Jump to content

Evolutionary medicine

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Helpful Pixie Bot (talk | contribs) at 15:49, 11 May 2012 (ISBNs (Build KH)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The bacteria Mycobacterium tuberculosis can evolve to subvert the protection offered by her immune defenses

Evolutionary medicine or Darwinian medicine is the application of modern evolutionary theory to understanding health and disease. It provides a complementary scientific approach to the present mechanistic explanations that dominate medical science, and particularly modern medical education. Researchers in the field of evolutionary medicine have suggested that evolutionary biology should not simply be an optional topic in medical school, but instead should be taught as one of the basic medical sciences.[1]

Such adaptations concern:

Important researchers in evolutionary medicine include: Randolph M. Nesse, George C. Williams, Paul W. Ewald, James McKenna, Paul W. Turke and Rainer H. Straub.

History

Charles Darwin’s daughter Anne, “the joy of the household” died aged 10 due to tuberculosis.

Charles Darwin did not discuss the implications of his work for medicine, though biologists quickly appreciated in the germ theory of disease its implications for understanding the evolution of pathogens, and an organism’s need to defend against them.

Medicine, in turn, ignored evolution, and instead focused (as done in the hard sciences) upon proximate mechanical causes.

medicine has modelled itself after a mechanical physics, deriving from Galileo, Newton, and Descartes…. As a result of assuming this model, medicine is mechanistic, materialistic, reductionistic, linear-causal, and deterministic (capable of precise predictions) in its concepts. It seeks explanations for diseases, or their symptoms, signs, and cause in single, materialistic— i.e., anatomical or structural (e.g., in genes and their products)— changes within the body, wrought directly (linearly), for example, by infectious, toxic, or traumatic agents.[2] p. 510

George C. Williams was the first to apply evolutionary theory to health in the context of senescence.[3] Also in the 1950s, John Bowlby approached the problem of disturbed child development from an evolutionary perspective upon attachment.

An important theoretical development was Nikolaas Tinbergen’s distinction made originally in ethology between evolutionary and proximate mechanisms.[4]

Randolph Nesse summarizes its relevance to medicine:

all biological traits need two kinds of explanation, both proximate and evolutionary. The proximate explanation for a disease describes what is wrong in the bodily mechanism of individuals affected by it. An evolutionary explanation is completely different. Instead of explaining why people are different, it explains why we are all the same in ways that leave us vulnerable to disease. Why do we all have wisdom teeth, an appendix, and cells that can divide out of control?[5]

The paper of Paul Ewald in 1980, “Evolutionary Biology and the Treatment of Signs and Symptoms of Infectious Disease”,[6] and that of Williams and Nesse in 1991, “The Dawn of Darwinian Medicine”[7] were key developments. The latter paper “draw a favorable reception”,[8]page x and led to a book, Why We Get Sick (published as Evolution and healing in the UK). In 2008, an online journal started: Evolution and Medicine Review.

Pathogens

The adaptive evolution of bacteria, viruses, other microbes and parasites plays a central role in medicine since this process is needed to understand issues such as antibiotic resistance,[9] pathogen virulence.[10] and pathogen subversion of the immune system.[11]

Antibiotic resistance

Microorganisms evolve resistance through natural selection acting upon random mutation. Once a gene conferring resistance arises to counteract an antibiotic, not only can that bacteria thrive, but it can spread that gene to other types of bacteria through horizontal gene transfer of genetic information by plasmid exchange.

For more details on this topic, see antibiotic resistance

Virulence

The effect of organisms upon their host can vary from being symbiotic commensals that are beneficial, to pathogens that reduce fitness. Many pathogens produce virulence factors that directly cause disease, or manipulate their host to allow them to thrive and spread. Since a pathogen’s fitness is determined by its success in transmitting offspring to other hosts, it was thought at one time, that virulence moderated and it evolved toward commensality. However, this view is now questioned by Ewald.

For more details on this topic, see virulence, virulence factors and optimal virulence

Immune evasion

The success of any pathogen depends upon its ability to evade host immunity. Therefore, pathogens evolve methods that enable them to infect a host, and then evade detection and destruction by its immune system. These include hiding within host cells, within a protective capsule (as with M. tuberculosis), secreting compounds that misdirect the host's immune response, binding its antibodies, rapidly changing surface markers, or masking them with the host’s own molecules.

For more details on this topic, see manipulation of the immune system by pathogens, and evasion of the innate immune system

Human adaptations

Adaptation works within constraints, makes compromises and tradeoffs, and occurs in the context of different forms of competition.[12]

Constraints

Adaptations can only occur if they are evolvable. Some adaptations which would prevent ill health are therefore not possible.

  • DNA cannot be totally prevented from undergoing somatic replication corruption; this means that cancer, which is caused by somatic mutations, can never be completely eliminated by natural selection.
  • Humans cannot biosynthesize Vitamin C, and so risk scurvy, Vitamin C deficiency disease, if dietary intake of the vitamin is insufficient.
  • Retinal neurons and their axon output have evolved to be inside the layer of retinal pigment cells. This creates a constraint on the evolution of the visual system such that the optic nerve is forced to exit the retina through a point called the optic disc. This in turn creates a blind spot. More importantly, it makes vision vulnerable to increased pressure within the eye (glaucoma) since this cups and damages the optic nerve at this point, resulting in impaired vision.

Other constraints occur as the byproduct of adaptive innovations.

Trade-offs and conflicts

One constraint upon selection is that different adaptations can conflict, which requires a compromise between them to ensure an optimal cost-benefit tradeoff.

Competition effects

Different forms of competition exist and these can shape the processes of genetic change.

Evolved defense mechanisms

Evolution has selected defense mechanisms that protect against injuries and infections.[8] These include

Management

Evolved defense mechanisms can be costly, due to increased energy use (fever increases BMR by 10-15% for each degree rise in body temperature), and due to the risk of damaging the body (vomiting can risk aspiration). A fitness advantage therefore exists in deploying defense mechanisms selectively only when the potential benefits outweigh such costs. Their deployment is controlled at several levels, including through biomolecular pathways using factors such as proinflammatory cytokines, and through higher neural top down processes in cerebral cortex areas such as the insular cortex. Neural control provides advantages in that deployment can be based on tradeoffs between costs and benefits that take into account relevant health circumstances. This evolved regulation functions as a health management system.[22]

“Diseases of civilization”

Humans evolved to live as simple hunter-gatherers in small tribal bands, a very different way of life and environment than that faced by contemporary humans.[23][24] This change makes present humans vulnerable to a number of health problems, termed “diseases of civilization” and “diseases of affluence”.

Diet

In contrast to the diet of early hunter-gatherers, the modern one contains high quantities of fat, salt, and refined sugars. These create health problems.[25][26][27]

Life expectancy

Exercise

Contemporary humans engage in little physical exercise compared to the physically active lifestyle engaged in by ancestral hunter-gatherers.[28][29][30][31][32] It has been proposed that since prolonged periods of sedentariness would have only occurred in early humans following illness or injury that it provides a cue for the body to engage in life-preserving metabolic and stress related responses such as inflammation that are now the cause of many chronic diseases.[33]

Cleanliness

Contemporary humans - due to medical treatment, frequent washing of clothing and the body, and improved sanitation - are mostly free of parasites, particularly intestinal ones. This causes problems in the proper development of the immune system.

Specific explanations

This is a partial list: all links here go to a section describing or debating its evolutionary origin.

Other

Evolutionary psychiatry / Clinical evolutionary psychology

As noted in the table below, adaptationist hypotheses regarding the etiology of psychological disorders are often based on analogies with evolutionary perspectives on medicine and physiological dysfunctions (see in particular, Randy Nesse and George C. Williams' book Why We Get Sick).[69] Evolutionary psychiatrists and psychologists suggest that some mental disorders likely have multiple causes.[70]

Possible Causes of Psychological 'Abnormalities' from an Adaptationist Perspective

Summary based on information in Buss (2011),[71] Gaulin & McBurney (2004),[72] Workman & Reader (2004)[73]

Possible cause Physiological Dysfunction Psychological Dysfunction
Functioning adaptation (adaptive defense) Fever / Vomiting

(functional responses to infection or ingestion of toxins)

Mild depression or anxiety

(functional responses to mild loss or stress)

By-product of an adaptation(s) Intestinal gas

(byproduct of digestion of fiber)

Sexual fetishes (?)

(possible byproduct of normal sexual arousal adaptations that have 'imprinted' on unusual objects or situations)

Adaptations with multiple effects Gene for malaria resistance, in homozygous form, causes sickle cell anemia Adaptation(s) for high levels of creativity may also predispose schizophrenia or bi-polar disorder

(adaptations with both positive and negative effects, perhaps dependent on alternate developmental trajectories)

Malfunctioning adaptation Allergies

(over-reactive immunological responses)

Autism

(possible malfunctioning of theory of mind module)

Frequency-dependent morphs The two sexes / Different blood and immune system types Personality traits and personality disorders

(may represent alternative behavioral strategies dependent on the frequency of the strategy in the population)

Mismatch between ancestral & current environments Modern diet-related Type 2 Diabetes More frequent modern interaction with strangers (compared to family and close friends) may predispose greater incidence of depression & anxiety
Tails of normal (bell shaped) curve Very short or tall height Tails of the distribution of personality traits (e.g., extremely introverted or extroverted)

See several topic areas, and the associated references, below.

See also

References

  1. ^ Nesse, RM; et al. (2009). "Making evolutionary biology a basic science for medicine". Proceedings of the National Academy of Sciences of the United States of America. 107. Suppl 1 (suppl_1). PNAS: 1800–7. doi:10.1073/pnas.0906224106. PMC 2868284. PMID 19918069.
  2. ^ Weiner H (1 July 1998). "Notes on an evolutionary medicine". Psychosom Med. 60 (4): 510–20. PMID 9710299.
  3. ^ a b Williams GC (1957). "Pleiotropy, Natural Selection, and the Evolution of Senescence" (PDF). Evolution. 11 (4). Society for the Study of Evolution: 398–411. doi:10.2307/2406060. JSTOR 2406060. abstract
  4. ^ Tinbergen N (1963). "On Aims and Methods in Ethology" (PDF). Zeitschrift für Tierpsychologie. 20 (4): 410–433. doi:10.1111/j.1439-0310.1963.tb01161.x.
  5. ^ Nesse RM (2008). "Evolution: medicine's most basic science". Lancet. 372 (Suppl 1): S21–7. doi:10.1016/S0140-6736(08)61877-2. {{cite journal}}: Unknown parameter |month= ignored (help)
  6. ^ Ewald PW (1980). "Evolutionary biology and the treatment of signs and symptoms of infectious disease". J. Theor. Biol. 86 (1): 169–76. doi:10.1016/0022-5193(80)90073-9. PMID 7464170. {{cite journal}}: Unknown parameter |month= ignored (help)
  7. ^ Williams GC, Nesse RM (1991). "The dawn of Darwinian medicine". Q Rev Biol. 66 (1): 1–22. doi:10.1086/417048. PMID 2052670. {{cite journal}}: Unknown parameter |month= ignored (help)
  8. ^ a b c Williams, George; Nesse, Randolph M. (1996). Why we get sick: the new science of Darwinian medicine. New York: Vintage Books. ISBN 0-679-74674-9.{{cite book}}: CS1 maint: multiple names: authors list (link) Cite error: The named reference "Nesse" was defined multiple times with different content (see the help page).
  9. ^ Stearns SC, Ebert D (2001). "Evolution in health and disease: work in progress". Q Rev Biol. 76 (4): 417–32. doi:10.1086/420539. PMID 11783396. {{cite journal}}: Unknown parameter |month= ignored (help)
  10. ^ Wickham ME, Brown NF, Boyle EC, Coombes BK, Finlay BB (2007). "Virulence is positively selected by transmission success between mammalian hosts". Curr. Biol. 17 (9): 783–8. doi:10.1016/j.cub.2007.03.067. PMID 17442572. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  11. ^ Finlay BB, McFadden G (2006). "Anti-immunology: evasion of the host immune system by bacterial and viral pathogens". Cell. 124 (4): 767–82. doi:10.1016/j.cell.2006.01.034. PMID 16497587. {{cite journal}}: Unknown parameter |month= ignored (help)
  12. ^ a b Stearns SC (2005). "Issues in evolutionary medicine". Am. J. Hum. Biol. 17 (2): 131–40. doi:10.1002/ajhb.20105. PMID 15736177.
  13. ^ Sagan, Dorion; Skoyles, John R. (2002). Up from dragons: the evolution of human intelligence. New York: McGraw-Hill. pp. 240–1. ISBN 0-07-137825-1.{{cite book}}: CS1 maint: multiple names: authors list (link)
  14. ^ Aiello LC, Wheeler P (1995). "The Expensive-Tissue Hypothesis: The Brain and the Digestive System in Human and Primate Evolution". Current Anthropology. 36 (2): 199–221. doi:10.1086/204350.
  15. ^ Lieberman P (2007). "The Evolution of Human Speech: Its Anatomical and Neural Bases" (PDF). Current Anthropology. 48 (1): 39–66. doi:10.1086/509092.
  16. ^ Howard RS, Lively CM (2004). "Good vs complementary genes for parasite resistance and the evolution of mate choice". BMC Evol Biol. 4: 48. doi:10.1186/1471-2148-4-48. PMC 543473. PMID 15555062. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: unflagged free DOI (link)
  17. ^ Haig D (1993). "Genetic conflicts in human pregnancy". Q Rev Biol. 68 (4): 495–532. doi:10.1086/418300. PMID 8115596. {{cite journal}}: Unknown parameter |month= ignored (help)
  18. ^ Schuiling GA (2000). "Pre-eclampsia: a parent-offspring conflict". J Psychosom Obstet Gynaecol. 21 (3): 179–82. doi:10.3109/01674820009075626. PMID 11076340. {{cite journal}}: Unknown parameter |month= ignored (help)
  19. ^ Wedekind C, Seebeck T, Bettens F, Paepke AJ (1995). "MHC-dependent mate preferences in humans". Proc Biol Sci. 260 (1359): 245–9. doi:10.1098/rspb.1995.0087. PMID 7630893. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  20. ^ Chaix R, Cao C, Donnelly P (2008). Przeworski, Molly (ed.). "Is Mate Choice in Humans MHC-Dependent?". PLoS Genet. 4 (9): e1000184. doi:10.1371/journal.pgen.1000184. PMC 2519788. PMID 18787687.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  21. ^ Crespi B, Badcock C (2008). "Psychosis and autism as diametrical disorders of the social brain". Behav Brain Sci. 31 (3): 241–61, discussion 261–320. doi:10.1017/S0140525X08004214. PMID 18578904. {{cite journal}}: Unknown parameter |month= ignored (help)
  22. ^ a b Humphrey, Nicholas (2002). "19. Great Expectations: The Evolutionary Psychology of Faith-Healing and the Placebo Effect". The mind made flesh: essays from the frontiers of psychology and evolution. Oxford [Oxfordshire]: Oxford University Press. pp. 255–85. ISBN 0-19-280227-5. {{cite book}}: External link in |chapterurl= (help); Unknown parameter |chapterurl= ignored (|chapter-url= suggested) (help)
  23. ^ Eaton, S. Boyd; Konner, M; Shostak, M (April 1988). "Stone agers in the fast lane: chronic degenerative diseases in evolutionary perspective". American Journal of Medicine. 84 (4): 739–749. doi:10.1016/0002-9343(88)90113-1. PMID 3135745. Retrieved 2010-06-18.
  24. ^ William, Knowler (1978). "Diabetes incidence and prevalence in Pima Indians: a 19-fold greater incidence than in Rochester, Minnesota". American Journal of Epidemiology. 108 (6): 497–505. PMID 736028. Retrieved 2010-06-18. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  25. ^ Eaton SB, Strassman BI, Nesse RM, Neel JV, Ewald PW, Williams GC, Weder AB, Eaton SB 3rd, Lindeberg S, Konner MJ, Mysterud I, Cordain L (2002). "Evolutionary health promotion" (PDF). Prev Med. 34 (2): 109–18. doi:10.1006/pmed.2001.0876. PMID 11817903.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  26. ^ Eaton SB (2006). "The ancestral human diet: what was it and should it be a paradigm for contemporary nutrition?". Proc Nutr Soc. 65 (1): 1–6. doi:10.1079/PNS2005471. PMID 16441938.
  27. ^ Milton K (2003). "Micronutrient intakes of non-human primates: are humans different?" (PDF). Comparative Biochemistry and Physiology Part A. 136 (1): 47–59. doi:10.1016/S1095-6433(03)00084-9. PMID 14527629.
  28. ^ Abuissa H, O’Keefe JH, Cordain, L (2005). "Realigning our 21st century diet and lifestyle with our hunter-gatherer genetic identity" (PDF). Directions Psych. 25: SR1–SR10.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. ^ Eaton, S. Boyd (2007). "The Ancestral Biomedical Environment". In Aird, William C. (ed.). Endothelial Biomedicine. Cambridge University Press. pp. 129–34. ISBN 0-521-85376-1. {{cite book}}: External link in |chapterurl= (help); Unknown parameter |chapterurl= ignored (|chapter-url= suggested) (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  30. ^ Eaton SB, Eaton SB (2003 Sep). "An evolutionary perspective on human physical activity: implications for health". Comp Biochem Physiol a Mol Integr Physiol. 136 (1): 153–9. doi:10.1016/S1095-6433(03)00208-3. PMID 14527637. {{cite journal}}: Check date values in: |year= (help)CS1 maint: year (link)
  31. ^ Cordain, L., Gotshall, R.W. and Eaton, S.B. (1998 Jul). "Physical activity, energy expenditure and fitness: an evolutionary perspective" (PDF). Int J Sports Med. 19 (5): 328–35. doi:10.1055/s-2007-971926. PMID 9721056. {{cite journal}}: Check date values in: |year= (help)CS1 maint: multiple names: authors list (link) CS1 maint: year (link)
  32. ^ Cordain, L., Gotshall, R.W., Eaton, S.B. (1997). "Evolutionary aspects of exercise" (PDF). World Rev Nutr Diet. World Review of Nutrition and Dietetics (Vol. 81 + 82). 81: 49–60. doi:10.1159/000059601. ISBN 3-8055-6452-X. PMID 9287503.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  33. ^ Attention: This template ({{cite pmid}}) is deprecated. To cite the publication identified by PMID 20498671, please use {{cite journal}} with |pmid=20498671 instead.
  34. ^ Kuzawa CW (1998). "Adipose tissue in human infancy and childhood: an evolutionary perspective". Am. J. Phys. Anthropol. Suppl. 27: 177–209. PMID 9881526.
  35. ^ a b Straub RH, Besedovsky HO (2003). "Integrated evolutionary, immunological, and neuroendocrine framework for the pathogenesis of chronic disabling inflammatory diseases". FASEB J. 17 (15): 2176–83. doi:10.1096/fj.03-0433hyp. PMID 14656978. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: unflagged free DOI (link)
  36. ^ a b Straub, R. H., del Rey, A., Besedovsky, H. O. (2007) "Emerging concepts for the pathogenesis of chronic disabling inflammatory diseases: neuroendocrine-immune interactions and evolutionary biology" In: Ader, R. (2007) "Psychoneuroimmunology", Volume 1, Academic Press, San Diego, pp.217-232
  37. ^ a b Straub RH, Besedovsky HO, Del Rey A (2007). "[Why are there analogous disease mechanisms in chronic inflammatory diseases?]". Wien. Klin. Wochenschr. (in German). 119 (15–16): 444–54. doi:10.1007/s00508-007-0834-z. PMID 17721763.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  38. ^ Wick G, Berger P, Jansen-Dürr P, Grubeck-Loebenstein B (2003). "A Darwinian-evolutionary concept of age-related diseases". Exp. Gerontol. 38 (1–2): 13–25. doi:10.1016/S0531-5565(02)00161-4. PMID 12543257.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  39. ^ Bogin , B. (1997) "Evolutionary hypotheses for human childhood". Yearbook of Physical Anthropology. 104: 63-89 abstract
  40. ^ Gluckman PD, Hanson MA (2006). "Evolution, development and timing of puberty". Trends Endocrinol. Metab. 17 (1): 7–12. doi:10.1016/j.tem.2005.11.006. PMID 16311040.
  41. ^ Kuhle BX (2007). "An evolutionary perspective on the origin and ontogeny of menopause". Maturitas. 57 (4): 329–37. doi:10.1016/j.maturitas.2007.04.004. PMID 17544235. {{cite journal}}: Unknown parameter |month= ignored (help)
  42. ^ Profet M (1993). "Menstruation as a defense against pathogens transported by sperm". Q Rev Biol. 68 (3): 335–86. doi:10.1086/418170. PMID 8210311. {{cite journal}}: Unknown parameter |month= ignored (help)
  43. ^ Strassmann BI (1996). "The evolution of endometrial cycles and menstruation". Q Rev Biol. 71 (2): 181–220. doi:10.1086/419369. PMID 8693059. {{cite journal}}: Unknown parameter |month= ignored (help)
  44. ^ Template:Cite PMID
  45. ^ Flaxman SM, Sherman PW (2000). "Morning sickness: a mechanism for protecting mother and embryo". Q Rev Biol. 75 (2): 113–48. doi:10.1086/393377. PMID 10858967. {{cite journal}}: Unknown parameter |month= ignored (help)
  46. ^ Flaxman SM, Sherman PW (2008). "Morning sickness: adaptive cause or nonadaptive consequence of embryo viability?". Am. Nat. 172 (1): 54–62. doi:10.1086/588081. PMID 18500939. {{cite journal}}: Unknown parameter |month= ignored (help)
  47. ^ Wick G, Perschinka H, Millonig G (2001). "Atherosclerosis as an autoimmune disease: an update". Trends Immunol. 22 (12): 665–9. doi:10.1016/S1471-4906(01)02089-0. PMID 11738996. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  48. ^ Rotter JI, Diamond JM (1987). "What maintains the frequencies of human genetic diseases?". Nature. 329 (6137): 289–90. doi:10.1038/329289a0. PMID 3114647.
  49. ^ Template:Cite PMID
  50. ^ NEEL JV (1962). "Diabetes Mellitus: A "Thrifty" Genotype Rendered Detrimental by "Progress"?". Am. J. Hum. Genet. 14 (4): 353–62. PMC 1932342. PMID 13937884. {{cite journal}}: Unknown parameter |month= ignored (help)
  51. ^ Neel JV, Weder AB, Julius S (1998). "Type II diabetes, essential hypertension, and obesity as "syndromes of impaired genetic homeostasis": the "thrifty genotype" hypothesis enters the 21st century". Perspect. Biol. Med. 42 (1): 44–74. PMID 9894356.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  52. ^ Williams, George; Nesse, Randolph M. (1996). "Evolution and healing". Why we get sick: the new science of Darwinian medicine. New York: Vintage Books. pp. 37–8. ISBN 0-679-74674-9.{{cite book}}: CS1 maint: multiple names: authors list (link)
  53. ^ Wick G, Jansen-Dürr P, Berger P, Blasko I, Grubeck-Loebenstein B (2000). "Diseases of aging". Vaccine. 18 (16): 1567–83. doi:10.1016/S0264-410X(99)00489-2. PMID 10689131. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  54. ^ Kluger MJ, Ringler DH, Anver MR (1975). "Fever and survival". Science. 188 (4184): 166–8. doi:10.1126/science.1114347. PMID 1114347. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  55. ^ Kluger MJ, Rothenburg BA (1979). "Fever and reduced iron: their interaction as a host defense response to bacterial infection". Science. 203 (4378): 374–6. doi:10.1126/science.760197. PMID 760197. {{cite journal}}: Unknown parameter |month= ignored (help)
  56. ^ Ames BN, Cathcart R, Schwiers E, Hochstein P (1981). "Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis". Proc. Natl. Acad. Sci. U.S.A. 78 (11): 6858–62. doi:10.1073/pnas.78.11.6858. PMC 349151. PMID 6947260. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  57. ^ Naugler C (2008). "Hemochromatosis: a Neolithic adaptation to cereal grain diets". Med. Hypotheses. 70 (3): 691–2. doi:10.1016/j.mehy.2007.06.020. PMID 17689879.
  58. ^ Moalem S, Percy ME, Kruck TP, Gelbart RR (2002). "Epidemic pathogenic selection: an explanation for hereditary hemochromatosis?". Med. Hypotheses. 59 (3): 325–9. doi:10.1016/S0306-9877(02)00179-2. PMID 12208162. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  59. ^ Wander K, Shell-Duncan B, McDade TW (2008). "Evaluation of iron deficiency as a nutritional adaptation to infectious disease: An evolutionary medicine perspective". Am. J. Hum. Biol. 21 (2): 172–9. doi:10.1002/ajhb.20839. PMID 18949769. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  60. ^ Eaton SB, Eaton SB, Konner MJ (1997). "Paleolithic nutrition revisited: a twelve-year retrospective on its nature and implications". Eur J Clin Nutr. 51 (4): 207–16. doi:10.1038/sj.ejcn.1600389. PMID 9104571. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  61. ^ Eaton SB, Konner M (1985). "Paleolithic nutrition. A consideration of its nature and current implications". N. Engl. J. Med. 312 (5): 283–9. doi:10.1056/NEJM198501313120505. PMID 2981409. {{cite journal}}: Unknown parameter |month= ignored (help)
  62. ^ Woolf LI, McBean MS, Woolf FM, Cahalane SF (1975). "Phenylketonuria as a balanced polymorphism: the nature of the heterozygote advantage". Ann. Hum. Genet. 38 (4): 461–9. doi:10.1111/j.1469-1809.1975.tb00635.x. PMID 1190737. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  63. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1007/s00439-008-0559-8, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1007/s00439-008-0559-8 instead.
  64. ^ Williams TN (2006). "Human red blood cell polymorphisms and malaria". Curr. Opin. Microbiol. 9 (4): 388–94. doi:10.1016/j.mib.2006.06.009. PMID 16815736. {{cite journal}}: Unknown parameter |month= ignored (help)
  65. ^ Ayi K, Turrini F, Piga A, Arese P (2004). "Enhanced phagocytosis of ring-parasitized mutant erythrocytes: a common mechanism that may explain protection against falciparum malaria in sickle trait and beta-thalassemia trait". Blood. 104 (10): 3364–71. doi:10.1182/blood-2003-11-3820. PMID 15280204. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  66. ^ Williams TN; Mwangi TW; Wambua S; et al. (2005). "Sickle cell trait and the risk of Plasmodium falciparum malaria and other childhood diseases". J. Infect. Dis. 192 (1): 178–86. doi:10.1086/430744. PMID 15942909. {{cite journal}}: Unknown parameter |author-separator= ignored (help); Unknown parameter |month= ignored (help); no-break space character in |first4= at position 5 (help); no-break space character in |first6= at position 7 (help)
  67. ^ Hart BL (1988). "Biological basis of the behavior of sick animals". Neurosci Biobehav Rev. 12 (2): 123–37. doi:10.1016/S0149-7634(88)80004-6. PMID 3050629.
  68. ^ Eaton SB; Pike MC; Short RV; et al. (1994). "Women's reproductive cancers in evolutionary context". Q Rev Biol. 69 (3): 353–67. doi:10.1086/418650. PMID 7972680. {{cite journal}}: Unknown parameter |author-separator= ignored (help); Unknown parameter |month= ignored (help)
  69. ^ Nesse, R., & Williams, G. (1996) Why we get sick. NY: Vintage.
  70. ^ Gaulin, Steven J. C. and Donald H. McBurney. Evolutionary psychology. Prentice Hall. 2003. ISBN 978-0-13-111529-3, Chapter 1, p 1-24.
  71. ^ Buss, D.M. (2011). Evolutionary Psychology.
  72. ^ Gaulin & McBurney (2004), Evolutionary Psychology
  73. ^ Workman & Reader (2004), Evolutionary Psychology
  74. ^ Nesse R (1997). "An evolutionary perspective on panic disorder and agoraphobia". In Baron-Cohen S (ed.). The maladapted mind: classic readings in evolutionary psychopathology. East Sussex: Psychology Press. pp. 73–84. ISBN 0-86377-460-1. Retrieved 21 January 2011. {{cite book}}: External link in |chapterurl= (help); Unknown parameter |chapterurl= ignored (|chapter-url= suggested) (help)
  75. ^ Grinde B (2005). "An approach to the prevention of anxiety-related disorders based on evolutionary medicine". Prev Med. 40 (6): 904–9. doi:10.1016/j.ypmed.2004.08.001. PMID 15850894. {{cite journal}}: Unknown parameter |month= ignored (help)
  76. ^ Nesse RM (2000). "Is depression an adaptation?". Arch. Gen. Psychiatry. 57 (1): 14–20. doi:10.1001/archpsyc.57.1.14. PMID 10632228. {{cite journal}}: Unknown parameter |month= ignored (help)
  77. ^ Nesse RM, Berridge KC (1997). "Psychoactive drug use in evolutionary perspective". Science. 278 (5335): 63–6. doi:10.1126/science.278.5335.63. PMID 9311928. {{cite journal}}: Unknown parameter |month= ignored (help)
  78. ^ Crow TJ (1995). "A Darwinian approach to the origins of psychosis". Br J Psychiatry. 167 (1): 12–25. doi:10.1192/bjp.167.1.12. PMID 7551604. {{cite journal}}: Unknown parameter |month= ignored (help)
  79. ^ Brüne M (2004). "Schizophrenia-an evolutionary enigma?". Neurosci Biobehav Rev. 28 (1): 41–53. doi:10.1016/j.neubiorev.2003.10.002. PMID 15036932. {{cite journal}}: Unknown parameter |month= ignored (help)
  80. ^ Nesse RM (2004). "Natural selection and the elusiveness of happiness". Philos. Trans. R. Soc. Lond., B, Biol. Sci. 359 (1449): 1333–47. doi:10.1098/rstb.2004.1511. PMC 1693419. PMID 15347525. {{cite journal}}: Unknown parameter |month= ignored (help)

Further reading

Books
  • Williams, George; Nesse, Randolph M. (1996). Why we get sick: the new science of Darwinian medicine. New York: Vintage Books. ISBN 0-679-74674-9.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Stearns SC, Koella JK (2008). Evolution in health and disease (2nd ed.). Oxford [Oxfordshire]: Oxford University Press. ISBN 0-19-920745-3.
  • McKenna, James J.; Trevathan, Wenda; Smith, Euclid O. (2008). Evolutionary medicine and health: new perspectives (2nd ed.). Oxford [Oxfordshire]: Oxford University Press. ISBN 0-19-530706-2.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • O'Higgins, Paul; Sarah Elton (2008). Medicine and Evolution: Current Applications, Future Prospects (Society for the Study of Human Biology Symposium Series (Sshb)). Boca Raton: CRC. ISBN 1-4200-5134-2.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Ewald, P. W. (1996). Evolution of Infectious Disease. Oxford: Oxford University Press. ISBN 0-19-511139-7.
  • Moalem, S. (2007). Survival of the Sickest. New York: HarperLuxe. ISBN 978-0-06-088965-4. {{cite book}}: Cite has empty unknown parameters: |publisherharpercollins= and |year2007= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
Online articles