Wikipedia:Requested articles/Mathematics

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Add your request in the most appropriate place below.

Before adding a request please:


By convention, Wikipedia article titles are not capitalized except for the first letter and proper names -- write your request as This and such theorem instead of This And Such Theorem. Also, when adding a request, please include as much information as possible (such as webpages, articles, or other reference material) so editors can find and distinguish your request from an already-created article.

Shortcut:

See also: User:Mathbot/Most wanted redlinks.

Contents

Abstract algebra[edit]

Algebraic geometry[edit]

Algorithms[edit]

Wolf and Pate correlation (capillary tubes)

Applied mathematics[edit]

Approximation theory[edit]

Arithmetic geometry[edit]

Calculus of variations[edit]

Category theory[edit]

Coding theory[edit]

Combinatorics[edit]

Complex analysis[edit]

Complexity theory[edit]

Convex analysis / Optimization[edit]

Cryptography[edit]

Deformation theory[edit]

Differential equations[edit]

Differential geometry and topology[edit]

Dynamical systems[edit]

Elementary arithmetic[edit]

1+1(Elementary arithmetic)(ja:1+1)

Functional analysis[edit]

Field theory[edit]

Galois theory[edit]

Game theory[edit]

Geometry[edit]

Graph theory[edit]

Group theory[edit]

Harmonic analysis[edit]

History of mathematics and other cultural aspects[edit]

History of mathematics Journals[edit]

Homological algebra[edit]

Integrable systems[edit]

K theory[edit]

Lie groups, Algebraic groups / Lie algebras[edit]

Linear algebra[edit]

Mathematical analysis[edit]

Mathematics education[edit]

Mathematical logic[edit]

Requests for articles about mathematical logic are on a separate page, and should be added there.

Mathematical physics[edit]

Mathematicians[edit]

Prior to creating an article, any biographical details can be added to: Wikipedia:WikiProject Mathematics/missing mathematicians.

A–G[edit]

H–N[edit]

O–Z[edit]

Matrices[edit]

Measure theory[edit]

Number theory[edit]

Recreational number theory[edit]

Elementary number theory[edit]

Algebraic number theory[edit]

Analytic number theory[edit]

Numerical analysis[edit]

Order theory[edit]

Organisations[edit]

Probability theory[edit]

Quantum stochastic calculus[edit]

Real analysis[edit]

Recreational mathematics[edit]

no requests

Representation theory (incl. harmonic analysis)[edit]

Semigroup theory[edit]

Special functions[edit]

Statistics[edit]

Topology[edit]

Algebraic topology[edit]

General topology[edit]

Geometric topology[edit]

Knot theory[edit]

Stable homotopy theory[edit]

Uncategorized[edit]

Please try to classify these requests.

See also[edit]

References[edit]

  1. ^ Hazewinkel, Michiel, ed. (2001), "Akivis algebra", Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4 
  2. ^ Jacobson, Nathan (1968). Structure and Representations of Jordan Algebras. American Mathematical Society Colloquium Publications 39. American Mathematical Society. p. 287. ISBN 0-8218-7472-1. 
  3. ^ Narkiewicz, Władysław (2004). Elementary and analytic theory of algebraic numbers. Springer Monographs in Mathematics (3rd ed.). Berlin: Springer-Verlag. p. 254. ISBN 3-540-21902-1. Zbl 1159.11039. 
  4. ^ Knus, Max-Albert; Merkurjev, Alexander; Rost, Markus; Tignol, Jean-Pierre (1998). The book of involutions. Colloquium Publications 44. With a preface by J. Tits. Providence, RI: American Mathematical Society. p. 233. ISBN 0-8218-0904-0. Zbl 0955.16001. 
  5. ^ Lam, Tsit-Yuen (2005). Introduction to Quadratic Forms over Fields. Graduate Studies in Mathematics 67. American Mathematical Society. p. 60. ISBN 0-8218-1095-2. MR 2104929. Zbl 1068.11023. 
  6. ^ Ginzburg, Victor. "Calabi-Yau algebras". arXiv:math/0612139.
  7. ^ Formanek, Edward (1991). The polynomial identities and invariants of n×n matrices. Regional Conference Series in Mathematics 78. Providence, RI: American Mathematical Society. p. 27. ISBN 0-8218-0730-7. Zbl 0714.16001. 
  8. ^ Kaplansky, Irving (1972). Fields and Rings. Chicago Lectures in Mathematics (2nd ed.). University Of Chicago Press. ISBN 0-226-42451-0. Zbl 1001.16500. 
  9. ^ Garibaldi, Skip; Petersson, Holger P. (2011). "Wild Pfister forms over Henselian fields, K-theory, and conic division algebras". J. Algebra 327: 386–465. Zbl 1222.17009. 
  10. ^ Loos, Ottmar (2011). "Algebras with scalar involution revisited". J. Pure Appl. Algebra 215: 2805–2828. Zbl 1229.14002. 
  11. ^ a b Bhargava, Manjul; Ho, Wei (2013). "Coregular spaces and genus one curves". arXiv:1306.44241 [math.AG].
  12. ^ a b Knus, Max-Albert; Merkurjev, Alexander; Rost, Markus; Tignol, Jean-Pierre (1998), The book of involutions, Colloquium Publications 44, With a preface by J. Tits, Providence, RI: American Mathematical Society, p. 517, ISBN 0-8218-0904-0, Zbl 0955.16001 
  13. ^ Loday, Jean-Louis (2001). "Dialgebras". In Loday, Jean-Louis. Dialgebras and related operads. Lecture Notes in Mathematics 1763. Berlin: Springer-Verlag. pp. 7–66. Zbl 0999.17002. 
  14. ^ Baur, Karin; King, Alastair; Marsh, Robert J.. "Dimer models and cluster categories of Grassmannians". arXiv:1309.6524 [math.RT].
  15. ^ Knus, Max-Albert; Merkurjev, Alexander; Rost, Markus; Tignol, Jean-Pierre (1998). The book of involutions. Colloquium Publications 44. With a preface by J. Tits. Providence, RI: American Mathematical Society. p. 128. ISBN 0-8218-0904-0. Zbl 0955.16001. 
  16. ^ Reiner, I. (2003). Maximal Orders. London Mathematical Society Monographs. New Series 28. Oxford University Press. pp. 294–298. ISBN 0-19-852673-3. Zbl 1024.16008. 
  17. ^ a b Rosenfeld, Boris (1997). Geometry of Lie groups. Mathematics and its Applications 393. Dordrecht: Kluwer Academic Publishers. p. 91. ISBN 0792343905. Zbl 0867.53002. 
  18. ^ Tian, Jianjun Paul (2008). Evolution Algebras and Their Applications. Lecture Notes in Mathematics 1921. Springer-Verlag. ISBN 3-540-74283-2. Zbl 1136.17001. 
  19. ^ a b c Caenepeel, Stefaan (1998). Brauer groups, Hopf algebras and Galois theory. Monographs in Mathematics 4. Dordrecht: Kluwer Academic Publishers. p. 184. ISBN 1-4020-0346-3. Zbl 0898.16001. 
  20. ^ McCrimmon, Kevin (1977). "Axioms for inversion in Jordan algebras". J. Algebra 47: 201–222. Zbl 0421.17013. 
  21. ^ Racine, Michel L. (1973). The arithmetics of quadratic Jordan algebras. Memoirs of the American Mathematical Society 136. American Mathematical Society. p. 8. ISBN 978-0-8218-1836-7. Zbl 0348.17009. 
  22. ^ Formanek, Edward (1991). The polynomial identities and invariants of n×n matrices. Regional Conference Series in Mathematics 78. Providence, RI: American Mathematical Society. p. 51. ISBN 0-8218-0730-7. Zbl 0714.16001. 
  23. ^ Racine, Michel L. (1973). The arithmetics of quadratic Jordan algebras. Memoirs of the American Mathematical Society 136. American Mathematical Society. p. 2. ISBN 978-0-8218-1836-7. Zbl 0348.17009. 
  24. ^ Schinzel, Andrzej (2000). Polynomials with special regard to reducibility. Encyclopedia of Mathematics and Its Applications 77. Cambridge: Cambridge University Press. ISBN 0-521-66225-7. Zbl 0956.12001. 
  25. ^ Zhevlakov, Konstantin Aleksandrovich (1982). Rings That are Nearly Associative. Pure and Applied Mathematics 104. Academic Press. p. 324. ISBN 0080874231. 
  26. ^ Niemczyk, Rolf; Walcher, Sebastian (1991). "Birational maps and a generalization of power-associative algebras". Commun. Algebra 19 (8): 2169–2194. Zbl 0786.17001. 
  27. ^ Berstel, Jean; Reutenauer, Christophe (1988). Rational series and their languages. EATCS Monographs on Theoretical Computer Science 12. Berlin: Springer-Verlag. ISBN 3642732372. Zbl 0668.68005. 
    Berstel, Jean; Reutenauer, Christophe (2011). Noncommutative rational series with applications. Encyclopedia of Mathematics and Its Applications 137. Cambridge: Cambridge University Press. ISBN 978-0-521-19022-0. Zbl 1250.68007. 
  28. ^ Choie, Y.; Diamantis, N. (2006). "Rankin-Cohen brackets on higher order modular forms". In Friedberg, Solomon. Multiple Dirichlet series, automorphic forms, and analytic number theory. Proceedings of the Bretton Woods workshop on multiple Dirichlet series, Bretton Woods, NH, USA, July 11–14, 2005. Proc. Symp. Pure Math. 75. Providence, RI: American Mathematical Society. pp. 193–201. ISBN 0-8218-3963-2. Zbl 1207.11052. 
  29. ^ Montgomery, Susan (1993). Hopf algebras and their actions on rings. Expanded version of ten lectures given at the CBMS Conference on Hopf algebras and their actions on rings, which took place at DePaul University in Chicago, USA, August 10-14, 1992. Regional Conference Series in Mathematics 82. Providence, RI: American Mathematical Society. p. 164. ISBN 978-0-8218-0738-5. Zbl 0793.16029. 
  30. ^ Jech, Thomas (2003). Set Theory. Springer Monographs in Mathematics (Third Millennium ed.). Berlin, New York: Springer-Verlag. pp. 88–89. ISBN 978-3-540-44085-7. Zbl 1007.03002. 
  31. ^ Sikorski, Roman (1964). Boolean algebras (2nd ed.). Berlin-Göttingen-Heidelberg-New York: Springer-Verlag. MR 31#2178. Zbl 0123.01303. 
  32. ^ Chabert, Jean-Luc (1979). "Anneaux de Skolem". Arch. Math. (in French) 32: 555–568. Zbl 0403.13008. 
  33. ^ Allison, B.N. (1978). "A class of nonassociative algebras with involution containing the class of Jordan algebras". Math. Ann. 237: 133–156. doi:10.1007/BF01351677. Zbl 0368.17001. 
  34. ^ Schafer, R.D. (1985). "On structurable algebras". J. Algebra 92: 400–412. doi:10.1016/0021-8693(85)90131-0. Zbl 0552.17001. 
  35. ^ Snaith, Victor P. (1994). Galois module structure. Fields Institute monographs 2. American Mathematical Society. p. 41. ISBN 0-8218-7178-1. 
    Taylor, Martin (1984). Classgroups of group rings. LMS Lecture Notes 91. Cambridge University Press. p. 26. ISBN 0-521-27870-8. 
  36. ^ Narkiewicz, Władysław (1990). Elementary and analytic theory of numbers (Second, substantially revised and extended ed.). Springer-Verlag. p. 37. ISBN 3-540-51250-0. Zbl 0717.11045. 
  37. ^ Gabber, Ofer; Ramero, Lorenzo (2003). Almost ring theory. Lecture Notes in Mathematics 1800. Berlin: Springer-Verlag. doi:10.1007/b10047. ISBN 3-540-40594-1. MR 2004652. 
    Notes by Torsten Wedhorn
  38. ^ Khovanskiǐ, A.G. (1991). Fewnomials. 88. Translated from the Russian by Smilka Zdravkovska. Providence, RI: American Mathematical Society. ISBN 0-8218-4547-0. Zbl 0728.12002. 
  39. ^ a b Marcolli, Matilde (2010). Feynman motives. World Scientific. ISBN 978-981-4304-48-1. Zbl 1192.14001. 
  40. ^ Soulé, C.; Abramovich, Dan; Burnol, J.-F.; Kramer, Jürg (1992). Lectures on Arakelov geometry. Cambridge Studies in Advanced Mathematics 33. Joint work with H. Gillet. Cambridge: Cambridge University Press. p. 36. ISBN 0-521-47709-3. Zbl 0812.14015. 
  41. ^ Timashev, Dmitry A. (2011). Invariant Theory and Algebraic Transformation Groups 8. Homogeneous spaces and equivariant embeddings. Encyclopaedia of Mathematical Sciences 138. Berlin: Springer-Verlag. ISBN 978-3-642-18398-0. Zbl 1237.14057. 
  42. ^ Knutson, Allen; Lam, Thomas; Speyer, David (15 Nov 2011). "Positroid Varieties: Juggling and Geometry". arXiv:1111.3660 [math.AG].
  43. ^ J.-Y. Welschinger, Invariants of real rational symplectic 4-manifolds and lower bounds in real enumerative geometry, Invent. Math. 162 (2005), no. 1, 195-234. Zbl 1082.14052
  44. ^ Itenberg, Ilia; Mikhalkin, Grigory; Shustin, Eugenii (2007). Tropical algebraic geometry. Oberwolfach Seminars 35. Basel: Birkhäuser. pp. 86–87. ISBN 978-3-7643-8309-1. Zbl 1162.14300. 
  45. ^ Consani, Caterina; Connes, Alain, eds. (2011). Noncommutative geometry, arithmetic, and related topics. Proceedings of the 21st meeting of the Japan-U.S. Mathematics Institute (JAMI) held at Johns Hopkins University, Baltimore, MD, USA, March 23–26, 2009. Baltimore, MD: Johns Hopkins University Press. ISBN 1-4214-0352-8. Zbl 1245.00040. 
  46. ^ Machiel van Frankenhuijsen (2014). The Riemann Hypothesis for function fields. LMS Student Texts 80. Cambridge University Press. ISBN 978-1-107-68531-4. 
  47. ^ Bartolome, Boris (2014). "The Skolem-Abouzaid theorem in the singular case". arXiv:1406.3233 [math.NT].
  48. ^ Nisse, Mounir (2011). "Complex tropical localization, and coamoebas of complex algebraic hypersurfaces". In Gurvits, Leonid. Randomization, relaxation, and complexity in polynomial equation solving. Banff International Research Station workshop on randomization, relaxation, and complexity, Banff, Ontario, Canada, February 28–March 5, 2010. Contemporary Mathematics 556. Providence, RI: American Mathematical Society. pp. 127–144. ISBN 978-0-8218-5228-6. Zbl 1235.14058. 
  49. ^ Ballico, E. (2011). "Scroll codes over curves of higher genus: Reducible and superstable vector bundles". Designs, Codes and Cryptography 63 (3): 365. doi:10.1007/s10623-011-9561-6.  edit
  50. ^ Sanyal, Raman; Sturmfels, Bernd; Vinzant, Cynthia (2013). "The entropic discriminant". Adv. Math. 244: 678–707. Zbl 06264349. 
  51. ^ Björner, Anders; Ziegler, Günter M. (1992). 8. Introduction to greedoids. In White, Neil. "Matroid Applications". Matroid applications. Encyclopedia of Mathematics and its Applications 40 (Cambridge: Cambridge University Press). pp. 284–357. doi:10.1017/CBO9780511662041.009. ISBN 0-521-38165-7. MR 1165537. Zbl 0772.05026. 
  52. ^ De Medts, Tom; Weiss, Richard M. (2006). "Moufang sets and Jordan division algebras". Math. Ann. 335 (2): 415–433. Zbl 1163.17031. 
  53. ^ Park, Seong Ill; Park, So Ryoung; Song, Iickho; Suehiro, Naoki (2000). "Multiple-access interference reduction for QS-CDMA systems with a novel class of polyphase sequences". IEEE Trans. Inf. Theory 46 (4): 1448–1458. Zbl 1006.94500. 
  54. ^ Ardila, Federico; Rincón, Felipe; Williams, Lauren (15 Sep 2013). "Positroids and non-crossing partitions". arXiv:1308.2698 [math.CO].
  55. ^ Marcolli, Matilde (2005). Arithmetic noncommutative geometry. University Lecture Series 36. With a foreword by Yuri Manin. Providence, RI: American Mathematical Society. p. 83. ISBN 0-8218-3833-4. Zbl 1081.58005. 
  56. ^ Marcolli, Matilde (2005). Arithmetic noncommutative geometry. University Lecture Series 36. With a foreword by Yuri Manin. Providence, RI: American Mathematical Society. p. 83. ISBN 0-8218-3833-4. Zbl 1081.58005. 
  57. ^ Kantor, William M.; Seress, Ákos (2001). Black Box Classical Groups. Memoirs of the American Mathematical Society 708. American Mathematical Society. ISBN 0-8218-2619-0. ISSN 0065-9266. 
  58. ^ *Soulé, C. (1992). Lectures on Arakelov geometry. Cambridge Studies in Advanced Mathematics 33. with the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer. Cambridge University Press. ISBN 0-521-41669-8. MR 1208731. Zbl 0812.14015. 
  59. ^ Mirzakhani, Maryam (2008). Ergodic theory of the earthquake flow. Int. Math. Res. Not. 2008 (rnm116). doi:10.1093/imrn/rnm116. Zbl 1189.30087. 
  60. ^ Lapidus, Michel L.; van Frankhuijsen, Machiel (2006). Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings. Springer Monographs in Mathematics. Springer-Verlag. ISBN 0-387-33285-5. 
  61. ^ Sidorov, Nikita (2003). "Arithmetic dynamics". In Bezuglyi, Sergey; Kolyada, Sergiy. Topics in dynamics and ergodic theory. Survey papers and mini-courses presented at the international conference and US-Ukrainian workshop on dynamical systems and ergodic theory, Katsiveli, Ukraine, August 21–30, 2000. Lond. Math. Soc. Lect. Note Ser. 310. Cambridge: Cambridge University Press. pp. 145–189. ISBN 0-521-53365-1. Zbl 1051.37007. 
  62. ^ Dooley, Anthony H. (2003). "Markov odometers". In Bezuglyi, Sergey; Kolyada, Sergiy. Topics in dynamics and ergodic theory. Survey papers and mini-courses presented at the international conference and US-Ukrainian workshop on dynamical systems and ergodic theory, Katsiveli, Ukraine, August 21–30, 2000. Lond. Math. Soc. Lect. Note Ser. 310. Cambridge: Cambridge University Press. pp. 60–80. ISBN 0-521-53365-1. Zbl 1063.37005. 
  63. ^ Baake, Michael; Moody, Robert V., eds. (2000). Directions in mathematical quasicrystals. CRM Monograph Series 13. Providence, RI: American Mathematical Society. p. 237. ISBN 0-8218-2629-8. Zbl 0955.00025. 
  64. ^ Walters, Peter (2000). An Introduction to Ergodic Theory. Graduate Texts in Mathematics 79. Springer-Verlag. p. 207. ISBN 0-387-95152-0. ISSN 0072-5285. 
  65. ^ a b Azizov, T.Ya.; Iokhvidov, E.I.; Iokhvidov, I.S. (1983). "On the connection between the Cayley-Neumann and Potapov-Ginzburg transformations". Funkts. Anal. (in Russian) 20: 3–8. Zbl 0567.47031. 
  66. ^ e.g. Cwikel et al., On the fundamental lemma of interpolation theory, J. Approx. Theory 60 (1990) 70–82
  67. ^ Jacobson, Nathan (1996). Finite-dimensional division algebras over fields. Berlin: Springer-Verlag. ISBN 3-540-57029-2. Zbl 0874.16002. 
  68. ^ a b Whaples, G. (1957). "Galois cohomology of additive polynomial and n-th power mappings of fields". Duke Math. J. 24: 143–150. doi:10.1215/S0012-7094-57-02420-1. Zbl 0081.26702. 
  69. ^ McCarthy, Paul J. (1991). Algebraic extensions of fields (Corrected reprint of the 2nd ed.). New York: Dover Publications. p. 132. Zbl 0768.12001. 
  70. ^ Fried, Michael D.; Jarden, Moshe (2008). Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge 11 (3rd ed.). Springer-Verlag. p. 562. ISBN 978-3-540-77269-9. Zbl 1145.12001. 
  71. ^ Zinovy Reichstein. "Joubert's theorem fails in characteristic 2". arXiv:1406.7529 [math.NT].
  72. ^ Fried, Michael D.; Jarden, Moshe (2008). Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge 11 (3rd ed.). Springer-Verlag. pp. 463–464. ISBN 978-3-540-77269-9. Zbl 1145.12001. 
  73. ^ Leriche, Amandine (2011). "Pólya fields, Pólya groups and Pólya extensions: a question of capitulation". J. Théor. Nombres Bordx. 23: 235–249. Zbl 1282.13040. 
  74. ^ Lam, Tsit-Yuen (2005). Introduction to Quadratic Forms over Fields. Graduate Studies in Mathematics 67. American Mathematical Society. p. 453. ISBN 0-8218-1095-2. MR 2104929. Zbl 1068.11023. 
  75. ^ Lam, Tsit-Yuen (2005). Introduction to Quadratic Forms over Fields. Graduate Studies in Mathematics 67. American Mathematical Society. p. 463. ISBN 0-8218-1095-2. MR 2104929. Zbl 1068.11023. 
  76. ^ Coxeter, H.S.M.; Greitzer, S.L. (1967). Geometry Revisited. New Mathematical Library 19. Washington, D.C.: Mathematical Association of America. p. 100. ISBN 978-0-88385-619-2. Zbl 0166.16402. 
  77. ^ Coxeter, H.S.M.; Greitzer, S.L. (1967). Geometry Revisited. New Mathematical Library 19. Washington, D.C.: Mathematical Association of America. p. 95. ISBN 978-0-88385-619-2. Zbl 0166.16402. 
  78. ^ Erickson, Martin J. (2014). Introduction to Combinatorics. Discrete Mathematics and Optimization 78 (2 ed.). John Wiley & Sons. p. 134. ISBN 1118640217. 
  79. ^ Imre, Sandor; Gyongyosi, Laszlo (2012). Advanced Quantum Communications: An Engineering Approach. John Wiley & Sons. p. 112. ISBN 1118337433. 
  80. ^ Oh, Suho; Postnikov, Alex; Speyer, David E (20 Sep 2011). "Weak Separation and Plabic Graphs". arXiv:1109.4434 [math.CO].
  81. ^ Manjunath, Madhusudan; Sturmfels, Bernd (2013). "Monomials, binomials and Riemann-Roch". J. Algebr. Comb. 37 (4): 737–756. doi:10.1007/s10801-012-0386-9. Zbl 1272.13017. 
  82. ^ Ellis-Monaghan, Joanna A.; Moffatt, Iain (2013). Graphs on Surfaces: Dualities, Polynomials, and Knots. SpringerBriefs in Mathematics. Springer-Verlag. ISBN 1461469716. 
  83. ^ Fried, Michael D.; Jarden, Moshe (2008). Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge 11 (3rd ed.). Springer-Verlag. p. 613. ISBN 3-540-22811-X. Zbl 1055.12003. 
  84. ^ Fried, Michael D.; Jarden, Moshe (2008). Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge 11 (3rd ed.). Springer-Verlag. p. 352. ISBN 3-540-22811-X. Zbl 1055.12003. 
  85. ^ Montgomery, Susan (1993). Hopf algebras and their actions on rings. Expanded version of ten lectures given at the CBMS Conference on Hopf algebras and their actions on rings, which took place at DePaul University in Chicago, USA, August 10-14, 1992. Regional Conference Series in Mathematics 82. Providence, RI: American Mathematical Society. p. 207. ISBN 978-0-8218-0738-5. Zbl 0793.16029. 
  86. ^ Connes, Alain; Marcolli, Matilde (2008). Noncommutative Geometry, Quantum Fields and Motives. Colloquium publications 55. American Mathematical Society. p. 69. ISBN 0-8218-4210-2. ISSN 0065-9258. 
  87. ^ Kaplansky, Irving (1972). Fields and Rings. Chicago Lectures in Mathematics (2nd ed.). University Of Chicago Press. p. 135. ISBN 0-226-42451-0. Zbl 1001.16500. 
  88. ^ Deligne, Pierre; Etingof, Pavel; Freed, Daniel S.; Jeffrey, Lisa C.; Kazhdan, David; Morgan, John W.; Morrison, David R.; Witten, Edward, eds. (1999). Quantum fields and strings: a course for mathematicians. Material from the Special Year on Quantum Field Theory held at the Institute for Advanced Study, Princeton, NJ, 1996–1997 2. Providence, RI: American Mathematical Society. p. 884. ISBN 0-8218-8621-5. Zbl 0984.00503. 
  89. ^ Belavin, A.A. (1980). "Discrete groups and integrability of quantum systems". Funkts. Anal. Prilozh. 14 (4): 18–26. Zbl 0454.22012. 
  90. ^ Joao Caramalho Domingues (2014). "The repercussion of José Anastácio da Cunha in Britain and the USA in the nineteenth century". BSHM Bulletin 20 (1): 32–50. doi:10.1080/17498430.2013.802111. 
  91. ^ Roquette, Peter (2013). "The remarkable career of Otto Grün". Contributions to the history of number theory in the 20th century. Heritage of European Mathematics. Zürich: European Mathematical Society. pp. 77–116. ISBN 978-3-03719-113-2. Zbl 1276.11001. 
  92. ^ [1]
  93. ^ Brualdi, Richard A. (2006). Combinatorial Matrix Classes,. Encyclopedia of Mathematics and its Applications 108. Cambridge University Press. p. 401. ISBN 0-521-86565-4. ISSN 0953-4806. 
  94. ^ Formanek, Edward (1991). The polynomial identities and invariants of n×n matrices. Regional Conference Series in Mathematics 78. Providence, RI: American Mathematical Society. p. 45. ISBN 0-8218-0730-7. Zbl 0714.16001. 
  95. ^ Guterman, Alexander E. (2008). "Rank and determinant functions for matrices over semirings". In Young, Nicholas; Choi, Yemon. Surveys in Contemporary Mathematics. London Mathematical Society Lecture Note Series 347. Cambridge University Press. pp. 1–33. ISBN 0-521-70564-9. ISSN 0076-0552. Zbl 1181.16042. 
  96. ^ Narkiewicz, Władysław (2004). Elementary and analytic theory of algebraic numbers. Springer Monographs in Mathematics (3rd ed.). Berlin: Springer-Verlag. p. 307. ISBN 3-540-21902-1. Zbl 1159.11039. 
  97. ^ * Narkiewicz, Władysław (1990). Elementary and analytic theory of numbers (Second, substantially revised and extended ed.). Springer-Verlag. p. 416. ISBN 3-540-51250-0. Zbl 0717.11045. 
  98. ^ Narkiewicz, Władysław (2004). Elementary and analytic theory of algebraic numbers. Springer Monographs in Mathematics (3rd ed.). Berlin: Springer-Verlag. p. 123. ISBN 3-540-21902-1. Zbl 1159.11039. 
  99. ^ Romanoff, N. P. (1934). "Über einige Sätze der additiven Zahlentheorie". Math. Ann. (in German) 109: 668–678. JFM 60.0131.03. 
  100. ^ Rosen, Michael (2002). Number theory in function fields. Graduate Texts in Mathematics 210. New York, NY: Springer-Verlag. p. 157. ISBN 0-387-95335-3. Zbl 1043.11079. 
  101. ^ Bossert, Walter; Suzumura, Kōtarō (2010). Consistency, choice and rationality. Harvard University Press. p. 36. ISBN 0674052994. 
  102. ^ Arakawa, Tsuneo; Kaneko, Masanobu (1999). "Multiple zeta values, poly-Bernoulli numbers, and related zeta functions". Nagoya Math. J. 153: 189–209. Zbl 0932.11055. 
    Coppo, Marc-Antoine; Candelpergher, Bernard (2010). "The Arakawa-Kaneko zeta function". Ramanujan J. 22: 153–162. Zbl 1230.11106. 
  103. ^ Gantmacher, F.R. (2005) [1959]. Applications of the theory of matrices. Dover. ISBN 0-486-44554-2. Zbl 0085.01001. 
  104. ^ Šunić, Zoran (2014). "Cellular automata and groups, by Tullio Ceccherini-Silberstein and Michel Coornaert (book review)". Bulletin of the American Mathematical Society 51 (2): 361–366. doi:10.1090/S0273-0979-2013-01425-3.