymaraphiniidae. The type species is "Discodermia" tabelliformis Chapman & Crespin (1934).

Podoliagraptus[100]

Gen. et sp. nov

In press

Skompski et al.

Silurian

 Ukraine

A graptolite-like form of uncertain affinities. The type species is P. algaeoides.

Shaihuludia[101]

Gen. et sp. nov

Kimmig et al.

Cambrian (Wuliuan)

Langston Formation

 United States
( Utah)

A polychaete. The type species is S. shurikeni.

Twertupia[99]

Gen. et comb. nov

Valid

Pisera, Bitner & Fromont

Eocene

Pallinup Formation

 Australia

A demosponge belonging to the family Phymaraphiniidae. The type species is "Thamnospongia" subglabra Chapman & Crespin (1934).

Ursactis[102]

Gen. et sp. nov

Valid

Osawa, Caron & Gaines

Cambrian (Wuliuan)

Burgess Shale

 Canada
( British Columbia)

A polychaete. The type species is U. comosa.

Other animal research

  • A study aiming to test the hypothesized feeding modes of Pectinifrons abyssalis is published by Darroch et al. (2023), who interpret their findings as supporting neither a suspension feeding or osmotrophic feeding habit, and indicating that rangeomorph fronds were organs adapted for oxygen uptake and gas exchange, rather than feeding.[103]
  • Purported fossil material of Dickinsonia reported from the Bhimbetka rock shelters in rocks of the Maihar Sandstone (India)[104] is reinterpreted as an impression resulting from decay of a modern beehive by Meert et al. (2023).[105]
  • A study aiming to assess the validity of species distinctions in the genus Dickinsonia is published by Evans et al. (2023), who interpret their findings as indicative of the presence of two distinct species from South Australia, D. costata and D. tenuis.[106]
  • New information on the body plan of Dickinsonia, based on data from the fossil material from the southeastern White Sea area (Russia), is presented by Ivantsov & Zakrevskaya (2023), who interpret the anatomy of Dickinsonia as indicative of its affinity to the urbilaterian.[107]
  • Wu, Pisani & Donoghue (2023) study the interrelationship between main groups of Panarthropoda, attempting to determine whether morphological datasets from the studies of extant and fossil panarthropod relationships published by Legg, Sutton & Edgecombe (2013),[108] Yang et al. (2016)[109] and Aria, Zhao & Zhu (2021)[110] can discriminate statistically between competing Tactopoda, Lobopodia and Protarthopoda hypotheses, and question the accuracy of morphology-based phylogenies of Panarthropoda that include fossil species.[111]
  • New fossil material of Rotadiscus grandis is reported from the Cambrian Chengjiang biota from Yunnan (China) by Li et al. (2023), who recover Rotadiscus as a stem-ambulacrarian, and argue that such deuterostome traits as post-anal region, gill bars and a U-shaped gut evolved through convergence rather than shared ancestry.[112]
  • Redescription of the holotype of Chamasaurus dolichognathus is published by Jenkins, Meyer & Bhullar (2023).[113]
  • A study on the anatomy and affinities of Tullimonstrum gregarium is published by Mikami et al. (2023), who interpret T. gregarium as more likely to be a non-vertebrate chordate or a protostome than a vertebrate.[114]

Other organisms

Other new organisms

Name Novelty Status Authors Age Type locality Location Notes Images

Cangwuella[115]

Gen. et sp. nov

Wang et al.

Devonian (?Pragian-Emsian)

Cangwu Formation

 China

A member of Arcellinida of uncertain affinities. The type species is C. ampulliformis.

Xiamalingella[116]

Gen. et sp. nov

In press

Tang et al.

Mesoproterozoic

Xiamaling Formation

 China

An organism with similarities to cyanobacteria. The type species is X. sideria.

Other organism research

  • Li et al. (2023) describe new fossil material of Horodyskia from the Tonian Shiwangzhuang and Jiuliqiao formations (China), and reconstruct Horodyskia as a colonial organism composed of a chain of organic-walled vesicles that likely represent multinucleated cells of early eukaryotes.[117]
  • Bryłka et al. (2023) reevaluate purported earliest fossils of diatoms from the Early and Middle Jurassic, and interpret them as unlikely to be fossil material of diatoms.[118]
  • A study on the Cretaceous benthic foraminiferal assemblages from the Western Interior Seaway is published by Bryant, Meehan & Belanger (2023), who find no genera, guilds or morphotypes unique to cold seeps, and find assemblages from cold seeps to be overall more similar to offshore assemblages than nearshore ones, but also report that the composition of the studied assemblages did reflect the environmental differences present at seeps.[119]
  • A study on the fossil record of the planktonic foraminifera, interpreted as indicating that a modern-style latitudinal diversity gradient for these foraminifera arose only 15 million years ago, is published by Fenton et al. (2023).[120]
  • A study on the geographical distribution of the ecological and morphological groups of fossil planktonic foraminifera, interpreted as indicative of a global shift towards the Equator over the past 8 million years in response to the late Cenozoic temperature changes related to the polar ice sheet formation, is published by Woodhouse et al. (2023).[121]
  • Fonseca et al. (2023) describe possible fossil material of choanoflagellates from the Upper Cretaceous (Cenomanian–Turonian) Capas Blancas Formation (Spain), representing the first putative occurrence of choanoflagellates in the fossil record reported to date.[122]
  • An International team led by French-Morrocan Geologist Abderrazak El Albani unearths disc-shaped fossils of Eukaryotic origin in the Francevillian sedimentary deposits of Moulendé pushes back the origin of Planktonic origins 300 MA earlier than 570 MA.[123]

History of life in general

  • Brocks et al. (2023) report the discovery of abundant protosteroids in sedimentary rocks of mid-Proterozoic age, and interpret this finding as evidence of the existence of a widespread and abundant biota of protosterol-producing bacteria and stem-group eukaryotes, living in aquatic environments from at least 1,640 to around 800 million years ago.[124]
  • Kolesnikov et al. (2023) report the discovery of the fossil material of Ediacara-type soft-bodied organisms, including palaeopascichnids, arboreomorphs, chuariomorphids, microbial colonies, from the Dzhezhim Formation of the Timan Range (Komi Republic, Russia).[125]
  • Servais et al. (2023) review estimates of taxonomic richness of marine organisms during the early Paleozoic based on different published datasets, and question the existence of a distinct Cambrian explosion and global Ordovician biodiversification event instead of a single, long-term radiation of life during the early Paleozoic.[126]
  • Li et al. (2023) compare the lamello-fibrillar nacre and similar fibrous microstructures in Early Cambrian molluscs and hyoliths from the Zavkhan Basin (Mongolia) and in extant coleoid cuttlebones and serpulid tubes, report differences in shell microstructures of the studied lophotrochozoan groups, and interpret their findings as indicative of prevalence of calcitic shells in the Terreneuvian.[127]
  • A study aiming to identify the biases affecting the knowledge of the biodiversity during the Cambrian and Ordovician is published by Du et al. (2023), who interpret the significant decline in known biodiversity during Furongian interval as influenced by temporal, geographic, taxonomic and lithological biases, hindering the understanding of the real biodiversity changes in this interval.[128]
  • A diverse Ordovician fauna (the Castle Bank fauna), comparable with the Burgess Shale and Chengjiang biotas in paleoenvironment and preservational style, is described from Wales (United Kingdom) by Botting et al. (2023).[129]
  • Francischini et al. (2023) describe straight, curved and quasi-helical burrows from the Permo-Triassic Buena Vista Formation (Brazil), similar to burrows reported from the Karoo Basin of South Africa, and interpret the studied burrows as likely produced by synapsids and/or procolophonians living in a desert environment, representing the oldest unambiguous record of tetrapod dwelling structures in such an environment.[130]
  • A study on the impact of the Permian–Triassic extinction event on the marine ecosystems is published by Huang et al. (2023), who find that the first extinction phase resulted in the loss of more than half of taxonomic diversity but only a slight decrease of community stability, which subsequently decreased significantly in the second extinction phase.[131]
  • Dai et al. (2023) report the discovery of an exceptionally preserved Early Triassic (approximately 250.8 million years ago) fossil assemblage (the Guiyang biota) from the Daye Formation near Guiyang (China), providing evidence of the existence of a complex marine ecosystem shortly after the Permian–Triassic extinction event.[132]
  • New information on the composition of the Late Triassic paleocommunity from the Polzberg Lagerstätte (Austria), based on data from thousands of new fossils, is published by Lukeneder & Lukeneder (2023).[133]
  • A study on the timing of Pleistocene megafaunal extinction in the high plains of Peru is published by Rozas-Davila, Rodbell & Bush (2023), who find that the collapse of megafaunal populations in high grasslands coincided with upticks in fire activity, which were likely associated with human activity.[134]

Other research

  • Evidence from the Cryogenian Nantuo Formation (China), interpreted as indicating that habitable open ocean conditions providing refugia for eukaryotic organisms during the Marinoan glaciation extended into mid-latitude coastal oceans, is presented by Song et al. (2023).[135]
  • A study on the stratigraphy of the Siberian Platform (Russia), and on its implications for the knowledge of the age of the fossils and timing of first appearances of late Ediacaran and early Cambrian organisms from the Siberian Platform (including anabaritids and cloudinids), is published by Bowyer et al. (2023).[136]
  • Nolan et al. (2023) interpret Brooksella alternata as a likely pseudofossil, and the bulk of its characteristics as consistent with concretions.[137]
  • A study on the preservation of chemical information in the fossils from the Devonian Rhynie chert (United Kingdom) is published by Loron et al. (2023), who report that differences between prokaryotes and eukaryotes and between eukaryotic tissue types from the Rhynie chert assemblage can be identified based on the fossilization products of lipids, sugar and protein.[138]
  • A study on the geochemistry of the Bakken Formation, interpreted as indicative of stepwise transgressions of toxic euxinic waters into the shallow oceans that drove a series of Late Devonian extinction events, is published by Sahoo et al. (2023).[139]
  • Evidence from mercury concentrations and isotopes from terrestrial sections from the Sydney Basin (Australia) and Karoo Basin (South Africa), interpreted as indicative of global volcanic effects of the Siberian Traps during the Permian-Triassic transition, is presented by Shen et al. (2023).[140]
  • Evidence from concentrations of UV-B–absorbing compounds in the exine of fossil pollen from the Qubu section in southern Tibet (China), interpreted as consistent with increased UV-B radiation during the Permian–Triassic extinction event, is presented by Liu et al. (2023).[141]
  • A study on the Cenomanian–Turonian benthic foraminiferal assemblages from the Western Interior Seaway is published by Bryant & Belanger (2023), who report that the interval of increased density and diversity of benthic foraminifera known as the Benthonic Zone is not a reliable biostratigraphic marker for the onset of the Oceanic Anoxic Event 2 in the Western Interior Seaway, and that different samples of the Benthonic Zone don't reflect basin-wide changes in oxygenation.[142]
  • Evidence from two sites offshore of southwest Australia, interpreted as indicative of ocean acidification at the onset of Oceanic Anoxic Event 2 which was linked to the onset of volcanic activity, and which persisted for approximately 600,000 years due to biogeochemical feedbacks, is presented by Jones et al. (2023).[143]
  • A study on the history of the Eocene waterbody within the Giraffe Pipe crater (Northwest Territories, Canada), inferred from changes in the fossil record of microorganisms, is published by Siver & Lott (2023), who interpret their findings as indicative of the presence of a series of successive shallow environments, each correlated with changes in lakewater chemistry.[144]
  • Essel et al. (2023) report the development of a new method for the gradual release of DNA trapped in ancient bone and tooth artefacts, and use this method to recover ancient human and deer mitochondrial genomes from the Upper Paleolithic deer tooth pendant from Denisova Cave (Russia).[145]
  • Reeves & Sansom (2023) present a new method which can be used to determine the impact of multiple factors (decay, ontogeny and phylogeny) on morphological variation between fossils, and apply this method to fossils of Tethymyxine, Mayomyzon, Priscomyzon, "euphaneropoids" and Palaeospondylus.[146]

Paleoclimate

  • Evidence from seawater osmium isotope data from Pacific Ocean sediments, interpreted as indicating that enhanced magmatism could have played a dominant role in causing the Miocene Climatic Optimum, is presented by Goto et al. (2023).[147]
  • Wen et al. (2023) present a new land surface temperature record from the Chinese Loess Plateau in East Asia, interpreting it as indicative of late Miocene cooling and aridification that occurred synchronously with ocean cooling, highlighting a global climate forcing mechanism.[148]

References

  1. ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
  2. ^ Retallack, G. J. (2023). "Why was there a Neoproterozoic Snowball Earth?". Precambrian Research. 385. 106952. doi:10.1016/j.precamres.2022.106952. S2CID 255647705.
  3. ^ Krings, M.; Harper, C. J. (2023). "A fungal mycelium containing abundant endoconidia from the Lower Devonian Rhynie cherts of Scotland". Review of Palaeobotany and Palynology. 313. 104891. doi:10.1016/j.revpalbo.2023.104891. S2CID 257907523.
  4. ^ Song, Z.; Guo, J.; Han, J.; Van Iten, H.; Qiang, Y.; Peng, J.; Sun, J.; Zheng, Y.; Huang, X.; Zhang, Z. (2023). "A new species of Decimoconularia (Cnidaria, Medusozoa) from the Lower Cambrian of South China". Frontiers in Earth Science. 10. 1048800. doi:10.3389/feart.2022.1048800.
  5. ^ Qu, H.; Li, K.; Ou, Q. (2023). "Thecate stem medusozoans (Cnidaria) from the early Cambrian Chengjiang biota". Palaeontology. 66 (1). e12636. doi:10.1111/pala.12636. S2CID 256562444.
  6. ^ a b c d Mergl, M.; Kraft, P. (2023). "Byronids and similar tubular fossils from the Devonian of the Barrandian area (Czech Republic)". Earth and Environmental Science Transactions of the Royal Society of Edinburgh: 1–18. doi:10.1017/S1755691023000099.
  7. ^ Hachour, K.; Hamdidouche, R.; Dahoumane, A.; Goucem, A. (2023). "A new triradial species from the Neoproterozoic formations of the Chenachene region, north-east of the Taoudeni basin (south-western Algeria)". Journal of African Earth Sciences. 202. 104934. doi:10.1016/j.jafrearsci.2023.104934. S2CID 258069573.
  8. ^ Reich, M.; Kutscher, M. (2023). "A new alcyonacean octocoral (Anthozoa) from the Late Silurian of Gotland, Sweden". PalZ. doi:10.1007/s12542-023-00654-w.
  9. ^ Sendino, C.; Clark, B.; Morandini, A. C.; Salge, T.; Lowe, M.; Rushlau, W. (2023). "Internal conulariid structures unveiled using µCT". PalZ. doi:10.1007/s12542-023-00649-7. S2CID 257873488.
  10. ^ Van Iten, H.; Hughes, N. C; John, D. L.; Gaines, R. R.; Colbert, M. W. (2023). "Conulariid soft parts replicated in silica from the Scotch Grove Formation (lower Middle Silurian) of east-central Iowa". Journal of Paleontology: 1–10. doi:10.1017/jpa.2023.6.
  11. ^ Zhao, Y.; Parry, L. A.; Vinther, J.; Dunn, F. S.; Li, Y.-J.; Wei, F.; Hou, X.-G.; Cong, P.-Y. (2023). "An early Cambrian polyp reveals a potential anemone-like ancestor for medusozoan cnidarians". Palaeontology. 66 (1). e12637. doi:10.1111/pala.12637. S2CID 256752700.
  12. ^ Zhang, Y.; Liu, Y.; Shao, T.; Qin, J. (2023). "New Qinscyphus material from the Fortunian of South China". Frontiers in Earth Science. 11. 1038686. doi:10.3389/feart.2023.1038686.
  13. ^ Plotnick, R. E.; Young, G. A.; Hagadorn, J. W. (2023). "An abundant sea anemone from the Carboniferous Mazon Creek Lagerstӓtte, USA". Papers in Palaeontology. 9 (2). e1479. doi:10.1002/spp2.1479. S2CID 257447889.
  14. ^ a b c d e f Ernst, A.; Rodríguez, S. (2023). "Palaeoecology and palaeobiogeographic relationships of Lower Devonian bryozoans from the Guadámez and Peñón Cortado Sections of Sierra Morena (SW Spain)". Spanish Journal of Palaeontology. 38 (1). doi:10.7203/sjp.26580.
  15. ^ a b Arakawa, S. (2022). "Iodictyum akaishiensis sp. nov.: A New Miocene Phidoloporid (Bryozoa, Cheilostomata) from the Moniwa Formation, Sendai, Japan". Paleontological Research. 27 (1): 25–33. doi:10.2517/PR200041. S2CID 252684206.
  16. ^ López-Gappa, J.; Pérez, L. M. (2023). "Species of the genus Melicerita Milne Edwards (Bryozoa, Cheilostomatida) in the Early Miocene of Patagonia (Argentina)". Publicación Electrónica de la Asociación Paleontológica Argentina. 23 (1): 49–60. doi:10.5710/PEAPA.15.02.2023.448. S2CID 257933615.
  17. ^ a b c d Arakawa, S. (2023). "Five Species of Microporina (Bryozoa, Cheilostomata) from the Pleistocene Setana Formation at Kuromatsunai, Hokkaido, Japan". Paleontological Research. 27 (3): 245–260. doi:10.2517/PR210017. S2CID 255441175.
  18. ^ Tolokonnikova, Z. A.; Fedorov, P. V. (2023). "Morphological features of Late Ordovician (Sandbian) bryozoans from the basin of Khrevitsa River (north-western Russia) and description of a new species of the genus Prophyllodictya Gorjunova, 1987". Zootaxa. 5284 (2): 337–350. doi:10.11646/zootaxa.5284.2.6.
  19. ^ Ernst, A. (2023). "New trepostome bryozoan genus from the Estonian Kukersite". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 307 (3): 249–259. doi:10.1127/njgpa/2023/1124.
  20. ^ Yang, J.; Lan, T.; Zhang, X.; Smith, M. R. (2023). "Protomelission is an early dasyclad alga and not a Cambrian bryozoan". Nature. 615 (7952): 468–471. doi:10.1038/s41586-023-05775-5. PMID 36890226. S2CID 257425218.
  21. ^ a b c Wang, Y.; Zhan, R.-B.; Luan, X.-C.; Zhang, Y.-C.; Wei, X. (2023). "Middle–Late Ordovician brachiopods from Ningnan, southern Sichuan Province, Southwest China: Implications for macroevolution and palaeogeography". Palaeoworld. doi:10.1016/j.palwor.2023.02.007. S2CID 257372057.
  22. ^ a b Radulović, B. V.; Metodiev, L. S.; Motchurova-Dekova, N.; Tchoumatchenco, P. (2023). "Early–Middle Jurassic brachiopods from Ponor Mountain, Western Balkan Mountains, Bulgaria; taxonomy, biostratigraphy and occurrence in the context of the early Toarcian Oceanic Anoxic Event". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2023.2190757.
  23. ^ Lavié, F. J.; Benedetto, J. L. (2023). "Lower Tremadocian (Ordovician) lingulate brachiopods from the Central Andean Basin (NW Argentina) and their biogeographical links". Bulletin of Geosciences. 98 (1): 79–93. doi:10.3140/bull.geosci.1866.
  24. ^ a b c MacFarlan, D. A. B. (2023). "Latest Triassic and Early Jurassic Spiriferinida (Brachiopoda) of Zealandia (New Zealand and New Caledonia)". Zootaxa. 5277 (1): 1–58. doi:10.11646/zootaxa.5277.1.1.
  25. ^ a b Baeza-Carratalá, J. F.; Berrocal-Casero, M.; García Joral, F. (2023). "Brachiopods from the Albian–Cenomanian transition (Cretaceous) of the Eastern Prebetic (South-Iberian paleomargin)". Cretaceous Research. 105583. doi:10.1016/j.cretres.2023.105583.
  26. ^ Berrocal-Casero, M.; Baeza-Carratalá, J. F.; García Joral, F. (2023). "A new asymmetric rhynchonellide from the Cretaceous of the Eastern Prebetic (Southeastern Spain)". Spanish Journal of Palaeontology. 38 (1). doi:10.7203/sjp.26294. S2CID 257830348.
  27. ^ a b Pérez, D. E.; Farroni, N. D.; Allende Mosquera, A.; Cuitiño, J. I. (2023). "First discinid brachiopods (Brachiopoda: Lingulida) from the Cenozoic of Patagonia (Gaiman Formation, Lower Miocene, Argentina)". Ameghiniana. 60 (3): 203–215. doi:10.5710/AMGH.23.01.2023.3544.
  28. ^ a b c Wu, H.; Zhang, Y.; Chen, A.; Stubbs, T. L. (2023). "A Highly Diverse Olenekian Brachiopod Fauna from the Nanpanjiang Basin, South China, and Its Implications for the Early Triassic Biotic Recovery". Biology. 12 (4). 622. doi:10.3390/biology12040622. PMC 10136273. PMID 37106822.
  29. ^ Oh, Y.; Lee, S.; Park, T.-Y. S.; Lee, D.-C. (2023). "Middle Ordovician (middle Darriwilian) Dirafinesquina and Jigunsania gen. nov. (Rafinesquinidae; Strophomenoidea; Brachiopoda) from South Korea, with discussion of rafinesquinid evolution". Geosciences Journal. 27 (3): 253–270. doi:10.1007/s12303-022-0034-x. S2CID 257047216.
  30. ^ Lee, S.; Shi, G. R.; Runnegar, B.; Waterhouse, J. B. (2023). "Kungurian (Cisuralian/Early Permian) brachiopods from the Snapper Point Formation, southern Sydney Basin, southeastern Australia". Alcheringa: An Australasian Journal of Palaeontology. 47 (1): 67–108. doi:10.1080/03115518.2022.2151045. S2CID 256076332.
  31. ^ a b c d e Ausich, W. I.; Wilson, M. A. (2023). "Crinoids from the Wooster Shale Member of the Cuyahoga Formation, Carboniferous (Mississippian, Tournaisian) of northeastern Ohio". Journal of Paleontology: 1–23. doi:10.1017/jpa.2023.20.
  32. ^ a b c Courville, E.; González, M.; Mourgues, F. A.; Poulin, E.; Saucède, T. (2023). "New species of the genus Arbacia (Echinoidea, Arbaciidae) from the Neogene of Chile". Ameghiniana. 60 (3): 216–235. doi:10.5710/AMGH.01.03.2023.3536.
  33. ^ Zamora, S.; Wright, D. F.; Nohejlová, M. (2023). "Phylogenetic position of Bohemiacinctus gen. nov. (Echinodermata, Cincta) from the Cambrian of Bohemia: implications for macroevolution and the role of taxon sampling in palaeobiological systematics". Papers in Palaeontology. 9 (1). e1482. doi:10.1002/spp2.1482. S2CID 257103950.
  34. ^ a b Schlüter, N.; Wiese, F.; Díaz-Isa, M.; Püttmann, T.; Walaszczyk, I. (2023). "Santonian (Late Cretaceous) echinoids from the Santander area (northern Cantabria, Spain)". Cretaceous Research. 147. 105477. doi:10.1016/j.cretres.2023.105477. S2CID 256266646.
  35. ^ a b Gale, A. S.; Ishida, Y.; Jagt, J. W. M.; Thuy, B.; Komatsu, T.; Fujita, T. (2023). "A New Asteroid (Echinodermata, Astropectinidae) and Ophiuroid (Echinodermata, Hemieuryalidae) from the Mid-Cretaceous of Southern Japan". Paleontological Research. 28 (2): 1–14. doi:10.2517/PR220020.
  36. ^ Saucède, T.; Smith, C.; Olivier, N.; Durlet, C.; Gueriau, P.; Thoury, M.; Fara, E.; Escarguel, G.; Brayard, A. (2023). "A new Early Triassic crinoid from Nevada questions the origin and palaeobiogeographical history of dadocrinids". Acta Palaeontologica Polonica. 68 (1): 155–166. doi:10.4202/app.01042.2022. S2CID 257122690.
  37. ^ Zamora, S.; Gutiérrez-Marco, J. C. (2023). "Filling the Silurian gap of solutan echinoderms with the description of new species of Dehmicystis from Spain". Acta Palaeontologica Polonica. 68. doi:10.4202/app.01054.2023.
  38. ^ a b c d e Gale, A. S. (2023). "Microcrinoids (Roveacrinidae) from the middle–upper Cenomanian Grey Chalk Subgroup, Dover (Kent, United Kingdom): biostratigraphy and re-evaluation of cup structure in roveacrinids". Acta Geologica Polonica. doi:10.24425/agp.2022.143598.
  39. ^ a b c Ceccolini, F.; Cianferoni, F. (2023). "New Replacement Names in Fossil Echinoderms (Echinodermata)". Paleontological Research. 27 (4): 379–382. doi:10.2517/PR210029. S2CID 257430558.
  40. ^ Sałamatin, R.; Kaczmarek, A. (2022). "Astroblastocystis nom. nov. – a new replacement name for Blastocystis Jaekel, 1918 (Echinodermata, Parablastoidea)". Annals of Parasitology. 68 (1): 195–196. doi:10.17420/ap6801.425. PMID 35503892.
  41. ^ Park, H.; Lee, D.-C. (2023). "Goryeocrinus pentagrammos n. gen. n. sp. (Rhodocrinitidae; Diplobathrida), the first record of camerate crinoid from the Middle Ordovician (Darriwilian) of South Korea (East Gondwana)". Journal of Paleontology. 97 (2): 386–394. doi:10.1017/jpa.2022.100. S2CID 256144911.
  42. ^ Sweeney, A.; Sumrall, C. D. (2023). "Pleurocystites? scylla, a new species of pleurocystitid rhombiferan, and comments on early echinoderm teratologies". Journal of Paleontology: 1–8. doi:10.1017/jpa.2023.17.
  43. ^ Poatskievick Pierezan, B.; Gale, A. S.; Fauth, G. (2023). "A new microcrinoid (Roveacrinidae) from the Aptian–Albian of the Sergipe-Alagoas Basin, northeastern Brazil". Cretaceous Research. 145. 105482. doi:10.1016/j.cretres.2023.105482. S2CID 256442721.
  44. ^ Ishida, Y.; Tagiri, M.; Kato, T.; Tsunoda, S.; Nakajima, Y.; Thuy, B.; Numberger-Thuy, L. D.; Fujita, T. (2023). "The New Brittle-Star Species Stegophiura takaisoensis (Echinodermata, Ophiuroidea) from the Pliocene of Ibaraki Prefecture, Central Japan". Paleontological Research. 28 (1): 82–96. doi:10.2517/PR220028.
  45. ^ a b Ishida, Y.; Trinh, H. T.; Thuy, B.; Numberger-Thuy, L. D.; Komatsu, T.; Doan, H. D.; Nguyen, M. T.; Shigeta, Y.; Fujita, T. (2022). "A New Genus and Species of Brittle Star (Ophiuroidea: Ophioleucida) from the Upper Triassic (Carnian) of Northern Vietnam". Paleontological Research. 27 (2): 147–159. doi:10.2517/PR210014. S2CID 253354589.
  46. ^ Álvarez-Armada, N.; Bauer, J. E.; Waters, J. A.; Rahman, I. A. (2023). "The oldest evidence of brooding in a Devonian blastoid reveals the evolution of new reproductive strategies in early echinoderms". Papers in Palaeontology. 9 (3). e1493. doi:10.1002/spp2.1493.
  47. ^ Guensburg, T. E.; Mooi, R.; Mongiardino Koch, N. (2023). "Crinoid calyx origin from stem radial echinoderms". Journal of Paleontology: 1–24. doi:10.1017/jpa.2023.14.
  48. ^ Gorzelak, P.; Kołbuk, D.; Stolarski, J.; Bącal, P.; Januszewicz, B.; Duda, P.; Środek, D.; Brachaniec, T.; Salamon, M. A. (2023). "A Devonian crinoid with a diamond microlattice". Proceedings of the Royal Society B: Biological Sciences. 290 (1995). 20230092. doi:10.1098/rspb.2023.0092. PMC 10050926. PMID 36987636.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  49. ^ Thuy, B.; Knox, L.; Numberger-Thuy, L. D.; Smith, N. S.; Sumrall, C. D. (2023). "Ancient deep ocean as a harbor of biotic innovation revealed by Carboniferous ophiuroid microfossils". Geology. doi:10.1130/G50596.1.
  50. ^ a b c Maletz, J. (2023). "Retiolitid graptolites from the collection of Hermann Jaeger III. Paraplectograptus, Gothograptus and their relatives". PalZ. doi:10.1007/s12542-022-00646-2. S2CID 256880454.
  51. ^ Lopez, F. E.; Kaufmann, C.; Drovandi, J. M.; Conde, O. A.; Braeckman, A. R.; Arnol, J. A.; Estrada, L.; Pedernera, F.; Abarca, U. (2023). "First record of Pridolian graptolites from South America: biostratigraphic and paleogeographic remarks". Gondwana Research. 119: 246–261. doi:10.1016/j.gr.2023.03.026. S2CID 258046676.
  52. ^ a b c d e Albanesi, G. L.; Rubén Monaldi, C.; Barnes, C. R.; Zeballo, F. J.; Ortega, G. (2023). "An endemic conodont fauna of Darriwilian (Middle Ordovician) age from the Santa Gertrudis Formation, southwestern Gondwanan margin and its paleobiogeographic relationships". Marine Micropaleontology. 181. 102241. doi:10.1016/j.marmicro.2023.102241. S2CID 257863952.
  53. ^ Chen, A.; Zhang, Y.; Golding, M. L.; Wu, H.; Liu, J. (2023). "Upper Changhsingian to lower Anisian conodont biostratigraphy of the Datuguan section, Nanpanjiang Basin, South China". Palaeogeography, Palaeoclimatology, Palaeoecology. 616. 111470. doi:10.1016/j.palaeo.2023.111470.
  54. ^ a b c d e f g h i Yuan, Z.; Sun, Y. (2023). "Upper Devonian conodont fauna from Western Hubei, China and its significance". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2023.2199763.
  55. ^ a b Lu, J.-F.; Guo, W.; Wang, Y.; Xu, H.-H. (2023). "The first discovery of Lochkovian (Lower Devonian) conodonts in central Guangxi, South China and its geological implications". Journal of Paleontology. 97 (2): 421–433. doi:10.1017/jpa.2023.2. S2CID 256928406.
  56. ^ Zhen, Y. Y. (2023). "Revision of the Ordovician conodont species Fahraeusodus adentatus and the new genus Pohlerodus". Alcheringa: An Australasian Journal of Palaeontology. 47 (1): 11–23. doi:10.1080/03115518.2023.2172210. S2CID 257189945.
  57. ^ Kelz, V.; Guenser, P.; Rigo, M.; Jarochowska, E. (2023). "Growth allometry and dental topography in Upper Triassic conodonts support trophic differentiation and molar-like element function". Paleobiology: 1–19. doi:10.1017/pab.2023.8.
  58. ^ Zeng, W.; Jiang, H.; Chen, Y.; Ogg, J.; Zhang, M.; Dong, H. (2023). "Upper Norian conodonts from the Baoshan block, western Yunnan, southwestern China, and implications for conodont turnover". PeerJ. 11. e14517. doi:10.7717/peerj.14517. PMC 9854380. PMID 36684668.
  59. ^ Du, Y.; Onoue, T.; Tomimatsu, Y.; Wu, Q.; Rigo, M. (2023). "Lower Jurassic conodonts from the Inuyama area of Japan: implications for conodont extinction". Frontiers in Ecology and Evolution. 11. 1135789. doi:10.3389/fevo.2023.1135789.
  60. ^ Chakravorti, Sanjukta; Sengupta, Dhurjati Prasad (2023-03-06). "The first record of chigutisaurid amphibian from the Late Triassic Tiki Formation and the probable Carnian pluvial episode in central India". PeerJ. 11: e14865. doi:10.7717/peerj.14865. ISSN 2167-8359. PMC 9997194. PMID 36908823.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  61. ^ Kligman, Ben T.; Gee, Bryan M.; Marsh, Adam D.; Nesbitt, Sterling J.; Smith, Matthew E.; Parker, William G.; Stocker, Michelle R. (2023-01-25). "Triassic stem caecilian supports dissorophoid origin of living amphibians". Nature. 614 (7946): 102–107. doi:10.1038/s41586-022-05646-5. ISSN 1476-4687. PMC 9892002. PMID 36697827.
  62. ^ Zhang, J.; Dong, L.; Du, B.; Li, A.; Lei, X.; Zhang, M.; Wang, S.; Ma, G.; Hui, J. (2023). "First fossil evidence for a new frog from the Early Cretaceous of the Jiuquan Basin, Gansu Province, north-western China". Journal of Systematic Palaeontology. 21 (1). 2183146. doi:10.1080/14772019.2023.2183146. S2CID 257647888.
  63. ^ Turazzini, G. F.; Gómez, R. O. (2023). "A new old Budgett frog: an articulated skeleton of an Early Pliocene Lepidobatrachus (Anura, Ceratophryidae) from western Argentina". Journal of Vertebrate Paleontology. e2207092. doi:10.1080/02724634.2023.2207092.
  64. ^ Porro, L. B.; Rayfield, E. J.; Clack, J. A. (2023). "Computed tomography and three-dimensional reconstruction of the skull of the stem tetrapod Crassigyrinus scoticus Watson, 1929". Journal of Vertebrate Paleontology. 42 (4). e2183134. doi:10.1080/02724634.2023.2183134.
  65. ^ Groenewald, D. P.; Krüger, A.; Day, M. O.; Penn-Clarke, C. R.; Hancox, P. J.; Rubidge, B. S. (2023). "Unique trackway on Permian Karoo shoreline provides evidence of temnospondyl locomotory behaviour". PLOS ONE. 18 (3). e0282354. doi:10.1371/journal.pone.0282354. PMC 10057796. PMID 36989249.
  66. ^ Morkovin, B. I. (2023). "Incomplete Large Lower Jaw of Vladlenosaurus alexeyevi from the Lower Triassic of the Luza River (Komi Republic, Russia) and Growth Features in Temnospondyl Amphibians". Paleontological Journal. 56 (11): 1482–1490. doi:10.1134/S0031030122110107. S2CID 256618570.
  67. ^ Teschner, E. M.; Garbay, L.; Janecki, P.; Konietzko-Meier, D. (2023). "Palaeohistology helps reveal taxonomic variability in exceptionally large temnospondyl humeri from the Upper Triassic of Krasiejów, SW Poland". Acta Palaeontologica Polonica. 68 (1): 63–74. doi:10.4202/app.01027.2022. S2CID 256865819.
  68. ^ Syromyatnikova, E. V. (2023). "Review of Records of Mioproteus (Caudata: Proteidae) from Southeastern Europe". Paleontological Journal. 56 (11): 1428–1436. doi:10.1134/S0031030122110193. S2CID 256618577.
  69. ^ Roček, Z.; Dong, L.; Wang, Y. (2023). "The Early Cretaceous frog Genibatrachus from China: Osteology, development, and palaeogeographic relations". Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-023-00579-x.
  70. ^ Lemierre, A.; Gendry, D.; Poirier, M.-M.; Gillet, V.; Vullo, R. (2023). "The oldest articulated ranid from Europe: a Pelophylax specimen from the lowest Oligocene of Chartres-de-Bretagne (N.W. France)". Journal of Vertebrate Paleontology. 42 (4). e2191663. doi:10.1080/02724634.2023.2191663.
  71. ^ Bazzana-Adams, K. D.; Evans, D. C.; Bevitt, J. J.; Reisz, R. R. (2023). "Neurosensory anatomy and function in Seymouria". Journal of Morphology. 284 (5). e21577. doi:10.1002/jmor.21577. PMID 36921082. S2CID 257564333.
  72. ^ Bulanov, V. V. (2023). "The discovery of diadectomorph tetrapods in the Lower Permian of Eastern Europe". Paleontological Journal. 57 (2): 206–216. doi:10.1134/S0031030123020065.
  73. ^ Kammerer, Christian; Viglietti, Pia; Butler, Elize; Botha, Jennifer (22 May 2023). "Rapid turnover of top predators in African terrestrial faunas around the Permian-Triassic mass extinction". Current Biology. doi:10.1016/j.cub.2023.04.007. PMID 37220743.
  74. ^ a b Suchkova, Yu. A.; Golubev, V. K.; Shumov, I. S. (2022). "New Primitive Therocephalians from the Permian of Eastern Europe". Paleontological Journal. 56 (11): 1419–1427. doi:10.1134/S0031030122110181. S2CID 256618344.
  75. ^ Mann, A.; Henrici, A. C.; Sues, H.-D.; Pierce, S. E. (2023). "A new Carboniferous edaphosaurid and the origin of herbivory in mammal forerunners". Scientific Reports. 13 (1). 4459. doi:10.1038/s41598-023-30626-8. PMC 10076360. PMID 37019927.
  76. ^ Schmitt, Maurício Rodrigo; Martinelli, Agustín Guillermo; Kaiuca, João Felipe Leal; Schultz, Cesar Leandro; Soares, Marina Bento (2023-05-29). "Old fossil findings in the Upper Triassic rocks of southern Brazil improve diversity of traversodontid cynodonts ( Therapsida , Cynodontia )". The Anatomical Record. doi:10.1002/ar.25244. ISSN 1932-8486. PMID 37246488.
  77. ^ Szczygielski, T.; Sulej, T. (2023). "Woznikella triradiata n. gen., n. sp. – a new kannemeyeriiform dicynodont from the Late Triassic of northern Pangea and the global distribution of Triassic dicynodonts". Comptes Rendus Palevol (in French). 22 (16): 279–406. doi:10.5852/cr-palevol2023v22a16.
  78. ^ Calábková, G.; Březina, J.; Nosek, V.; Madzia, D. (2023). "Synapsid tracks with skin impressions illuminate the terrestrial tetrapod diversity in the earliest Permian of equatorial Pangea". Scientific Reports. 13 (1). 1130. doi:10.1038/s41598-023-27939-z. PMC 9860047. PMID 36670191.
  79. ^ Maho, T.; Bevitt, J. J.; Reisz, R. R. (2023). "New specimens of the early Permian apex predator Varanops brevirostris at Richards Spur, Oklahoma, with histological information about its growth pattern". PeerJ. 11. e14898. doi:10.7717/peerj.14898. PMC 9938655. PMID 36819993.
  80. ^ Gônet, J.; Bardin, J.; Girondot, M.; Hutchinson, J. R.; Laurin, M. (2023). "Unravelling the postural diversity of mammals: Contribution of humeral cross-sections to palaeobiological inferences". Journal of Mammalian Evolution. 30 (2): 321–337. doi:10.1007/s10914-023-09652-w. S2CID 256788973.
  81. ^ Bazzana-Adams, K. D.; Evans, D. C.; Reisz, R. R. (2023). "Neurosensory anatomy and function in Dimetrodon, the first terrestrial apex predator". iScience. 26 (4): 106473. doi:10.1016/j.isci.2023.106473. PMC 10122045. S2CID 257678720.
  82. ^ Bishop, P. J.; Norton, L. A.; Jirah, S.; Day, M. O.; Rubidge, B. S.; Pierce, S. E. (2023). "Enigmatic humerus from the mid-Permian of South Africa bridges the anatomical gap between "pelycosaurs" and therapsids". Journal of Vertebrate Paleontology. 42 (3). e2170805. doi:10.1080/02724634.2023.2170805. S2CID 257338054.
  83. ^ Benoit, J.; Norton, L. A.; Jirah, S. (2023). "The maxillary canal of the titanosuchid Jonkeria (Synapsida, Dinocephalia)". The Science of Nature. 110 (4). 27. doi:10.1007/s00114-023-01853-w. PMC 10241669. PMID 37272962.
  84. ^ Pusch, L. C.; Kammerer, C. F.; Fernandez, V.; Fröbisch, J. (2023). "Cranial anatomy of Nythosaurus larvatus Owen, 1876, an Early Triassic cynodont preserving a natural endocast". Journal of Vertebrate Paleontology. 42 (3). e2174441. doi:10.1080/02724634.2023.2174441. S2CID 257419409.
  85. ^ Hoffmann, C. A.; de Andrade, M. B.; Martinelli, A. G. (2023). "Anatomy of the holotype of 'Probelesodon' kitchingi revisited, a chiniquodontid cynodont (Synapsida, Probainognathia) from the early Late Triassic of southern Brazil". Journal of Paleontology: 1–18. doi:10.1017/jpa.2023.25.
  86. ^ Stefanello, M.; Martinelli, A. G.; Müller, R. T.; Dias-da-Silva, S.; Kerber, L. (2023). "A complete skull of a stem mammal from the Late Triassic of Brazil illuminates the early evolution of prozostrodontian cynodonts". Journal of Mammalian Evolution. 30 (2): 299–317. doi:10.1007/s10914-022-09648-y. S2CID 256452176.
  87. ^ Kerber, L.; Roese-Miron, L.; Bubadué, J. M.; Martinelli, A. G. (2023). "Endocranial anatomy of the early prozostrodonts (Eucynodontia: Probainognathia) and the neurosensory evolution of the mammalian forerunners". The Anatomical Record. doi:10.1002/ar.25215. PMID 37017195. S2CID 257954339.
  88. ^ Lautenschlager, S.; Fagan, M. J.; Luo, Z.-X.; Bird, C. M.; Gill, P.; Rayfield, E. J. (2023). "Functional reorganisation of the cranial skeleton during the cynodont–mammaliaform transition". Communications Biology. 6 (1). 367. doi:10.1038/s42003-023-04742-0. PMC 10097706. PMID 37046052.
  89. ^ Sánchez-Beristain, F.; Rodrigo, J.; Schlagintweit, F. (2023). "Acanthochaetetes reitneri nov. sp. (Porifera: Demospongiae) from the Lower Cretaceous (upper Aptian–lower Albian) Tuburan Limestone of Cebu Island (Philippines) and its stratigraphic and palaeobiogeographic implications". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 307 (1): 17–28. doi:10.1127/njgpa/2023/1109. S2CID 256750180.
  90. ^ Luzhnaya, E. A.; Zhegallo, E. A.; Zaitseva, L. V.; Ragozina, A. L. (2023). "Problematical Porifera from the Lower Cambrian of Western Mongolia". Paleontological Journal. 57 (3): 22–34.
  91. ^ a b Peng, T.; Yang, Y.; Yun, H.; Yang, X.; Zhang, Q.; He, M.; Chi, X.; Liu, J.; Liu, X. (2023). "Flourishing chancelloriids from the Cambrian Kaili Biota of South China". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2023.2212382.
  92. ^ Goñi, I.; Skovsted, C. B.; Li, L.; Li, G.; Betts, M. J.; Dorjnamjaa, D.; Altanshagai, G.; Enkhbaatar, B.; Topper, T. P. (2023). "New palaeoscolecid plates from the Cambrian Stage 3 of northern Mongolia". Acta Palaeontologica Polonica. 68 (1): 117–125. doi:10.4202/app.01030.2022. S2CID 256711586.
  93. ^ Zhao, J.; Li, Y.; Selden, P. A. (2023). "A new primitive polychaete with eyes from the lower Cambrian Guanshan biota of Yunnan Province, China". Frontiers in Ecology and Evolution. 11. 1128070. doi:10.3389/fevo.2023.1128070.
  94. ^ a b Zhang, Z.F.; Smith, M. R.; Ren, X.Y. (2023). "The Cambrian cirratuliform Iotuba denotes an early annelid radiation". Proceedings of the Royal Society B: Biological Sciences. 290 (1992). 20222014. doi:10.1098/rspb.2022.2014. PMC 9890102. PMID 36722078.
  95. ^ Świerczewska-Gładysz, E.; Jurkowska, A. (2023). "Taxonomy and palaeoecology of the Late Cretaceous (Campanian) Phymatellidae (lithistid demosponges) from the Miechów and Mogilno-Łódź synclinoria (southern and central Poland)". Annales Societatis Geologorum Poloniae. 93. doi:10.14241/asgp.2023.03. S2CID 257661001.
  96. ^ Samant, B.; Pronzato, R.; Mohabey, D. M.; Cubeddu, T.; Stocchino, G. A.; Jangale, K.; Thalal, P.; Dhobale, A.; Manconi, R. (2023). "The oldest birotule-bearing freshwater sponges from the Upper Cretaceous–lower Paleocene Deccan volcanic-associated sediments of India". Acta Palaeontologica Polonica. 68 (1): 167–174. doi:10.4202/app.01040.2022. S2CID 257481832.
  97. ^ Demidenko, Yu. E. (2023). "A new genus of the zooproblematics of the family Siphogonuchitidae". Paleontological Journal. 57 (3): 35–41.
  98. ^ Wierzbowski, H.; Błażejowski, B. (2023). "Chaetognath grasping spines from the Devonian of Poland: their structure and geochemistry". Acta Palaeontologica Polonica. 68 (1): 103–116. doi:10.4202/app.01012.2022. S2CID 257420288.
  99. ^ a b Pisera, A.; Bitner, M. A.; Fromont, J. (2023). "Eocene phymaraphiniid demosponges from South Western Australia: filling the gap". Acta Palaeontologica Polonica. doi:10.4202/app.01052.2023.
  100. ^ Skompski, S.; Kozłowska, A.; Kozłowski, W.; Łuczyński, P. (2023). "Coexistence of algae and a graptolite-like problematicum: a case study from the late Silurian of Podolia (Ukraine)". Acta Geologica Polonica. doi:10.24425/agp.2022.143599.
  101. ^ Kimmig, J.; LaVine, R. J.; Schiffbauer, J. D.; Egenhoff, S. O.; Shelton, K. L.; Leibach, W. W. (2023). "Annelids from the Cambrian (Wuliuan Stage, Miaolingian) Spence Shale Lagerstätte of northern Utah, USA". Historical Biology: An International Journal of Paleobiology: 1–10. doi:10.1080/08912963.2023.2196685. S2CID 258047711.
  102. ^ Osawa, H.; Caron, J.-B.; Gaines, R. R. (2023). "First record of growth patterns in a Cambrian annelid". Royal Society Open Science. 10 (4). 221400. doi:10.1098/rsos.221400. PMC 10130728. PMID 37122950.
  103. ^ Darroch, S. A. F.; Gutarra, S.; Masaki, H.; Olaru, A.; Gibson, B. M.; Dunn, F. S.; Mitchell, E. G.; Racicot, R. A.; Burzynski, G.; Rahman, I. A. (2023). "The rangeomorph Pectinifrons abyssalis: hydrodynamic function at the dawn of animal life". iScience. 26 (2): 105989. doi:10.1016/j.isci.2023.105989. PMC 9900436. PMID 36756377. S2CID 256179963.
  104. ^ Retallack, G. J.; Matthews, N. A.; Master, S.; Khangar, R. G.; Khan, M. (2020). "Dickinsonia discovered in India and late Ediacaran biogeography". Gondwana Research. 90: 165–170. doi:10.1016/j.gr.2020.11.008. S2CID 229451488.
  105. ^ Meert, J. G.; Pandit, M. K.; Kwafo, S.; Singha, A. (2023). "Stinging News: 'Dickinsonia' discovered in the Upper Vindhyan of India Not Worth the Buzz". Gondwana Research. 117: 1–7. Bibcode:2023GondR.117....1M. doi:10.1016/j.gr.2023.01.003. S2CID 255846878.
  106. ^ Evans, S. D.; Hunt, G.; Gehling, J. G.; Sperling, E. A.; Droser, M. L. (2023). "Species of Dickinsonia Sprigg from the Ediacaran of South Australia". Palaeontology. 66 (1). e12635. doi:10.1111/pala.12635. S2CID 256673621.
  107. ^ Ivantsov, A. Y.; Zakrevskaya, M. (2023). "Body plan of Dickinsonia, the oldest mobile animals". Earth and Environmental Science Transactions of the Royal Society of Edinburgh: 1–14. doi:10.1017/S175569102300004X. S2CID 257168449.
  108. ^ Legg, D. A.; Sutton, M. D.; Edgecombe, G. D. (2013). "Arthropod fossil data increase congruence of morphological and molecular phylogenies". Nature Communications. 4. 2485. Bibcode:2013NatCo...4.2485L. doi:10.1038/ncomms3485. PMID 24077329.
  109. ^ Yang, J.; Ortega-Hernández, J.; Butterfield, N. J.; Liu, Y.; Boyan, G. S.; Hou, J.; Lan, T.; Zhang, X. (2016). "Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda". Proceedings of the National Academy of Sciences of the United States of America. 113 (11): 2988–2993. Bibcode:2016PNAS..113.2988Y. doi:10.1073/pnas.1522434113. PMC 4801254. PMID 26933218.
  110. ^ Aria, C.; Zhao, F.; Zhu, M. (2021). "Fuxianhuiids are mandibulates and share affinities with total-group Myriapoda". Journal of the Geological Society. 178 (5): jgs2020-246. Bibcode:2021JGSoc.178..246A. doi:10.1144/jgs2020-246. S2CID 233952670.
  111. ^ Wu, R.; Pisani, D.; Donoghue, I. M. (2023). "The unbearable uncertainty of panarthropod relationships". Biology Letters. 19 (1). 20220497. doi:10.1098/rsbl.2022.0497. PMC 9832341. PMID 36628953.
  112. ^ Li, Y.; Dunn, F. S.; Murdock, D. J. E.; Guo, J.; Rahman, I. A.; Cong, P. (2023). "Cambrian stem-group ambulacrarians and the nature of the ancestral deuterostome". Current Biology. doi:10.1016/j.cub.2023.04.048. PMID 37167976.
  113. ^ Jenkins, K. M.; Meyer, D. L.; Bhullar, B.-A. S. (2023). "Lost and Found: Redescription of Chamasaurus dolichognathus Williston 1915 from the Permo-Carboniferous of New Mexico". Bulletin of the Peabody Museum of Natural History. 64 (1): 3–9. doi:10.3374/014.064.0101. S2CID 257755687.
  114. ^ Mikami, T.; Ikeda, T.; Muramiya, Y.; Hirasawa, T.; Iwasaki, W. (2023). "Three-dimensional anatomy of the Tully monster casts doubt on its presumed vertebrate affinities". Palaeontology. 66 (2). e12646. doi:10.1111/pala.12646.
  115. ^ Wang, K.; Xu, H.-H.; Liu, B.-C.; Bai, J.; Wang, Y.; Tang, P.; Lu, J.-F.; Wang, Y. (2023). "Shallow-marine testate amoebae with internal structures from the Lower Devonian of China". iScience. 26 (5): 106678. doi:10.1016/j.isci.2023.106678. PMC 10173733. PMID 37182111.
  116. ^ Tang, D.-J.; Shi, X.-Y.; Zhou, X.-Q.; Riding, R. (2023). "Mesoproterozoic biomineralization: Cyanobacterium-like filamentous siderite sheaths ∼1.4 Ga". Journal of Palaeogeography. doi:10.1016/j.jop.2023.03.006.
  117. ^ Li, G.; Chen, L.; Pang, K.; Tang, Q.; Wu, C.; Yuan, X.; Zhou, C.; Xiao, S. (2023). "Tonian carbonaceous compressions indicate that Horodyskia is one of the oldest multicellular and coenocytic macro-organisms". Communications Biology. 6 (1). 399. doi:10.1038/s42003-023-04740-2. PMC 10097871. PMID 37046079.
  118. ^ Bryłka, K.; Alverson, A. J.; Pickering, R. A.; Richoz, S.; Conley, D. J. (2023). "Uncertainties surrounding the oldest fossil record of diatoms". Scientific Reports. 13 (1). 8047. doi:10.1038/s41598-023-35078-8. PMC 10192206. PMID 37198388.
  119. ^ Bryant, R.; Meehan, K. C.; Belanger, C. L. (2023). "Are ancient seep environments distinguishable by benthic foraminiferal assemblages? A case study of the Cretaceous Western Interior Seaway". Cretaceous Research. 146. 105476. doi:10.1016/j.cretres.2023.105476. S2CID 256173904.
  120. ^ Fenton, I. S.; Aze, T.; Farnsworth, A.; Valdes, P.; Saupe, E. E. (2023). "Origination of the modern-style diversity gradient 15 million years ago". Nature. 614 (7949): 708–712. doi:10.1038/s41586-023-05712-6. PMID 36792825. S2CID 256899993.
  121. ^ Woodhouse, A.; Swain, A.; Fagan, W. F.; Fraass, A. J.; Lowery, C. M. (2023). "Late Cenozoic cooling restructured global marine plankton communities". Nature. 614 (7949): 713–718. doi:10.1038/s41586-023-05694-5. PMID 36792824. S2CID 253282752.
  122. ^ Fonseca, C.; Mendonça Filho, J. G.; Reolid, M.; Duarte, L. V.; Oliveira, A. D.; Souza, J. T.; Lézin, C. (2023). "First putative occurrence in the fossil record of choanoflagellates, the sister group of Metazoa". Scientific Reports. 13 (1). 1242. doi:10.1038/s41598-022-26972-8. PMC 9870899. PMID 36690681.
  123. ^ El Albani, Abderrazak (2 May 2023). "Coopération scientifique France-Gabon: Découverte des plus vieux eucaryotes planctoniques macroscopiques au Gabon" (PDF). Libreville, Gabon: Embassy of France in Gabon and University of Poitiers.
  124. ^ Brocks, J. J.; Nettersheim, B. J.; Adam, P.; Schaeffer, P.; Jarrett, A. J. M.; Güneli, N.; Liyanage, T.; van Maldegem, L. M.; Hallmann, C.; Hope, J. M. (2023). "Lost world of complex life and the late rise of the eukaryotic crown". Nature: 1–7. doi:10.1038/s41586-023-06170-w.
  125. ^ Kolesnikov, A. V.; Latysheva, I. V.; Shatsillo, A. V.; Kuznetsov, N. B.; Kolesnikov, A. S.; Desiatkin, V. D.; Romanyuk, T. V. (2023). "Ediacara-Type Biota in the Upper Precambrian of the Timan Range (Dzhezhim–Parma Hill, Komi Republic)". Doklady Earth Sciences. 510 (1): 289–292. doi:10.1134/S1028334X23600032.
  126. ^ Servais, T.; Cascales-Miñana, B.; Harper, D. A. T.; Lefebvre, B.; Munnecke, A.; Wang, W.; Zhang, Y. (2023). "No (Cambrian) explosion and no (Ordovician) event: A single long-term radiation in the early Palaeozoic". Palaeogeography, Palaeoclimatology, Palaeoecology. 623. 111592. doi:10.1016/j.palaeo.2023.111592.
  127. ^ Li, L.; Betts, M. J.; Yun, H.; Pan, B.; Topper, T. P.; Li, G.; Zhang, X.; Skovsted, C. B. (2023). "Fibrous or Prismatic? A Comparison of the Lamello-Fibrillar Nacre in Early Cambrian and Modern Lophotrochozoans". Biology. 12 (1). 113. doi:10.3390/biology12010113. PMC 9855346. PMID 36671805.
  128. ^ Du, M.; Li, H.; Tan, J.; Wang, Z.; Wang, W. (2023). "The bias types and drivers of the Furongian Biodiversity Gap". Palaeogeography, Palaeoclimatology, Palaeoecology. 612. 111394. doi:10.1016/j.palaeo.2023.111394. S2CID 255717556.
  129. ^ Botting, J. P.; Muir, L. A.; Pates, S.; McCobb, L. M. E.; Wallet, E.; Willman, S.; Zhang, Y.; Ma, J. (2023). "A Middle Ordovician Burgess Shale-type fauna from Castle Bank, Wales (UK)". Nature Ecology & Evolution. 7 (5): 666–674. doi:10.1038/s41559-023-02038-4. PMID 37127766.
  130. ^ Francischini, H.; Dentzien-Dias, P.; Battista, F.; Sipp, G. S.; Melo, T. P.; Scherer, C. M. S.; Schultz, C. L. (2023). "Burrows provided shelter for tetrapods in a Permo-Triassic desert". Papers in Palaeontology. 9 (2). e1490. doi:10.1002/spp2.1490.
  131. ^ Huang, Y.; Chen, Z.-Q.; Roopnarine, P. D.; Benton, M. J.; Zhao, L.; Feng, X.; Li, Z. (2023). "The stability and collapse of marine ecosystems during the Permian-Triassic mass extinction". Current Biology. 33 (6): 1059–1070.e4. doi:10.1016/j.cub.2023.02.007. PMID 36841237. S2CID 257186215.
  132. ^ Dai, X.; Davies, J. H. F. L.; Yuan, Z.; Brayard, A.; Ovtcharova, M.; Xu, G.; Liu, X.; Smith, C. P. A.; Schweitzer, C. E.; Li, M.; Perrot, M. G.; Jiang, S.; Miao, L.; Cao, Y.; Yan, J.; Bai, R.; Wang, F.; Guo, W.; Song, H.; Tian, L.; Dal Corso, J.; Liu, Y.; Chu, D.; Song, H. (2023). "A Mesozoic fossil lagerstätte from 250.8 million years ago shows a modern-type marine ecosystem". Science. 379 (6632): 567–572. doi:10.1126/science.adf1622. PMID 36758082. S2CID 256697946.
  133. ^ Lukeneder, A.; Lukeneder, P. (2023). "New data on the marine Upper Triassic palaeobiota from the Polzberg Konservat-Lagerstätte in Austria". Swiss Journal of Palaeontology. 142. 9. doi:10.1186/s13358-023-00269-3.
  134. ^ Rozas-Davila, A.; Rodbell, D. T.; Bush, M. B. (2023). "Pleistocene megafaunal extinction in the grasslands of Junín-Peru". Journal of Biogeography. 50 (4): 755–766. doi:10.1111/jbi.14566. S2CID 256255790.
  135. ^ Song, H.; An, Z.; Ye, Q.; Stüeken, E. E.; Li, J.; Hu, J.; Algeo, T. J.; Tian, L.; Chu, D.; Song, H.; Xiao, S.; Tong, J. (2023). "Mid-latitudinal habitable environment for marine eukaryotes during the waning stage of the Marinoan snowball glaciation". Nature Communications. 14 (1). 1564. doi:10.1038/s41467-023-37172-x. PMC 10073137. PMID 37015913.
  136. ^ Bowyer, F. T.; Zhuravlev, A. Yu; Wood, R.; Zhao, F.; Sukhov, S. S.; Alexander, R. D.; Poulton, S. W.; Zhu, M. (2023). "Implications of an integrated late Ediacaran to early Cambrian stratigraphy of the Siberian Platform, Russia" (PDF). GSA Bulletin. doi:10.1130/B36534.1. S2CID 255892722.
  137. ^ Nolan, M. R.; Walker, S. E.; Selly, T.; Schiffbauer, J. (2023). "Is the middle Cambrian Brooksella a hexactinellid sponge, trace fossil or pseudofossil?". PeerJ. 11. e14796. doi:10.7717/peerj.14796. PMC 9969855. PMID 36860767.
  138. ^ Loron, C. C.; Rodriguez Dzul, E.; Orr, P. J.; Gromov, A. V.; Fraser, N. C.; McMahon, S. (2023). "Molecular fingerprints resolve affinities of Rhynie chert organic fossils". Nature Communications. 14 (1). 1387. doi:10.1038/s41467-023-37047-1. PMC 10011563. PMID 36914650.
  139. ^ Sahoo, S. K.; Gilleaudeau, G. J.; Wilson, K.; Hart, B.; Barnes, B. D.; Faison, T.; Bowman, A. R.; Larsen, T. E.; Kaufman, A. J. (2023). "Basin-scale reconstruction of euxinia and Late Devonian mass extinctions". Nature. 615 (7953): 640–645. doi:10.1038/s41586-023-05716-2. PMID 36890233. S2CID 257426134.
  140. ^ Shen, J.; Chen, J.; Yu, J.; Algeo, T. J.; Smith, R. M. H.; Botha, J.; Frank, T. D.; Fielding, C. R.; Ward, P. D.; Mather, T. A. (2023). "Mercury evidence from southern Pangea terrestrial sections for end-Permian global volcanic effects". Nature Communications. 14 (1). 6. doi:10.1038/s41467-022-35272-8. PMC 9810726. PMID 36596767.
  141. ^ Liu, F.; Peng, H.; Marshall, J. E. A.; Lomax, B. H.; Bomfleur, B.; Kent, M. S.; Fraser, W. T.; Jardine, P. E. (2023). "Dying in the Sun: Direct evidence for elevated UV-B radiation at the end-Permian mass extinction". Science Advances. 9 (1): eabo6102. doi:10.1126/sciadv.abo6102. PMC 9821938. PMID 36608140.
  142. ^ Bryant, R.; Belanger, C. L. (2023). "Spatial heterogeneity in benthic foraminiferal assemblages tracks regional impacts of paleoenvironmental change across Cretaceous OAE2". Paleobiology: 1–23. doi:10.1017/pab.2022.47. S2CID 256132544.
  143. ^ Jones, M. M.; Sageman, B. B.; Selby, D.; Jacobson, A. D.; Batenburg, S. J.; Riquier, L.; MacLeod, K. G.; Huber, B. T.; Bogus, K. A.; Tejada, M. L. G.; Kuroda, J.; Hobbs, R. W. (2023). "Abrupt episode of mid-Cretaceous ocean acidification triggered by massive volcanism". Nature Geoscience. 16 (2): 169–174. doi:10.1038/s41561-022-01115-w. S2CID 256137367.
  144. ^ Siver, P. A.; Lott, A. M. (2023). "History of the Giraffe Pipe locality inferred from microfossil remains: a thriving freshwater ecosystem near the Arctic Circle during the warm Eocene". Journal of Paleontology. 97 (2): 271–291. doi:10.1017/jpa.2022.101. S2CID 256435248.
  145. ^ Essel, E.; Zavala, E. I.; Schulz-Kornas, E.; Kozlikin, M. B.; Fewlass, H.; Vernot, B.; Shunkov, M. V.; Derevianko, A. P.; Douka, K.; Barnes, I.; Soulier, M.-C.; Schmidt, A.; Szymanski, M.; Tsanova, T.; Sirakov, N.; Endarova, E.; McPherron, S. P.; Hublin, J.-J.; Kelso, J.; Pääbo, S.; Hajdinjak, M.; Soressi, M.; Meyer, M. (2023). "Ancient human DNA recovered from a Palaeolithic pendant". Nature. 618 (7964): 328–332. doi:10.1038/s41586-023-06035-2. PMID 37138083.
  146. ^ Reeves, J. C.; Sansom, R. S. (2023). "Multivariate mapping of ontogeny, taphonomy and phylogeny to reconstruct problematic fossil taxa". Proceedings of the Royal Society B: Biological Sciences. 290 (1999). 20230333. doi:10.1098/rspb.2023.0333. PMC 10229227. PMID 37253426.
  147. ^ Goto, K. T.; Tejada, M. L. G.; Tajika, E.; Suzuki, K. (2023). "Enhanced magmatism played a dominant role in triggering the Miocene Climatic Optimum". Communications Earth & Environment. 4. 21. doi:10.1038/s43247-023-00684-x.
  148. ^ Wen, Y.; Zhang, L.; Holbourn, A. E.; Zhu, C.; Huntington, K. W.; Jin, T.; Li, Y.; Wang, C. (2023). "CO2-forced Late Miocene cooling and ecosystem reorganizations in East Asia". Proceedings of the National Academy of Sciences of the United States of America. 120 (5). e2214655120. doi:10.1073/pnas.2214655120. PMC 9945954. PMID 36689658. S2CID 256193615.{{cite journal}}: CS1 maint: PMC embargo expired (link)