Matrix t-distribution

From Wikipedia, the free encyclopedia
  (Redirected from Generalized matrix t-distribution)
Jump to: navigation, search

In statistics, the matrix t-distribution (or matrix variate t-distribution) is the generalization of the multivariate t-distribution from vectors to matrices.[1] The matrix t-distribution shares the same relationship with the multivariate t-distribution that the matrix normal distribution shares with the multivariate normal distribution.[clarification needed] For example, the matrix t-distribution is the compound distribution that results from sampling from a matrix normal distribution having sampled the covariance matrix of the matrix normal from an inverse Wishart distribution.[citation needed]

In a Bayesian analysis of a multivariate linear regression model based on the matrix normal distribution, the matrix t-distribution is the posterior predictive distribution.

Definition[edit]

Matrix t
Notation {\rm T}_{n,p}(\nu,\mathbf{M},\boldsymbol\Sigma, \boldsymbol\Omega)
Parameters

\mathbf{M} location (real n\times p matrix)
\boldsymbol\Omega scale (positive-definite real p\times p matrix)
\boldsymbol\Sigma scale (positive-definite real n\times n matrix)

\nu degrees of freedom
Support \mathbf{X} \in\mathbb{R}^{n\times p}
pdf


\frac{\Gamma_p\left(\frac{\nu+n+p-1}{2}\right)}{(\pi)^\frac{np}{2} \Gamma_p\left(\frac{\nu+p-1}{2}\right)} |\boldsymbol\Omega|^{-\frac{n}{2}} |\boldsymbol\Sigma|^{-\frac{p}{2}}

\times \left|\mathbf{I}_n + \boldsymbol\Sigma^{-1}(\mathbf{X} - \mathbf{M})\boldsymbol\Omega^{-1}(\mathbf{X}-\mathbf{M})^{\rm T}\right|^{-\frac{\nu+n+p-1}{2}}
CDF No analytic expression
Mean \mathbf{M} if \nu + p - n > 1, else undefined
Mode \mathbf{M}
Variance \frac{\boldsymbol\Sigma \otimes \boldsymbol\Omega}{\nu-2} if \nu > 2, else undefined
CF see below

For a matrix t-distribution, the probability density function at the point \mathbf{X} of an n\times p space is

 f(\mathbf{X} ; \nu,\mathbf{M},\boldsymbol\Sigma, \boldsymbol\Omega) = K
\times \left|\mathbf{I}_n + \boldsymbol\Sigma^{-1}(\mathbf{X} - \mathbf{M})\boldsymbol\Omega^{-1}(\mathbf{X}-\mathbf{M})^{\rm T}\right|^{-\frac{\nu+n+p-1}{2}},

where the constant of integration K is given by

 K =
\frac{\Gamma_p\left(\frac{\nu+n+p-1}{2}\right)}{(\nu\pi)^\frac{np}{2} \Gamma_p\left(\frac{\nu+p-1}{2}\right)} |\boldsymbol\Omega|^{-\frac{n}{2}} |\boldsymbol\Sigma|^{-\frac{p}{2}}.

Here \Gamma_p is the multivariate gamma function.

The characteristic function and various other properties can be derived from the generalized matrix t-distribution (see below).

Generalized matrix t-distribution[edit]

Generalized matrix t
Notation {\rm T}_{n,p}(\alpha,\beta,\mathbf{M},\boldsymbol\Sigma, \boldsymbol\Omega)
Parameters

\mathbf{M} location (real n\times p matrix)
\boldsymbol\Omega scale (positive-definite real p\times p matrix)
\boldsymbol\Sigma scale (positive-definite real n\times n matrix)
\alpha > (p-1)/2 shape parameter

\beta > 0 scale parameter
Support \mathbf{X} \in\mathbb{R}^{n\times p}
pdf

\frac{\Gamma_p(\alpha+n/2)}{(2\pi/\beta)^\frac{np}{2} \Gamma_p(\alpha)} |\boldsymbol\Omega|^{-\frac{n}{2}} |\boldsymbol\Sigma|^{-\frac{p}{2}}

\times \left|\mathbf{I}_n + \frac{\beta}{2}\boldsymbol\Sigma^{-1}(\mathbf{X} - \mathbf{M})\boldsymbol\Omega^{-1}(\mathbf{X}-\mathbf{M})^{\rm T}\right|^{-(\alpha+n/2)}
CDF No analytic expression
Mean \mathbf{M}
Variance \frac{2(\boldsymbol\Sigma \otimes \boldsymbol\Omega)}{\beta(2\alpha-n-1)}
CF see below

The generalized matrix t-distribution is a generalization of the matrix t-distribution with two parameters α and β in place of ν.[2]

This reduces to the standard matrix t-distribution with \beta=2, \alpha=\frac{\nu+p-1}{2}.

The generalized matrix t-distribution is the compound distribution that results from an infinite mixture of a matrix normal distribution with an inverse multivariate gamma distribution placed over either of its covariance matrices.

Properties[edit]

If \mathbf{X} \sim {\rm T}_{n,p}(\alpha,\beta,\mathbf{M},\boldsymbol\Sigma, \boldsymbol\Omega) then[citation needed]

\mathbf{X}^{\rm T} \sim {\rm T}_{p,n}(\alpha,\beta,\mathbf{M}^{\rm T},\boldsymbol\Omega, \boldsymbol\Sigma).

This makes use of the following:[citation needed]

\det\left(\mathbf{I}_n + \frac{\beta}{2}\boldsymbol\Sigma^{-1}(\mathbf{X} - \mathbf{M})\boldsymbol\Omega^{-1}(\mathbf{X}-\mathbf{M})^{\rm T}\right) =
\det\left(\mathbf{I}_p + \frac{\beta}{2}\boldsymbol\Omega^{-1}(\mathbf{X}^{\rm T} - \mathbf{M}^{\rm T})\boldsymbol\Sigma^{-1}(\mathbf{X}^{\rm T}-\mathbf{M}^{\rm T})^{\rm T}\right) .

If \mathbf{X} \sim {\rm T}_{n,p}(\alpha,\beta,\mathbf{M},\boldsymbol\Sigma, \boldsymbol\Omega) and \mathbf{A}(n\times n) and \mathbf{B}(p\times p) are nonsingular matrices then[citation needed]

\mathbf{AXB} \sim {\rm T}_{n,p}(\alpha,\beta,\mathbf{AMB},\mathbf{A}\boldsymbol\Sigma\mathbf{A}^{\rm T}, \mathbf{B}^{\rm T}\boldsymbol\Omega\mathbf{B})
.

The characteristic function is[2]

\phi_T(\mathbf{Z}) = \frac{\exp({\rm tr}(i\mathbf{Z}'\mathbf{M}))|\boldsymbol\Omega|^\alpha}{\Gamma_p(\alpha)(2\beta)^{\alpha p}} |\mathbf{Z}'\boldsymbol\Sigma\mathbf{Z}|^\alpha B_\alpha\left(\frac{1}{2\beta}\mathbf{Z}'\boldsymbol\Sigma\mathbf{Z}\boldsymbol\Omega\right),

where

B_\delta(\mathbf{WZ}) = |\mathbf{W}|^{-\delta} \int_{\mathbf{S}>0} \exp\left({\rm tr}(-\mathbf{SW}-\mathbf{S^{-1}Z})\right)|\mathbf{S}|^{-\delta-\frac12(p+1)}d\mathbf{S},

and where B_\delta is the type-two Bessel function of Herz of a matrix argument.

See also[edit]

Notes[edit]

  1. ^ Zhu, Shenghuo and Kai Yu and Yihong Gong (2007). "Predictive Matrix-Variate t Models." In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, NIPS '07: Advances in Neural Information Processing Systems 20, pages 1721-1728. MIT Press, Cambridge, MA, 2008. The notation is changed a bit in this article for consistency with the matrix normal distribution article.
  2. ^ a b Iranmanesh, Anis, M. Arashi and S. M. M. Tabatabaey (2010). "On Conditional Applications of Matrix Variate Normal Distribution". Iranian Journal of Mathematical Sciences and Informatics, 5:2, pp. 33–43.

External links[edit]