Jump to content

Talk:Biodiesel

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 65.30.88.47 (talk) at 21:49, 17 February 2007. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.


WikiProject iconSoftware: Computing Unassessed
WikiProject iconThis article is within the scope of WikiProject Software, a collaborative effort to improve the coverage of software on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
???This article has not yet received a rating on Wikipedia's content assessment scale.
???This article has not yet received a rating on the project's importance scale.
Taskforce icon
This article is supported by WikiProject Computing.

An event mentioned in this article is an August 10 selected anniversary


WikiProject iconEnvironment Unassessed
WikiProject iconThis environment-related article is part of the WikiProject Environment to improve Wikipedia's coverage of the environment. The aim is to write neutral and well-referenced articles on environment-related topics, as well as to ensure that environment articles are properly categorized.
Read Wikipedia:Contributing FAQ and leave any messages at the project talk page.
???This article has not yet received a rating on Wikipedia's content assessment scale.
???This article has not yet received a rating on the project's importance scale.

--Alex 08:25, 17 July 2006 (UTC)[reply]

WikiProject iconEnergy Unassessed
WikiProject iconThis article is within the scope of WikiProject Energy, a collaborative effort to improve the coverage of Energy on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
???This article has not yet received a rating on Wikipedia's content assessment scale.
???This article has not yet received a rating on the project's importance scale.

Older discussion

I deleted the reference to NRDC. See http://www.nrdc.org/air/transportation/biofuels.asp

Note that that is basically an advocacy piece with insubstantiated numbers and that it never mentions biodiesel. The NRDC has always favored ethanol over biodiesel even though ethenol has a lower energy balance. Cellulosic has potential to be better of course. But anyway I couldn't find the NRDC position paper that I used to support the bit on them, so it's fine removing it. - Taxman Talk 18:47, 28 April 2006 (UTC)[reply]

R1 : Alkyl radical.

? This should be alkyl group, not radical. You won't be doing any radical chemistry in a solution that has -OH's floating around, not to mention the amount of energy it would take to generate alkyl radicals.

CodeCannon 10:05, 18 Nov 2003 (Eastern)



I reverted the removal of the description of the army study that encountered problems with filter clogging. If you wish to remove it, please state your reasons. Kat 16:09, 6 Aug 2003 (UTC)


These statements puzzle me and seem contradictory "It is practically immiscible with water." and "Biodiesel is hydrophilic. Some of the water present is residual to processing, and some comes from storage tank condensation." It does not seem like both can be true.


This paragraph puzzles me:

"The issue is economic: one of the exceptions Nassau Senior noted to the idea that machines aren't harmful to wages is, where the machines themselves make demands on resources that would have gone into food production. So the important question isn't whether biodiesel can be produced as whether that it is the most efficient use of resources, and the expense of biodiesel in comparison to traditional forms of diesel suggests that the answer is no."

Is it badly written or some kind of economic theory (not my strong suit)? Can anyone elucidate? Rmhermen 16:24, 6 Aug 2003 (UTC)


I didn't write it, but I believe it is a response to critics of biofuels. Two common cricisism are: (1) it is said that there is no net gain because more than a gallon fossil fuel is used in production of a gallon of biodiesel; (2) biofuels are bad because they displace food production, and everyone knows we don't have nearly enough soybeans as evidenced by their high price. I don't buy into either of these arguments, especially not (2). The paragraph in question appears to be an attempt to address one or the other or both. Kat 17:13, 6 Aug 2003 (UTC)

If 1 is correct it needs to be added to the article but I don't know if it can be. Certainly the debate should be clarified. Rmhermen 17:16, 6 Aug 2003 (UTC)

As for (1), why isn't the negative net gain for biofuel research from David Pimentel (Cornell University) and Tad W. Patzek (Berkeley) not brought up in the article? The news link from Cornell is here: http://www.news.cornell.edu/stories/July05/ethanol.toocostly.ssl.html

Summary: This research indicates that using plants for fuel sources results in a net energy loss, e.g. system wide, it takes more energy to create biofuel than the resultant biofuel contatins.


To the frequent editor with no username: Please provide evidence where biodiesel is cheaper than petrodiesel. As I have added to the article it is still more expensive in the U.S. (but getting closer all the time). A different tax structure in another country could easily make up this difference. Also the sentence you keep adding is trying to change a necessary rebuttal paragraph into another advocacy paragraph. The article has to present an balanced point of view (NPOV). If you can find evidence, please put it in the appropriate place. By the way, in the U.S. at least diesel and gas are cheaper in real and inflation-adjusted dollars now than at the time of the gas crisis. And the wars (which?) have never produced a permanent price change. Rmhermen 18:29, Aug 8, 2003 (UTC)

The U.S. is not the only country in the world, for sure (wikipedia is world neutral, not national encyclopedia). But you don´t see the historic movement. Biodiesel wasn´t used in the original diesel engine, but VEGOIL (peanut vegetable oil). Ones say the change from vegoi ( not biodiesel, read, no biodiesel, no biodiesel) was because of a conspiration, and another because of the cheaper petroleum prices.

But this nowadays is no true. Vegetable oil is cheaper than petroleum ( the original fight was between vegoil , read again vegoil, and petroleum).

Is vegetable oil cheaper than petroleum? . For sure:

The problem with those web pages is that they contradict direct experience. In the United States, diesel currently costs about $1.50/gallon and about a third of that is tax. Home fuel oil is about $0.90/gallon. Vegetable oil here costs about $4.00/gallon from a supermarket. If you can show me some actual price quotes where fuel vegetable oil is cheaper than diesel, I would be appreciative.
Also waste vegetable oil is nowhere near free. It's about $1.00/gallon. There is heavy demand for waste oil to make animal feed.

In the midwestern US, where soybean oil is produced, biodiesel is still more costly than fossil fuel. I can get price quotes, or you can ring the local petroleum dealer if you want. And biodiesel production is subsidized where fossil fuel production is not. Some of the animal tallow based formulations are showing more potential for low cost, since the tallow is cheaper than soybean oil.

I must say that I am skeptical of claims regarding biodiesel made from waste oil sources. The fiddly engineering problems in waste oil processing affect transesterification just as they do building a burner or engine. To my knowledge, they have not been solved in an economically effective way. Can you cite any sources--newspaper, magazine, etc-- to back up your claims? Kat 01:41, 9 Aug 2003 (UTC)

Biodiesel from algae?

I am not any expert on this sort of thing, so I would not edit the page myself, but shouldn't algae be mentioned as a potential source for biodiesel?

There is a project page with some estimates related to production / location / economic viability at the University of New Hampshire:

http://www.unh.edu/p2/biodiesel/article_alge.html

Sorry I didn't read here first, but that article was practically the first thing I'd ever read about biodiesel. It is very good and back up by government study data. I have already included links to it in the article. The article still has many mentions of "facts" that are now wrong when taking into account the data in that study. I'll try to edit the article for consistency, but I could use some help. Also, please sign posts, use four ~'s. - Taxman 17:19, Jun 28, 2004 (UTC)

Sorry, I am not registered, so I dodn't have a nick. I should register. What do you need help with? I would liek to learn more about biodiesel, since I am trying to get the local .gov to look into it...

Call me jpg (I will go register, I guess...)

Well I think it is a little better now, but the consistency and flow of the sections is lacking at the moment. I would really like to get this article up to featured standard so it can be featured on the Main page. See Wikipedia:Featured article candidates for what it takes to reach featured status. - Taxman 01:46, Jul 9, 2004 (UTC)

I think there should at least be a seperate section on algal Biodiesel and the Aquatic Species program if not a seperate page. It is important to mention (UNH doesn't), that the aquatic species program involved feeding the algae CO2. Anyway If I don't hear back I will start a page on the aquatic species program.--63.206.118.188 04:00, 15 Jun 2005 (UTC)

I think the best thing if you want to cover more on the topic would be to create Biodiesel from algae. The aqautic species program itself is defunct, so a focused article on algal biodiesel in general would be better than an article on the program. I don't think this article should have a separate section for algal biodiesel, because there is currently no biodiesel produced from it, just some research going on into how to commercialize it. This is the general article on biodiesel so it should cover the whole topic and each sub topic in relation to their importance. - Taxman Talk 14:29, Jun 15, 2005 (UTC)


I participated a discussion on this topic on sci.energy recently. Lots of points were discuted, and here is a summary :

- Among the best suited species are giant Diatoms from the Indian Oncean.

- These algaes contain up to 50% (dry mass) of natural oil. The remaining part, mainly proteins, could be used in various way, especially as fuel to make the algae "farm" independant of external (purshased) energy source (eg, oil, natural gas, electricity).

- The "farm" could be a closed are at sea, for instance a pool separated from the ocean by a "U" shaped seawall on a low-slope beach. In could also be built in a desert.

- PROBLEM : other lifeforms could contaminate the pool.

- There is no need for freshwater, at that's good news, since freshwater is increasingly scarse and precious in many parts of the world. The algae grow in saltwater, but a permanent supply is needed to compensate evaporation.

- In or near the sea, seawater can be used. Most deserts have underlaying aquifers that can provide saltwater.

- PROBLEM : if saltwater is added to replace evaporated water, the salinity in the pool will rise, and will finally excess the tolerable level for the algae. So a solution must be found to remove excess salt.

- The oil/biodiesel plant would adjoin the pools. Algae-loaded water would be pumped and algae would be extracted (filtrated?). So very little energy and labour would be used for harvesting.

- Some "farms" already grow algae like spirulla for health and food products. They could provide usefull informations.

- to get high yield, the algeae must be fed with CO2. They could "recycle" carbon from a power plant.

US DoE made a study on biodiesel from algae, here is the report : www.eere.energy.gov/biomass/ pdfs/biodiesel_from_algae.pdf

see also : http://www.masshightech.com/displayarticledetail.asp?Art_ID=69103

hope it will help Raminagrobis

bi-ker-shi comments

The section on algae indicates that it would be possible to produce 95,000 Litres/hectare of biodiesel per year vs. 5,800 Litres/hectare for Palm Oil the next most productive source. This simply is not possible due to the amount of sunlight energy available and limitations on the efficiency of photosynthesis.

I believe that Algae farms will yield significantly more than Palm, and that this could be one of the most significant developments for solving the problem of declining oil supplies and CO2 emissions. However it is important to be objective about the prospects.

The 95,000 figure seems to be implicit in one of the references: http://oakhavenpc.org/cultivating_algae.htm where the author referring to the Aquatic Species Close Out Report (http://www.nrel.gov/docs/legosti/fy98/24190.pdf) states that one of the conclusions was that: "One quad (10^15 BTU or 7.5 billion gal.) of biodiesel could be produced on 200,000 ha of desert land". In fact no where in the report does it imply these numbers. One of the conclusions of the ASP report was that the price of land particularly in the US South West would not be an issue and that the limiting factor would be the cost of setting up the farms and running them.

The 10^15 BTU per 200,000 ha implies 5 billion BTU per ha per year = 5,275,276 mega joules per ha per year = 5,275 mega joules per square meter per year. This is 1465.35 kilowatt hours per square meter per year.

The economics of solar power are well understood. In http://en.wikipedia.org/wiki/Photovoltaics we have a table: Kilowatt-hours per peak kilowatts per year at various locations. The highest value given anywhere is 2,410. At that location, 1465.35 kilowatt hours per square meter per year implies a peak solar energy capture of 608.03 watts per square meter. In photovoltaics we usually assume the peak power from the SUN is 1,000 watts per square meter, so this would imply an energy capture efficiency of 60.8%. This is not credible for reasons I will outline shortly.

Before doing so I should point out that the peak power from the SUN is actually about 1,300 watts per square meter. The reason we use 1,000 in Photovoltaics is that we assume the solar panels are at a fixed orientation. They will only reach their peak in March and September, at other times they will not be face on at midday and this lowers the average daily peak.

Also note that the shadow area or footprint of a tilted solar array is greater than the area exposed to the SUN. This reduces the power yield by the Cosine of the given latitude.

Now about that 60.8% efficiency: most solar cells are rated at 12% or less. The theoretical maximum efficiency is about 70%, so 60.8% would be truly remarkable if it were true. The number is however unreasonable.

See http://www.upei.ca/~physics/p261/Content/Sources_Conversion/Photo-_synthesis/photo-_synthesis.htm.

I quote: "At least eight photons are required to store one molecule of CO2 which means 1665 kJ of light energy are required to store 477 kJ in the plant. This issue alone gives a maximum efficiency of 0.286 or 28.6%. Additionally only light in the range 400-700 nm can be used (in photosynthesis). This amounts to 43% of total solar incident radiation. Combining these two factors means that the solar efficiency cannot exceed 12.23%".

They then go on to take into account two other factors that limit solar efficiency in plants: Respiration losses and Canopy losses. This implies plants at best will achieve an efficiency of 6.6%. Very likely these two factors do not apply to algae. One of the biggest losses during respiration is a reaction between oxygen and RuBisCO that releases some of the captured energy. Since algae farms proposed will use flue gasses rich in CO2 and depleted in oxygen, the effect will be much less, but will still be a problem since the algae will be releasing oxygen into the gas feed.

If we assume that an algae farm can achieve a solar energy capture efficiency of 12.23% this would reduce the yield of oil from 95,000 Litres/hectare per year to 19,109 Litres/hectare per year, and this would only be attainable near the equator.

As an aside, the stated value for Palm oil 5,800 Litres/hectare per year implies a solar efficiency of 3.71% assuming we are again talking about an equatorial farm, this is within range of 6.6%. Differences could be attributed to various factors. Only desert regions have high Kilowatt-hours per peak kilowatts per year, typical locations where Palms grow tend to be cloudy. Also Palms like other plants close their stomata to limit water loss through evaporation, particularly when there has been no rain. This limits input of CO2 and reduces photosynthesis.

Conclusion: I think we need to reduce the 95,000 Litres/hectare per year to 19,109 Litres/hectare per year for equatorial based algae farms. There are no real references cases, although the GreenFuel trail at Redhawk may provide some numbers in 2007.

I also think that reference cases need to take into account latitude, perhaps showing an actual as well as a normalised yield, and the Kilowatt-hours per peak kilowatts per year at the location of the reference, again factored into the normalised yield.

bi-ker-shi

The number is supposed to be a unit conversion from the number in the UNH study cited in the article. The article should accurately reflect the claims in the paper, and not make it look like it's been achieved already. Probably could use some work on that. For the rest, your analysis is non trivial, and can't be included directly as such in the article. We have to reflect what published sources have stated about biodiesel. - Taxman Talk 13:30, 22 December 2006 (UTC)[reply]

Taxman, I have not requested rights to edit the page, and I don’t think I am appropriate person to do so. I am an investment banker, my skills are in numerical analysis, and I simply could have not written the original page as I do not have the immediate knowledge of all of those aspects on biodiesel.

My concern is however that the number you quoted for algal biodiesel at 95,000 liters / ha / year simply did not add up. It used to be that wikipedia users when they spotted errors could simply correct them, but it seems those days have long since gone.

Precisely who is it who claims the 95,000 figure? Even if it was derived from a quoted reference, readers will view the fact that wikipedia decided to publish it as wikipedia adding their reputation to that of the quoted publisher. If there is no link to any quoted source, then readers will view this as a situation where wikipedia are staking their reputation on the number.

You seem to imply that the number came from a UNH article, yet I cannot find this in either of the two UNH articles: http://www.unh.edu/p2/biodiesel/article_alge.html and http://www.unh.edu/p2/biodiesel/pdf/algae_salton_sea.pdf and so I attribute the claim to wikipedia alone.

The only reference I can find anywhere where a practical test has been done to determine the yield of CO2 fed algae is in http://www1.eere.energy.gov/biomass/pdfs/biodiesel_from_algae.pdf. This was an article looking back on the aquatic species program, and they state that in relation to real tests conducted in Hawaii and New Mexico: “Single day productivities reported over the course of one year were as high as 50 grams of algae per square meter per day, a long-term target for the program”.

If we convert this number as follows: 50 grams of algae per square meter per day = 18.2625 kilograms per square meter per year = 18.2625 metric tons per hectare per year. Now assuming 1191.17 liters of biomass per metric ton of biomass (density = 0.84 grams per cc), we get 21,753.68 liters of biomass per hectare per year. This is not out of line with my calculations involving photosynthesis efficiency and available sunlight.

Perhaps you got your numbers from the second UNH article where on page 4 in relation to setting up an algae farm to provide biomass to fuel a power station they state: “Assuming an average productivity of 33 g/m2/day, or 120 mt/ha/yr (a lower productivity than assumed in some studies) …”. The 120 mt/ha-yr is roughly equivalent to 142,940 liters biomass/ha/year, and maybe you calculated 95,000 liters of biodiesel could be extracted?

Can you spot the mathematical error?

33 g/m2/day = 12,053.25 g/m2/year = 12.05325 kg/m2/year = 12,053 kg/ha/year = 12.05 mt/ha/yr (not 120 mt/ha-yr). It would seem UNH are out by a factor of 10.

This article presented a pessimistic view on the economics of using the algal biomass as a feedstock for a local power station. They determined that the biomass electricity would cost 2-3 times more than fossil fuel electricity. Consequently I believe this article received a lot less peer review than it would have if it had presented an optimistic view.

In my view, using biomass to generate electricity is a particularly stupid idea given that the existing thermal power stations have efficiencies of about 30%. If you combine this with the low efficiencies of solar energy capture evidenced in energy crops so far, the possibility seems somewhat remote. Using biomass, particularly algae, to produce transportation fuels does however look promising.

While you are looking into your 95,000 liters/ha/year number, you might like to also look at the following reference: http://en.wikipedia.org/wiki/Algaculture#_note-BiodieselFromAlgae; where you estimate 5,000 to 20,000 gallons of biodiesel per acre, per year. This equates to 46,769.78 to 187,079.13 liters per hectare per year, and again there is no reference to track the quoted figure and again way too optimistic.

You might also like to review the following links where your claims are being discussed externally:

Arizona Utility Recycles Smokestack Exhaust to make Biofuel (http://technocrat.net/d/2006/12/23/12545 )

Kind Regards

bi-ker-shi


Ooops looks like I dropped a naught in my calculations, how embarrassing. At least your readers won’t know the voice behind Mr. Ed. My problem is that I am not familiar with hectares and was using 1000 m2 per hectare not 10,000.

Reworking some of my previous calculations:

The 10^15 BTU per 200,000 ha implies 5 billion BTU per ha per year = 5,275,276 mega joules per ha per year = 527.5 mega joules per square meter per year. This is 146.535 kilowatt hours per square meter per year. This implies an energy capture efficiency of 6.08% not 60.8%

So it seems that 95,000 liters/ha/year of biodiesel is indeed quite reasonable as 6.08% is within the limits set by the efficiency of photosynthesis.

Another place where I made the same mistake in relation to the Salton Sea:

33 g/m2/day = 12,053.25 g/m2/year = 12.05325 kg/m2/year = 120,530 kg/ha/year = 120.5 mt/ha/yr UNH were correct, my apologies.

I still think the main page could do with some improvement as it is very hard to track where the numbers are coming from, and the fact that in the case of algae, the yields still need to be proven.

bi-ker-shi

Reworking the external links

I removed the following links:

Not very relevant, only sketchy information or what is already well understood: http://www.eere.energy.gov/biomass/ http://www.nrel.gov/ http://www.biodieselnow.com/ http://www.greenfuels.org/biodiesel/index.htm http://www.biofuelcanada.ca/

http://www.intertek-cb.com/newsitetest/news/biodiesel03102003.shtml - not authoritative site on ASTM specifications

http://www.journeytoforever.org/biodiesel.html - NPOV - more advocacy than objectivity

--137.132.3.12 17:43, 14 April 2006 (UTC)[reply]


I removed some links for the following reasons

Thanks - Taxman 17:17, Jul 31, 2004 (UTC)

green-trust.org was recently added again. The site seems barely tangentially connected to biodiesel, with not much to offer as a reference directly related to biodiesel it seems. Especially in comparison to the other listed external links. It is primarily a blog with links to articles on other sites, and a copy of some wikipedia material. Therefore I am considering removing it, but would like comment from others. - Taxman 16:46, Sep 9, 2004 (UTC)
Remove. It's an interesting site, but isn't a direct resource on biodiesel. I think the links are a bit cluttered. I'm also not sure that we need a see also link to Batch. - Satori 20:04, Sep 10, 2004 (UTC)

Ok I removed a bunch more. This article really seems to be a magnet for every site that mentions biodiesel to want to get linked from here. Here are the ones I removed:

They are all either not very directly related to biodiesel or not high quality. - Taxman Talk 15:02, Jun 15, 2005 (UTC)

I think this link is worth including: http://i-r-squared.blogspot.com/2006/03/biodiesel-king-of-alternative-fuels.html It is written by a chemical engineer, and has a good comparison of ethanol versus biodiesel in the first section.

Major need for a picture

One of the requirements to be a featured article is for a GFDL or PD picture or diagram representing the topic. Does anyone have one or can think of one to use? - Taxman 17:17, Jul 31, 2004 (UTC)

Having a picture is not actually a requirement for a featured article; however, it would not ever be shown on the front page without some kind of associated picture which could be something that need not be in the article itself. Something like a gas pump would probably do. Of course a labeled biodiesel pump would be even better. Rmhermen 02:55, Aug 1, 2004 (UTC)
Well, the current pic is a good one, and a pic is a de-facto requirement if not an actual one. Essentially no article without a picture goes un-objected. - Taxman 21:00, Aug 3, 2004 (UTC)
Is there a reason for the picture being such a small thumbnail? - Quirk 13:13, 8 September 2005 (UTC)[reply]

Legal Ramifications in UK

I did add a little bit (since removed) that pointed out the UKP2,000 fine and possible jail sentence for using your own biodiesel in the UK. Don't the Poms deserve some kind of warning?

A few things, per your account they were not using biodiesel. "mixing cooking oil with methanol" is not biodiesel. Second is that you didn't make sure to narratively fit what you wrote in with what came before it. Third is any country will try to enforce the fuel tax on any fuel for road use, whether produced by a big refinery or by a town. That tax pays for the roads. It's not a fine for using biodiesel, it is a fine for tax evasion. So what you added has very little relevance to biodiesel. - Taxman 12:17, Aug 4, 2004 (UTC)

I think the press reports I referred to that talked of "mixing methanol with cooking oil" may have missed out the necessity of adding caustic soda.

I did try to fit it in nicely. I'm a journalist and used to doing that kind of thing thank you very much.

And thirdly they were fined for using biodiesel, and avoiding the tax on it - not just one person but a whole bunch of them. To me that makes it relevant to biodiesel. There's a lot of information on cost comparison in the page, which is economics but which you leave in. Do try to run your page on consistent lines. - Vik :v)

If it's 'non-flammable,' how in the ever-lovin' blue-eyed world can it be burned in a diesel engine? User:sca

  • The technical definition of flammability is that it will support a fire at normal temperatures (OSHA defines as 100 degrees F.). The inside of a diesel engine is intentionally much much hotter. I notice that we don't have an article on the topic. Rmhermen 20:40, Aug 10, 2004 (UTC)

78.45% instead of 100% CO2 reduction?

From the article: Biodiesel reduces emissions of carbon monoxide (CO) by approximately 50% and carbon dioxide by 78.45% on a net basis... Mmm... if net emissions of CO2 are reduced by 78.45%, where do the 21.55% come from? Where does the extra carbon we are releasing into the atmosphere come from? --Deragon 17:15, 11 Aug 2004 (UTC)

The study that number is quoted from is the lifecycle analysis one referenced in the article. I believe it takes into account the carbon released from using fossil fuel to produce the methanol needed for the reaction, but I haven't re-read the paper in a while. Currently it is more efficient to use methanol produced from fossil fuel. - Taxman 22:57, Aug 16, 2004 (UTC)

I'm not an expert on fuel technologies, but these statistics appear biased to me and undermine the article. In common usage, a claim that product x reduces emissions vs. product y implies a measurement at the tailpipe. Not the lifecycle measurement. In fact, the energy to grow, process, and transport a soybean product, for example, certainly generates some amount of CO2 emission to offset the amount claimed captured by the soybean. Also, growing, harvesting, processing/refining soybeans is certainly more energy-intensive than drilling for oil or gas. Consequently, as a layperson, I find the claims of reduced emissions disingenuous at best. --[User:Guest]] 22:59, Jun 7, 2005

Well, the number is directly from the 1998 NREL lifecycle study, and that is far better than us trying to come up with a number, or original research to explain the issue. Now that you point it out though, it would be better to create a citation in the text to the study and note that the number is on a lifecycle basis, so I'll do that. If you read the paper you'll find it accounts for many of the things you mention. Also please sign with four tilde's like ~~~~. Thanks - Taxman Talk 13:48, Jun 8, 2005 (UTC)

Per Capita use?

The article states that the United States uses more energy per capita than any other country. I'm not sure that this statement is entirely true. I believe I once found that Canada actually had a higher per capita energy use than the United States. Perhaps someone could investigate this possibility futher? --Silver86 06:15, 26 Nov 2004 (UTC)

According to this [1] the US is actually fourth, Canada is third. United Arab Emirates and Kuwait are one and two. Rmhermen 16:14, Nov 26, 2004 (UTC)

Thanks for looking into the possibility. While it may not have seemed important to some, I like to point out the small things I see in articles. --Silver86 06:07, 4 Dec 2004 (UTC)

And wikipedia is better for having you do it. Please keep it up. - Taxman 06:40, Dec 4, 2004 (UTC)

Removed redundant section

The following was already in the intro and there is already a section covering the properties. Possibly if much more detailed list of chemical properties was produced, it could be added back as a subsection. - Taxman 13:46, Nov 29, 2004 (UTC)

Physical and Chemical Properties

More removed material

I couldn't find a source to verify the following, and I believe it is out of date, and not entirely correct, so I removed it. In any case, it would be better to include a more general discussion of availability in Europe. So far the only sources I can find in English are about the US. I do know production is as high or higher in Europe though. Anybody have any good sources? - Taxman 00:12, Dec 8, 2004 (UTC)

Biodiesel is available in the United Kingdom, at prices comparable with petroleum-based diesel - high fuel taxation making the cost of production a small fraction of the retail cost - but is so far not widely available or in very great demand.
See this article from Guardian for some recent European and British info. Rmhermen 01:08, Dec 8, 2004 (UTC)

Farming drawbacks to biodiesel production

The article states: "Some environmental groups, notably NRDC object to the vast amount of farming and the resulting over-fertilization, pesticide use, and land use conversion that would be needed to produce the additional vegetable oil."

I'd like to see references to flesh out this point. My own search of the NRDC web site does not substantiate this idea. It's an important point, though, which is why I'd like to get more information.

I wrote that. I didn't cite a reference because the NRDC's position papers are not published, so it would just be a website. I should have linked the position paper anyway. If you have something that shows them as less negative on biodiesel I would be interested too. Basically the position paper that I read from them was against biodiesel for the above reasons, and also because it is usually mixed with petroleum diesel in actual usage. Their position was that this allows people to not switch to even better, cleaner options. That is odd because they seemed to support CNG, which is a fossil fuel. They also seem to be on the ethanol bandwagon even though ethanol has a much poorer energy balance than biodiesel currently. Another bit that made their position odd. Here is one link were they oppose diesel, but don't even consider biodiesel over CNG. Here is another where every alternative is considered except biodiesel. Another point is that a search for biodiesel on their site leads to almost nothing, while a search for CNG gets lots. I cannot find the original research paper that I found the point in the article, but read the link provided in the above section, it basically supports the same farm problem idea. - Taxman 13:01, Dec 9, 2004 (UTC)
I too have searched the NRDC web site, and have found nothing but neutral to positive statements on biodiesel. The article concerning diesel you reference does not explicitly mention biodiesel, though it very quietly suggests it is superior to CNG: "NRDC has helped show that compressed natural gas is an affordable, cleaner alternative fuel for buses and some trucks.... A more far-reaching solution: change the chemistry of diesel fuel itself. ... Reducing sulfur levels in diesel fuel to near-zero levels ... will make an enormous positive impact on public health by enabling the use of advanced pollution-control devices in diesel vehicles that can make them more than 90 percent cleaner." Biodiesel of course contains a zero or near-zero level of sulfur [citation needed] and offers an almost across the board reduction in emissions. Other pages on the site (1 2 3) mention biodiesel in a positive light or talk of the benefits of reducing sulfur levels, explicitly mentioning biodiesel. No doubt many environmentalist groups object to the practices of conventional and industrial agriculture, but it is possible to increase biodiesel production without over-fertilization or pesticide use (using organic methods in their stead) or land conversion (e.g. if demand for the soybeans currently being grown was reduced due to a mass conversion to vegetarianism or an EPA ban on trans fatty acids)--indeed even without using land or fresh water as stated elsewhere in the Wikipedia article--so without a reference to an environmental group that actually opposes biodiesel, I feel the sentence should be reworked or removed. --M.R.

Disambiguation with straight vegetable oil

I've added a disambig after people repeatedly confused the two at Wikipedia:Votes for deletion/French fry car, which rather spectacularly demonstrates a need for greater clarity on this point. I'd hope this is an ugly temporary measure, and that the link can be incorporated into the text. And perhaps there is a better name for straight vegetable oil? Like most people it seems, I had assumed that the term biodiesel included the peanut oil on which the early demonstration diesel engine ran, but that seems not to be strictly true. At least that's the way the article reads now. Andrewa 19:39, 14 Feb 2005 (UTC)

Well I guess this article could be made clearer on that point yes. Part of the problem is that no matter how clear we are in this article people will still have their pre conceived notions and be confused anyway. That is because there is already a lot of confusion out there about the two concepts with lots of uninformed people calling unrefined vegetable oil biodiesel because it is from biological sources and it can be burnt in a diesel engine as SVO. Biodiesel, is what meets various standards for a motor fuel, and correctly speaking is always the transesterified stuff. SVO is related and is the very common term used to distinguish between proper biodiesel and unrefined vegetable oil. So there is not another term for it, SVO is the common one. Yes this article talks about peanut oil in the history, but it is just talking about the history of using vegetable oil sources, but never says they were transesterified. I hope I cleared that one up a bit. I'll try and think of how to make the intro more clear on this point to avoid the disambig message. - Taxman 23:07, Feb 14, 2005 (UTC)
Sounds good. I've learned something. It seems to me the distinction is very important, as there's considerable potential for damage to engines and bad rumours (which vested interests would love) if people do confuse the two approaches.
Let me know if I can help in any way. Andrewa 23:31, 14 Feb 2005 (UTC)
Yes that is correct. Have an idea for how the intro can make that clear without butchering itself too bad? - Taxman 00:09, Feb 15, 2005 (UTC)
Have a look at the refactor I just did of waste vegetable oil. Feel free to correct, modify, copy or move material if it helps (I shouldn't need to say that but it probably doesn't hurt) to get a set of articles which work well both together and individually. Note the copy, I don't think a bit of duplication between the biodiesel, waste vegetable oil and straight vegetable oil articles is necessarily a bad thing. Of course we don't want excessive duplication. Andrewa 12:26, 15 Feb 2005 (UTC)

The one complaint I have is the reference to 3 million gallons annual in America of WVO. Other sources on the web (such as biodiesel.org and Willie Nelson's BioWillie) state a much higher number at 3 billion. I am not sure if the poster had a typo or what. Currently millions (if not billions) of gallons of WVO are being dumped into landfills. Can someone confirm?

Well I got that 3 million gallons figure from one of the sources I used. I should really mark more of these because I can't recall which one now. In any case the Business Management for Biodiesel Producers reference does include some recent numbers for total vegetable oil production in the US which does work out to 3 billion(US) gallons a year. This is apparently the number those you refer to are using. Now certainly not all of this is wasted, since some is consumed, some is made into animal feed etc. The EPA number is the number that only restaurants produce as waste, ignoring every other user of vegetable oil, so that makes the two numbers measurements of two very different things. That said the 3 million number sounds low, but it is from the source I had, so that is what I went with. If you don't agree with it please do try to find a more accurate source. - Taxman 01:56, Apr 14, 2005 (UTC)

Among other references - http://www.business2.com/b2/web/articles/0,17863,683903,00.html - shows the 3 billion gallon mark. If further references are needed - please let me know. A more interesting reference from a University - http://www.me.iastate.edu/biodiesel/Pages/bio1.html. I think Im getting into Wiki now - so I better sign up - TW. I signed up and the reference from Iowa State approximates to 2.95 billion gallons per year of vegetable oil, close to the 3 billion mark. Check the Iowa State reference. It seems as if all the million reference points should be billion (3 billion gallons, 23 billion lbs of vegetable/animal oil etc). And the Iowa state link has references itself, albeit from 2002 or 2003. Taxman can you update it?

More importantly, welcome to the Wiki, you'll be an addict soon. :) But on topic, I don't think it is prudent to update the numbers yet because: 1) You've missed the distinction I noted above between total vegetable oil produced, and that wasted (by restaurants and total) 2) You're not being careful with the difference between pounds and gallons in your first calculation 3) Neither of those are reliable sources for the amount of wasted vegetable oil (that is oil that is used in some way but is still oil) that is dumped or otherwise disposed of. Again, the number for total vegetable oil produced is not the same as the amount that becomes waste. The sticking point is a lot of people and sources confused those issues, so it is important to find a source that is well aware of the distinction. So if a reliable source can be found for the amount that is wasted that differs from the source I had, I'd be more than happy to update the article. I have noticed the number I put for vegetable oil is actually the total fat number so I need to fix that.(done) - Taxman 13:21, Apr 15, 2005 (UTC)
I have read that WVO is sold on the commodities market as "yellow grease" which may provide another way to track down the amount. I also think 3 million is too low. Rmhermen 17:50, Apr 15, 2005 (UTC)
No, yellow grease is animal fat, not vegetable oil. The Van Gerpen reference shows that. Anyway, I found a pilot demonstration paper from an EPA office that gives a more reasonable sounding number than 3 million gallons. It lists 2.5 billion pounds, which works out to about 300 million gallons. The reason I don't find that source overly reliable is that a report from the same office puts the number at over 3 billion gallons, which is impossible since that is 100% of the countries' total production. Now the 2.5 billion number is the collected number, so the actual waste is some (probably small) percentage higher due to amounts that are not properly disposed. For a restaurant or potato chip factory for ex., improper disposal is a waste violation, so it is probably not too large, but who knows. This also only covers restaurant, not home use and waste, either down the drain or in the trash. I've not seen any studies or source that actually try to accurately estimate all sources of actual waste vegetable oil, so the article can't go into speculation, which is why I limited it to what information the source actually says. What we do know is the 3 billion gallon figure a lot of people claim is wrong, since not all vegetable oil produced in the country is wasted. - Taxman 14:44, Apr 19, 2005 (UTC)

Proposed restructuring

Hi, in looking to move towards FAC, I've made an outline of some proposed restructuring and additions. I know Wiki outlines aren't ideal, but please comment on what you think if you have a chance. I'm going to try to do the restructuring over the next few days. The goal is to have the article be more cohesive, less US focused, and cover the whole Biodiesel topic comprehensively, cover the important details well, and not give too much space to less important details. I plan on keeping most of the material in the current article, so some of the outline bits may be confusing, but let me know what you think. A lot of the parenthetical comments are to remind me which sources to cite which stuff to. - Taxman Talk 23:30, July 13, 2005 (UTC)

Humor

What about using fat obtained via Liposuction to produce biodiesel? Think about all of the fat lazy americans who drive two blocks to the corner "convenience store" for a pack of cigarettes, a bag of potato chips, a box of ho-ho's and a rack of cheap "beer". If they got liposuction and we turned the fat into biodiesel, then they actually walked to the corner gymnasium, it would save tons.

Perhaps a scented oil should be added to biodiesel, to make it smell nice when it's burned, similar to scented lamp oil you can get for 'kerosene' lamps?

It's happened/will biofuel promoter to power boat using human fat Google:biodiesel+boat+liposuction--E-Bod 02:32, 28 April 2006 (UTC)[reply]

Army study

In a study at a U.S. military base, a biodiesel blend was used as a replacement for heating oil at housing on the base.

A citation is needed for this paragraph; when was the study, and where? Tempshill 22:59, 1 September 2005 (UTC)[reply]

Yeah, I'll have to see if I can find that one, or else I'll remove it. Try a quick google search. I don't have time at the moment. - Taxman Talk 23:42, September 1, 2005 (UTC)
U.S. military uses quite a bit of biodiesel. I remember that in that particular case they had to install filters because the biodiesel was dissolving "sludge" out of the old oil storage tanks. I can't find the reference though. Rmhermen 13:34, September 6, 2005 (UTC)

I still can't find the Military study, but I'm against removing the material because the information there is correct according to a number of other sources I've seen. Also, the NBB website has a page on heating oil that lists a couple of studies, the best of which doesn't appear available for free. - Taxman Talk 14:43, September 6, 2005 (UTC)

Biodiesel from blackfly larvae?

I heard recently, from some people who were experimenting with making biodiesel, that there is a certain type of blackfly larvae that can be processed to make biodiesel. Can anyone provide specifics and add to this article? This is definitely a renewable resource. -- Auric 00:10, September 12, 2005 (UTC)

North Carolina State University had a pilot project on the use of the black soldier fly for hog waste reduction. Sprinkling maggots into the hog waste, they found the flies would ingest vast quantities of hog waste, and at the right moment in their life cycle, would "self harvest" by climbing up runways and falling into chutes where they could be easily crushed. The resultant oil, which was black and smelled horrible, was sent to the Becon Center at Iowa State University to be reacted into biodiesel. That never happened. And the pilot ended. Leaving everyone to wonder if we missed an important biodiesel feedstock.

The engine that ran on peanut oil was not built by Rudolf Diesel

In "Rudolf Diesel: Pioneer of the Age of Power" by Nitske & Wilson it states on p. 139 "At the Paris exposition of 1900, a Diesel engine, built by the French Otto Company ran wholly on peanut oil."

Diesel is quoted in the paper "Historical perspectives on vegetable oil-based diesel fuels" -http://www.biodiesel.org/resources/reportsdatabase/reports/gen/20011101_gen-346.pdf- '...at the Paris Exhibition in 1900 there was shown by the Otto Company a small Diesel engine, which, at the request of the French Government, ran on Arachide (earth-nut or pea-nut) oil, and worked so smoothly that only very few people were aware of it."

Also despite the fact that the engine designed by Rudolf Diesel won the "grand prix" 4 of the 5 diesel engines were of French manufacture. "Rudolf Diesel: Pioneer of the Age of Power" by Nitske & Wilson it states on p. 166 "Interestingly, four of the five models exhibited had been built by the French-owned and engineered Bar-le-Duc corporation."

The insinuation of the article is that R. Diesel won the prize and did it with peanut oil. That is not true. Engines of his patent won and were run on peanut oil, but R. Diesel was not responsible for the peanut oil.

P.S. My personal blog about making biodesel http://www.wvofuels.com/ is both about biodiesel and high quality! If I can get a second I'll resubmit it.

Statistical Information Sources?

I am working on a Biofuels research project and am interested as to the source of the oil source for the statistics discussed in the Base Oils section where the gal/acre numbers are discussed.

Thanks!

TRL 18:46, 10 October 2005 (UTC)[reply]

Most are from the Journey to forever site which cites other sources I believe. The algae one is from Briggs. The yields vary of course on a lot of factors such as methods, soil quality, specific plant variety, etc. The JTF numbers are a bit out of date, but no comprehensive source I have seen has more up to date numbers. Biodiesel is a burgeoning industry so now instead of publicly funded research, much of the research now now seems to be proprietary in the R&D labs of companies looking to commercialize. That's probably partly a good thing since mass production of biodiesel is going to require efficent sources of lipids. - Taxman Talk 14:58, 11 October 2005 (UTC)[reply]

Some comments (20:53, 5 November 2005 (UTC))

I just read through the article and thought it was very good. There were a couple of minor things I thought might be improved:

  • Experiment with 50% biodiesel are underway
As of when? Later in the article, it talks about 100% having been successfully tested in certain cases, so 50% seems minor.
These are both mentioned but not defined; A wikilink would be ideal, but neither term seems to have an article.
  • Situation in the UK
I saw a bit on Biodiesel on [Working Lunch] last week sometime, talking about biodiesel in the UK (Whales, specifically). Progress is quite minor compared to the other countries in the article and might not be notable, but it's worth checking up on (which I plan to do unless someone beats me to it). There's no information about the clip I saw, and I figure is not worth further research effort to say there's one pump in Whales somewhere –Jwanders 21:07, 5 November 2005 (UTC)[reply]
  • References
The article uses two reference styles; I've seen this objected to in FACs so fixing it should probably be added to the to-do list.

I like to help get this article to FA status, and think the next step is to take it through peer-review. Thoughts?

Jwanders 20:53, 5 November 2005 (UTC)[reply]

If you notice the restructuring section above, I've been planning a reworking of the article because I believe it needs it. But I've even reworked that outline again into a format I think is even better, but I didn't post it because making a wiki outline is a pain. I have though assembled hundreds of source materials totalling umpteen thousands of pages (most of which I've read or skimmed), and unfortunately haven't been able to allocate the time to do the actual rewriting. I could figure out a way to make them all available to you if you wanted to go for it, and I will certainly try to upload my reworked outline, which I would appreciate if you would comment on. As for the two referencing styles, I split them into a notes section for the in line citations left the general references I used in the references section. That's a fairly common way to do it, but it could still use some clean up for consistency, as I've used Harvard references in places. - Taxman Talk 13:58, 6 November 2005 (UTC)[reply]
Great! Yeah, I'd be happy to take a crack at filling in your (new) outline. The concept of reading through "umpteen thousands of pages" shockingly doesn't strike me as a fun thing to do—perhaps you could send me the updated online and a short-list of the most useful sources (max: about 10 pages). I can use that to draft a revamped article which we can use the rest of the sources to build on as necessary.
What's the best way to pass contact info across Wikipedia? Describing an email address on a page which is accessible to anyone and will always exist strikes me as a Bad Idea. —Jwanders 15:21, 6 November 2005 (UTC)[reply]

The issue in this article (effect of deforestation) should be addressed in the Wikipedia entry. Rd232 talk 14:42, 8 December 2005 (UTC)[reply]

Subsidization clarification?

Hi everyone,

I found the original sentence shown below a little confusing:

Due to government subsidization, Biodiesel is generally more expensive to purchase than petroleum diesel, although this differential may diminish due to economies of scale, the rising cost of petroleum, and legislation favoring the use of Biodiesel.

I altered it slightly and added an endnote to give an example of direct subsidies being applied to biodiesel (as opposed to indirect ones like general farm subsidies) to make it a little more clear, balanced, and accurate:

Biodiesel is generally more expensive to purchase than petroleum diesel, although this differential may diminish due to economies of scale, the rising cost of petroleum, and government subsidization favoring the use of biodiesel.

Sarann 04:57, 6 January 2006 (UTC)[reply]

Some more thoughts

The marketing of biodiesel has been so successful that it is difficult to find critiques of it buried in all of the hype. The sites that sell or promote biodiesel are the wrong places to go to find unbiased data. Here is an article in Grist that summarizes some of the growing awareness that biofuels may do untold damage to the planet. There was also an article in New Scientist pointing out the same thing.

Another point to keep in mind is the confusion over different blends of biodiesel. For example, A B100 (100% biodiesel) blend is partially carbon neutral, but gets 15% worse gas mileage than diesel and increases NOx emissions 110% over gasoline cars. A B20 blend is far from carbon neutral. Biodiesel is also not 78% carbon neutral. Its neutrality is dependent on the plant being used. The 78% figure quoted in Wiki is for Soybeans and even that number appears to be biased. I can show you the sources if you want.

Claims that biodiesel can impact CO2 emissions are misleading as are claims that it will make a meaningful difference in foreign oil dependency. Let me know if you want to see the sources and math.

Farming is not environmentally friendly. It is a necessary evil to grow food. It usurps vast areas of land and water and requires billions of tons of pesticides and fertilizers. A cornfield is one species away from being just as biologically impoverished as a mall parking lot. Environmentally friendly biodiesel is an oxymoron.

When one considers that, next to burning fossil fuels, deforestation is the second leading cause of global warming, one has to stop and ask: should the world be cutting down rainforests and plowing under its conservation reserves to grow biofuels?

I think this article needs a criticisms section similar to the one found on the Precautionary Principle. I would be happy to submit one for your critique. Sarann 03:40, 8 January 2006 (UTC)[reply]

Folks, there is nothing short of giving up farming completely and going back to a hunter-gatherer lifestyle that would "save the planet". Algae is the way to go because it does not use farmland, doesn't need fresh water, and can actually result in a net reduction of greenhouse gases we're putting into the atmosphere if we use the CO2 emitted by power plants. No, it's not a perfect fuel. But we don't live in a perfect world. --JSleeper 08:41, 12 January 2006 (UTC)[reply]

Changes to the fuel properties section

Recent changes refer to various studies supporting the added info but do not actually cite them. The one that caught my eye was that government studies supported the less toxic than table salt. That seems like an uncareful attribution to a source as that's not the type of thing the government sources would explicitly say. I'm tempted to revert, but I thought it was better to ask for explicit sources before doing so. - Taxman Talk 23:22, 10 January 2006 (UTC)[reply]

Sorry for not posting my sources, I am new to this process.
The four additions that I made to the, "environmental benefits in comparison to petroleum based fuels," were quoted from a pamphlet entitled, "Biodiesel: The Intelligent Solution to Today's Energy Security and Environmental Issues," produced by The National Biodiesel Board (www.biodiesel.org).
Right, then the problem is proper attribution to the source. Using the NBB source to say another source says something is not good from a verifiability standpoint. Best citation practices call for having the actual source and citing it. Most of the government reports the NBB pamplet is referring to are available for download too. Do you have the direct link to the pamphlet your referring to? I didn't immediately see it. See WP:V and Wikipedia:Citing sources for more information on citing sources. There's no firm rule on what citation form you have to use, but it's generally best to follow a consistent style within an article. You can use either Harvard style referencing (Briggs 2004) like this one does or footnotes to cite specific facts to specific sources. Also if you sign up for an account it makes it easier to interact with you. - Taxman Talk 13:05, 12 January 2006 (UTC)[reply]

Algal cultivation for the production of biodiesel

Moved in from Talk:Algae: Hi, i'm writing this to get some information about biodiesel production from algae. I first got interested in biodiesel when i came across some do-it-yourself tutorials on how to make your own biodiesel, using waste vegetable oil. I was very interested in this, especially since the tutorials said that you could get the WVO for free from fast food resturaunts. But with energy shortages, the high price of gas, and the lack of significant public transportation, once fast food chains and slaughterhouses see their waste being used to produce something valuable it seems that it will only be a matter of time until that free-supply will be taken away, either by no longer giving the oil away, but selling it, or having it contracted out,(which seems more likely once ultra-low sulfur requirements go into effect for regular diesel). Without a stable supply of oil, any investment into a biodiesel system,(a proccessor, a diesel car, diesel generators for electricity), seem dangerous. I started looking at oil crops, and was surprised by the yields, you hear so much about soy-biodiesel, but it turns out to be one of the worst of the oil producing crops. There were a couple of crops that were slightly better than the rest,(jatropa, and palm), but they're both regional, and no good unless you live in those areas. Then I see the next leap, from 635gpa for palm oil, to 5,000 to 20,000gpa for some types of algae. The implications of something like that seemed amazing, a single family doesn't use anywhere near the equivalent of 10-20 thousand gallons per acre of oil, and to meet their energy needs could set up a system at a tenth of that size, or use a swimming pool, and essentially be energy independent. But then there was no information about it. After searching around the internet I found the DOE's Aquatic Species Program www.eere.energy.gov, and I found the University of New Hampshires; Widescale Biodiesel Production from Algae page www.unh.edu The DOE's report presented alot of information that I didn't know before, but overall it seemed to describe a program that didn't work, at least for a cost-efficient means for producing biodiesel. And then there was the UNH page, which gave the same numbers, but then went on to talk about how great such a system would be, and presented next to nothing about details. Since then I've been searching the internet for anything about algal cultivation, harvesting, or processing, and have found out alot about algae; it's use in CO2 mitigation, for the production of hydrogen, as a health food, for dyes and medicines, but most all of the information that i've found for the production of biodiesel seems to be rehashed, always citing the same few papers. Every once in awhile I find some specific information about an aspect of production, but i haven't found anything about an integrated, fully functioning system that is successfully producing anywhere near the quantities that have been estimated, i've gotten the impression that there is alot of private research going on, but i can't find any specifics about it.


For the efficient cultivation of algae for the production of biodiesel, this is a list of specific questions that i am tring to find answers to:


what algal species are proving most successful for producing the largest amounts of oil, including the whole process, cultivation, harvesting, and extraction of oil.(much of the information i've found will cite a species that only performs well in one aspect, ie. it will grow well, but is expensive to harvest, or it's easy to harvest, but has a lower oil content.)

what temperature range do they do best in

is there an optimum depth for a tank or pond(ie- 4 inches of water, 5 feet, etc), in which the algae grow best, or is it more a matter of light penetration

do freshwater, or saltwater species seem to be more promising

if saltwater, does the salt you put into the water get consumed, needing to be replaced often, or is it a one-time thing

where can you inexpensively obtain specific species of algae,(i know of the university of Hawaii, i was looking for cheaper sources, perhaps someone doing research themselves within the connected U.S.)

what are the most cost-efficient means that are being used to harvest high-oil content algae, (i know of microscreens, flocculation, and centrifugation.)

how do you extract oil from algae(the only method i've seen is to dry it and then press it out)

what is the most efficient means of growing algae, open-pond, photobioreactor, green-house pond, polyethylene sleeves, tanks.

where do you get the nutrients for the algae, aside from expensive "fresh" fertilizer used for food crops,(i know about waste water, and fertilizer runoff, but i'm looking for efficient sources for if you don't live by a stream, or a sewage plant)

i've read that algae need only 1/10 the amount of light they recieve to grow, and was wondering whether it can be grow successfully using florecents, i don't know what spectrum light algae need to grow

how do you get CO2 into the water of an algae system,(do you have to compress it and pump it in, or some type of permeable membrane?)

how do you collect or seperate CO2, from the air, or from smoke, like in a coal plant

could a modification of a septic tank be used as an algae pond, the human waste being used as nutrient for the algae

what scientific equipment do you need to start an oil-producing algae pond, for a basic, home system(microscopes, ph-meter, etc)

could the exhaust from a wood stove be used to supply a pond with CO2

do you know of anyone, -university, corporation, individual-, who is currently doing research on biodiesel production from algae, espescially actual working systems.


If anyone reading this post has information about any of these questions please post it under the Wikipedia entry:

Algaculture:  Biodiesel production from algae


Algae resources(general)

posted by Daemon(not registered-wikipedia requires cookies)

Moved to bottom of talk page as per standard convention. Well, this is the main article about biodiesel. It's not appropriate to go into a detailed discussion in the article about biodiesel production from algae because there is so much else that needs to be covered. Further detail could be covered in an article dedicated to the topic such as Algal biodiesel. But remember Wikipedia is a place centered around collaboratively building reference material, not to discuss how to's. I'm also not sure why you left a long list of questions and also a long list of links. If you already have the links, why are you posting them for us if they don't have your answers? But to answer your overall question, it is not yet publicly known if there's going to be a cost efficient way to produce oil from algae. The current research into it seems to be being done by private companies that are trying to commericallize the method so they're not releasing details in order to try to gain a competitive advantage. So basically most of your questions are not publicly known. And registration here does require cookies, but they don't do anything sneaky with them and it actually allows more privacy by not making your IP address public. - Taxman Talk 22:20, 26 January 2006 (UTC)[reply]

In case somebody manages to have the time, I found an article which may give extra material for either this article, or the Algal biodiesel article proposed above. Essentially a company in NZ has managed to produce biodiesel using a variety of algae commonly found in sewage ponds. Link here: http://www.nzherald.co.nz/section/story.cfm?c_id=1&ObjectID=10381404 83.67.100.39 21:57, 22 August 2006 (UTC)[reply]

Question about environmental benefits

Biodiesel reduces emissions of carbon monoxide (CO) by approximately 50 % and carbon dioxide by 78 % on a net lifecycle basis because the carbon in biodiesel emissions is recycled from carbon that was already in the atmosphere, rather than being new carbon from petroleum that was sequestered in the earth's crust. (Sheehan, 1998)

Does anyone have a link to the source matireal for this?


This statement only works if the crops that you get your oil from were organically grown, otherwise you're discounting the all the CO, and CO2 that went into the production of the chemical fertilizers, which are made from petroleum sequestered in the earth's crust. If chemical fertilizers are made specifically for the production of oil crops for biodiesel, then chemical fertilizers are part of the "lifecycle" productiion of biodiesel

If the statement is just about the emissions of biodiesel from a diesel engine, then it may be true, but that isn't a "lifecycle" estimate.

-Daemon

The source is cited in the article. It's the second source in the references section. It did in fact include many if not all of those factors you list. You can read the report for more details. - Taxman Talk 16:01, 19 February 2006 (UTC)[reply]

Questioning Environmental and Efficiency Benefits

I am not an expert on biodiesel, but a few points in this article seem to be flawed in my opinion. In the case of biodiesel made from oilseed, certain energy and environmental costs are not mentioned in the article.


The article does not mention the following environmental costs:

1) the cost of clear-cutting natural ecosystems to produce any significant percentage of current diesel in use

2) the cost of monoculture crops on biodiversity

3) the cost of fertilizers used on watershed quality

4) the costs of soil fertility depletion by industrial agricultural practices


In the case of efficiency, the TVA study by Van Dyne and Raymer does not look convincing for the following reasons:


1) The energy inputted seems unreasonably low. This would make sense if it only included on-farm consumption of liquid fuel. A true look at energy return on investment would include all of the energy inputted to produce, transport and process the involved fertilizers and pesticides, as well as the energy inputted to process the oilseed. The energy efficiency ratios included in this article are better than that for extracting light crude oil, which seems absolutely impossible. As far as I know, there has been no comprehensive study looking at the energy efficiency of biodiesel. One such study has been done for ethanol by David Pimentel, which shows ethanol to be an energy-negative fuel.

2) Different crops require different energy inputs due to their specific needs and cultivation time requirements. The study is reported to just provide a national average, rather than being specific to oilseed crops

3) There is no reference for the study (neither citation nor year), and a Google search yielded only citations by biodiesel advocacy groups, in exactly the same language as this article. Jfeldman Feb. 20, 2006

I moved your comment to the bottom because that's where new conversations go by convention. A few points. 1) I'd be fine taking out the whole bit referring to Van Dayne and Raymer because I don't think it adds anything not already covered with specific sources. Pimental's study is not taken seriously by anyone in the scientific community. It was easily shown that he used old numbers and poor methods. It seems his piece wasn't about getting at the truth. There are plenty of studies looking at the energy efficiency, read the sources cited in the article. 2) If you want to cover the environmental costs find high quality studies on them and cite them or point them out here for discussion. We can't add material we don't have references for. - Taxman Talk 09:39, 21 February 2006 (UTC)[reply]
I restored some edits of mine concerning land use for palm oil production that were removed by an anon editor in January and replaced with the following: "Palm oil so far proved to be efficient as biodiesel." I don't think this new edit was particularly informative. The restored paragraph refers to a report by Friends of the Earth and a column by George Montbiot. These are not (especially the Montbiot column) primary sources. But, they do cover the ongoing debate in the environmental community over the net benefits of biofuels. Any better sources would, of course, help. Anyone familiar with the peer-reviewed literature? Gwimpey 20:58, 21 February 2006 (UTC)[reply]
Addendum: I have modified the restored edits for style and NPOV. Even my writing isn't always perfect ;) Gwimpey 21:05, 21 February 2006 (UTC)[reply]

External Link for Biodiesel Fuel: News removed

I placed the following link in the external links section:

Biodiesel Fuel: News

I am not sure why the link was removed - I thought it was related to the subject, and a good resource.

Thanks! User:Alex Ramon

Follow up on Biodiesel Link

March 22, 2006

I am still curious as to whether or not my external link will be allowed on this page. Biodiesel Fuel: News. I have been checking back here for a month and no reply. I work very hard to build and maintain the site where you can get the latest news about Biodiesel Fuel - updated daily.

Is that relevant for this page?

It's not irrelevant, but that's not really the point. It's a news aggregator more or less. I'll put it in my personal bookmarks, but there are already too many links in the external links section. Everyone wants links to their own website in there, but we can't do that. We have to pick only particularly prominent or important ones. - Taxman Talk 13:18, 23 March 2006 (UTC)[reply]

Ok, thanks - I will keep linking to this page from my website regardless as I think this is an excellent resource.

That's right - the section should only have one link to Dmoz - any more than that is too many!

# 2.1 Two real-world issues involving the use of biodiesel

I think this section needs to cite more sources. And perhaps some touch-ups? Who is "we" that section refers to and where did the "see operations"? Did they just copy that text from somewhere? --71.36.52.230 16:31, 1 March 2006 (UTC)[reply]

Numbering of Notes

The numbering of the notes is seriously off. Note 12 and should be at 16 for example.... 06:25, 11 March 2006 (UTC)

biodiesel power "blook" wins award

In the Guardian yesterday http://books.guardian.co.uk/news/articles/0,,1745535,00.html there is a report on the Blooker Prize, a new prize for books which have resulted from blogs. The runner-up in the non-fiction category was BIODIESEL POWER: The Passion, the People, and the Politics of the Next Renewable Fuel By Lyle Estill, http://www.biofuels.coop/book.shtml and the source blog was http://energy.biofuels.coop/. Should this get a mention? --Salix alba (talk) 11:08, 4 April 2006 (UTC)[reply]

I split off the topic "availability" to a new page to make the parent page more readable. I hope this is a positive change. If anyone disagrees, perhaps we can discuss it here. --Rifleman 82 15:36, 28 April 2006 (UTC)[reply]

Makes sense, it was getting too long. This article needs a summary though, properly balanced in coverage and POV, if you want to try your hand at it. See Wikipedia:Summary style. - Taxman Talk 18:42, 28 April 2006 (UTC)[reply]
Good work on the page. I concur, we should still maintain a summary regarding the new "availability" page.
Mytwocents 05:04, 7 May 2006 (UTC)[reply]

Rewrite

I rewrote the article to try to reduce the duplicating information generated by the piecemeal nature of edits, and tried to reorganize the information from the most important (Biodiesel#Description, Biodiesel#Applications) to the less important (Biodiesel#Historical background, Biodiesel#Current Research). Edits were made in good faith, and I hope it is a positive change.

Biodiesel#Environmental benefits is a tarbaby. It is messy and some claims appear dubious to me. It needs to be un-listed and wikified. Perhaps someone can take on this task.

I suggest that Biodiesel#Efficiency and Economic Arguments be spun off to a new article, leaving a summary of the major arguments for and against.

Comments on my edits? --Rifleman 82 21:04, 4 May 2006 (UTC)[reply]

oxymoron? paradox? just plain stupid statement?

Biodiesel is a light to dark yellow colorless liquid.

How can something colorless be described as light, dark, or yellow?

Perhaps 'they mean light to dark yellow clear liquid.'?
Mytwocents 04:56, 7 May 2006 (UTC)[reply]
Crude biodiesel is a cloudy pale yellow liquid, while washed biodiesel is still a straw yellow color and it is transclucent. The image at the top of the article page does not appear to be a biodiesel sample but rather the glycerol containing byproduct of the synthesis (in other words the waste result). I will try to upload a better photo over the next few weeks as larger amounts of biodiesel are made. Das Nerd 23:36, 18 May 2006 (UTC)[reply]
Actually, it depends on the feedstock and the processing. The image could very well be pure biodiesel. - Taxman Talk 20:51, 12 June 2006 (UTC)[reply]

Biodiesel from sewage

A New Zealand company has announced that it has successfully extracted biodiesel from sewage [3]. I'm not sure whether this should be included on this page, I just thought I'd bring it to the attention of the regular editors here.

Actually this is another application of biodiesel from algae. Rmhermen 03:26, 12 May 2006 (UTC)[reply]

Sulfur Content of Biodiesel

A number of paragraphs in the above discussion and the associated wiki entry claim that biodiesel is sulfur free without providing evidence. Sulfur is common in nature and is part of many biological substances, such as amino acids. Some biodiesel manufacturers use sulfuric acid and other sulfur containing species as a catalyst, and the sulfur is not recovered. Also, the term "sulfur-free" is highly subjective. Do you consider less than 10 ppm sulfur free? 1 ppm sulfur is enough to degrade fuel cells. 10 ppm or less may deactivate certain catalysts over time. UPDATE: I found a page on Pacific Biodiesel's site that shows nominal sulfur content: http://www.biodiesel.com/why_biodiesel.htm According to this, it is typically between 0.012 and 0.023% by weight, between 33% and 66% the sulfur content of low sulfur diesel. Clearly this is not sulfur free. I notice Willie Nelson's biodiesel site claims that biodiesel reduces sulfur emissions by 100%. It seems this misinformation is widespread. According to Chevron, 0.05% sulfur diesel is currently in use in the US, and starting in 2007, we will be switching to 0.015% Sulfur diesel (ULSD). So based on current Diesel fuel, it is only a 50-75% decrease in Sulfur, and based on next year's diesel it is anywhere from a 20% decrease, to a 60% increase in Sulfur. This indicates that not all biodiesel is ULSD. I don't believe the Pacific Biodiesel numbers include sulfur added from sulfur containing catalysts. It seems most claims on the internet of biodiesel being sulfur free are based purely on speculation and not fact.

Good catch. In fact lots of promotional information about biodiesel is just repeated from other promotional material without checking. I've tried to rectify that for everything in this article, but I haven't gotten to the whole thing. Soy biodiesel does have nearly negligible sulfur unless treated with sulfuric acid, and that would only be done if acid esterification is needed to reduce the FFAs to an acceptable level. Virgin vegetable oil feedstocks wouldn't need that. I did find a paper Biodiesel Performance, Costs, and Use by Anthony Radich that notes "Yellow grease biodiesel may have up to 24 parts per million sulfur, which exceeds the limit for ultra-low-sulfur diesel." There isn't much yellow grease biodiesel produced due to it's cold flow properties though. In addition the sulfur could be processed out of course. - Taxman Talk 20:48, 12 June 2006 (UTC)[reply]
I just noticed a miscalculation I made in the ULSD numbers. The sulfur content for S500, and S15 (ULSD) is 500 ppmw and 15 ppmw respectively, which would correspond to 0.05% and 0.0015% sulfur by weight. Now, if the Pacific Diesel website is correct, biodiesel contains between 120 and 230 ppmw of sulfur. From what I've seen, the sulfur content of the fuel has a somewhat exponential relationship with catalyst life, so these sulfur levels would render catalytic converters inoperable in a short amount of time, possibly within several thousand miles/km. It is interesting the numbers you found for the yellow grease. That is about an order of magnitude less than the Pacific Biodiesel's numbers. I am curious whether there are any papers out there with the results of running biodiesel through a gas chromatograph to measure sulfur. I know the content of petrodiesel can vary by more than an order of magnitude from one barrel to the next, and I would imagine the same might be true of biodiesel. And it leaves the question of how will the economics of biodiesel be impacted if its necessary to perform hydrodesulfurization to keep the sulfur levels in check. If anyone finds any other sources which have measured sulfur levels, please do post them! Smilla0 12:56, 13 June 2006 (UTC)[reply]
Just found another source, Brownfield Biodiesel. They say "Biodiesel typically contains less than 15 parts per million (ppm) sulfur (sometimes as low as zero). Some biodiesel produced today may exceed 15 ppm sulfur, and those producers will be required to reduce those levels by 2006 if the biodiesel is sold into on-road markets." (http://www.brownfieldbiodiesel.com/wst_page5.html) Smilla0 13:30, 13 June 2006 (UTC)[reply]
Here's another from the US Department of Energy: (http://www.eere.energy.gov/afdc/altfuel/whatis_biodiesel.html) The table on this page lists it as being between 0 and 24 ppmw. Yet on the same page the text declares it to be under 15 ppm. I'm beginning to wonder if the Pacific Biodiesel numbers were missing a zero, as this would correlate better with other numbers I've been seeing. Smilla0 13:57, 13 June 2006 (UTC)[reply]

Latest Edits

I removed the chart on oil production levels to trim it the article to length. I also removed the dead notes, which are a waste of bytes. Ordered the "see also" section by alphabets, and removed a duplicated link (appropriate technology). Added the expert tag on the claims of the benefits of biodiesel - some dubious, some just need a cite.

Tried to clean up the language for consistency as well.

--Rifleman 82 17:56, 1 July 2006 (UTC)[reply]

I strongly suggest the table be restored. It concisely illustrates key characteristics of biodiesel viability from a yield standpoint. This is one of the most misunderstood elements of any alternative transportation fuel, and the table helped clarify that. Joema 13:49, 17 July 2006 (UTC)[reply]
In line with the above, restored yield table and provided reference. Reworded intro paragraphs to make more logical and readable. Any questions, please discuss here. Joema 15:47, 21 July 2006 (UTC)[reply]

Minnesota mandate

I recommend adding something like this to the history:

In Sept 2005 Minnesota became the first state to require that all diesel fuel sold in that state contain part biodiesel. The Minnesota law requires at least 2% biodiesel in all diesel fuel sold.[4]

--4.232.0.63 16:21, 7 August 2006 (UTC)[reply]

Better alternatives-section

I think that a section should be added labeled Better alternatives in witch the following is mentioned:

  • That biodiesel still pollutes (+how much)
  • That is thus more environmentally friendly to switch to a non-polluting fuel (e.g. air engine, hydrogen engine)
  • That biodiesel can only be regarded as a temporary measure to ease transition between conventional fuels and hydrogen/or compressed air

-KVDP 09:09, 10 August 2006 (UTC)[reply]

It takes energy to extract hydrogen and/or compress air and they make poor general transportation fuels because of limited range. The energy in biodiesel comes from the sun. The recent (new) design diesels do not smoke. The new (fed mandated) limits on sulfur allow catalytic converters which limit nox. Replacing petrodiesel with biodiesel reduces the country's need for foreign oil and reduces the net amount of co2 that gets added to the atmosphere. Biodiesel is about 7 times more effective at reducing our need for foreign oil than corn-ethanol. 4.232.3.96 16:58, 11 August 2006 (UTC)[reply]
The goal of an encyclopedia article is to describe the topic, not critique it. Unlike biodiesel, hydrogen is not an energy source -- it consumes energy. You must get energy from somewhere else -- petroleum, coal, nuclear, wind, solar -- to make hydrogen. It's not practical to make sufficient quantities of hydrogen via electrolysis from solar or wind power to power a significant fraction of the world vehicle fleet. Anybody can do the math:
World transportation energy consumption is 100 quadrillion BTU per year (2.93E16 watt hours). Average solar cell efficiency (including aging, environmental, and transmission losses) is about 10%. Also you can't use crystalline cells on a huge industrial level, but must use less efficient amorphous or other PV technologies. Hydrogen electrolysis is about 70% efficient, transport 90% efficient, vehicle/depot storage about 80% efficient, fuel cells about 70% efficient, electric motors about 92% efficient, for total end-to-end efficiency of about 32%. Average annual solar insolation at mid-North America latitudes is about 4500 watt hrs per square meter per day, or 133,225 watt hrs per year: http://www.windsun.com/Solar_Basics/Solar_maps.htm
To provide just 1/2 of annual world transportation energy (1.45E16 watt hrs) via solar/hydrogen/fuel cell vehicles would require: 1.45E16 watt hrs / (133,225 watt hrs/m^2/yr * 0.1 PV conversion efficiency * 0.32 hydrogen chain efficiency) = 3.4E12 square meters of solar cells, or 3.4 million square km, which is very roughly 1/2 the continental United States.
Note I'm not making this argument in the article -- it doesn't belong there any more than statements about "hydrogen is better". Rather just explaining here why even if we made such advocacy statements in an encyclopedia article, we couldn't say technically incorrect things. Joema 18:06, 11 August 2006 (UTC)[reply]
I forgot to add liquefaction efficiency, which is only about 70%. You've got to liquefy or compress hydrogen to move it somewhere, so the end-to-end chain efficiency is 22% or less. That increases the required solar PV area to at least 5 million square km, or about 2/3 of the continental U.S, to supply only 1/2 of world transportation energy need. Those are very rough numbers and don't consider savings from fuel cell vehicle efficiency. However these improvements may be much less than is commonly thought: [5] Joema 21:57, 11 August 2006 (UTC)[reply]

Footnote problems

I'm having problems adding a footnote, if anybody could help I'd appreciate it. I tried using proper web cite reference format, and it looks OK in preview. However when saving the page, there are duplicate A and B backpointers in each footnote ref at article bottom. I tried switching to an in-line external link, still same problem. Finally gave up and totally removed the link, still same problem. Copied and pasted entire article to my sandbox and experimented with deleting various article portions; couldn't isolate problem. Duplicate A/B refs still appear with article truncated to just one line with one footnote reference. Would appreciate any help or advice. Sorry about the problem if I did something wrong. Joema 13:55, 29 August 2006 (UTC)[reply]

There is a problem with footnotes. See Wikipedia talk:Footnotes. (SEWilco 14:43, 29 August 2006 (UTC))[reply]
Joema, I think there must be a problem with the rendering engine today -- I tried looking at every version through the history, both looking at individual versions and at each diff, and couldn't see the problem you mentioned. I experimented to try and replicate it with various edits and to my surprise, I couldn't even replicate a known problem that I've seen before (the one that happens when someone forgets the slash in a </ref> tag) which truncates just after a footnote. Then clicking the "Article" button showed me the exact problem you described. And, in the time I've been writing this, it has changed again, because refreshing produces a perfectly well-formatted article with no footnote problems -- even though it's the same article version. My suspicion is that someone was trying something new to fix the problem I described, and end up breaking more than they fixed, so they undid the fix. -- Antaeus Feldspar 15:02, 29 August 2006 (UTC) (Late edit: and apparently the problem's known...) -- Antaeus Feldspar 15:02, 29 August 2006 (UTC)[reply]
I confirm there's still a problem with footnotes. Even the most simple footnote reference using <ref> and </ref> isn't working right. A single new footnote reference creates multiple reference links under the <references/> section. It doesn't happen for preview, only when you save the page. I'm giving up for now and just added the footnote as an external link at article bottom. Joema 23:26, 29 August 2006 (UTC)[reply]
Since the footnote problem is almost certainly temporary, I'm restoring the change and also making a few other fixes. Even if it doesn't look right at the moment, it will when the larger problem is fixed. -- Antaeus Feldspar 00:43, 30 August 2006 (UTC)[reply]
Reported problem at bottom of this page under heading "Footnotes Missing: [6]. It's now filed as bug 7162 Joema 05:16, 30 August 2006 (UTC)[reply]

External links

I would add http://www.biodieselcommunity.org/

I realise links need to be kept to a minimum but (as per the request in the External Links section) I recommend adding: http://biodieselinthenews.com/ - it's right up-to-date every day and has a full archive of previous news. IMHO it complements this article.

No offense, but it's just another news aggregator. I don't see how it is more important than the other links on the list. - Taxman Talk 17:37, 12 September 2006 (UTC)[reply]


I've got a good idea. Why doesn't Wikipedia hand all external links over to dmoz. That would stop any argument ever over them. So let's remove the Edit facility from the External links because it's not needed any more seeing as that section's now dmoz. Now I think about it, there are quite a few sections you could take the edit facility away from - yeah - I think I'm onto something here... —The preceding unsigned comment was added by 166.214.59.177 (talkcontribs) .

How about a link to http://www.bettybiodiesel.org/? It's a nice non-profit website.--Tdkehoe 00:24, 26 November 2006 (UTC)[reply]

I clicked the biodiesel link whose only content beside further links to biodiesel.org (portal) and biodieselamerica.org (buy the book) is "To Book Betty for schools, presentations, festivals, conferences, etc. Contact Lindsay Hassett". The betty link is a plug for where to buy "eco-hip" clothing the kind Betty Biodiesel wears. You're kidding, right? Femto 12:57, 26 November 2006 (UTC)[reply]

Biodiesel from Zebra Mussels?

Crazy idea, and maybe it's even based on my once hearing something about this (though a Google search turned up nothing.), but I was wondering if the heavy economic toll of the Zebra mussel invasion could be partly compensated by turning the mussels they remove into biodiesel. I'm not suggesting that it's any kind of solution to the problems of the Zebra mussel invasion and biodiesel supply, just that if they are removing large quantities of mussels from ships and infastructure, would it be a good idea to convert the biomass into biodiesel? The alternative is it being thrown away and not used at all. Could such an endeavor possibly break even once the animal-remains-to-biodiesel infastructure is in place?

Certainly a interesting idea. There are existing rendering facilities for most livestock. The yields would be pretty low, however. IIRC, the triglyceride content of typical livestock ranges between 15% and 30%. I would expect shellfish to be near the bottom of this scale, if not significantly below it, since they are mostly shell and muscle. As the price of oil increases, niche products like this will become more and more viable.Hillgiant 15:04, 3 October 2006 (UTC)[reply]

Re: Water contamination

The first line of this section was recently changed (Oct. 3) to state that biodiesel is "hydrophobic". Previously, it had stated that biodiesel is "hydrophilic" -- the opposite of hydrophobic. (This change was made several days after a question was raised in the "To-do list" -- the original statement seems to have gone unchallenged for a considerable period of time.) The change to "hydrophobic" seems to me to be consistent with the statement in the "Description" section that biodiesel "is practically immiscible with water...."

On the other hand, these statements appear to flatly contradict the assertion in the WP article on Hygroscopy, which states that "An example of a hygroscopic substance is biodiesel, which absorbs water to about 1200 parts per million (PPM)." I checked around and found that this claim is repeated widely on numerous websites, but I could not find definitive substantiation -- merely repetition of the same statement. I was hoping this apparent contradiction would be explored here on Wikipedia -- but this specific claim is not addressed anywhere in the Biodiesel article.

This is not a minor point. If biodiesel is indeed hygroscopic -- meaning that it has a strong tendency to pull water molecules out of the atmosphere -- there are serious implications in terms of its use, storage, etc., which would need to be addressed in the article. Currently, the problem of "Water contamination" is stated to arise because "Some of the water present is residual to processing, and some comes from storage tank condensation." But there's no mention of continuing accumulation of water due to its alleged hygroscopic properties.

So I pose the following question: Is it, in fact, possible for a substance be BOTH hydrophobic AND hygroscopic?? In other words, can it, somehow, both repel water molecules and also absorb them? One way or the other, this question needs to be settled. Cgingold 14:10, 22 October 2006 (UTC)[reply]

Again, my apologies for adding the Verification tag. My sense is that the explanation given is probably correct, but there is nonetheless a serious question re Hygroscopy, as I detailed above. I was hoping to elicit a response on that question, but it's been over a week now, so I thought it was time to give it another try. Cgingold 13:59, 28 October 2006 (UTC)[reply]

As to your question a to whether a hydrophobic compound can also be hygroscopic, the simple answer is "yes to a point." Organic compounds can elicit both behaviors simultaneously when they have varying functional groups with a wide enough separation. BioDiesel is an ester with a very shot side and a long side, the short side can exhibit polar qualities due to the presence of oxygen while the long chain exhibits nonpolar qualities. The polar side is what attracts the water, while the long chain repels the water. Cells of living organisms utilize a similar method to control the amount of materials crossing the membrane. I hope this explanation helps. Das Nerd 20:08, 28 October 2006 (UTC)[reply]
Thank you! I think your explanation may well get us "half way there", so to speak. As I said, it's widely stated elsewhere that biodiesel "absorbs water to about 1200 PPM" -- something which is not mentioned at all in the "Water contamination" section. If this is indeed a scientifically verified fact, then it needs to be included here, along with the other two reasons that are given. Again, none of the websites I consulted cited a source for the claim -- my impression was that they were all simply repeating a statement originally made by a single person or publication, which I was unable to locate. Do you have any idea where to find scientific validation (or lack thereof) for this assertion? Or, given your reply to my question, do you at least find it credible enough to include here without further confirmation? Cgingold 21:10, 28 October 2006 (UTC)[reply]

Biodiesel definition

Surely pure plant oil without any processing qualifies as 'Biodiesel'because it is made entirely from biomass and will operate many kinds of diesel engine! If one uses Methanol and caustic soda (neither of which are biomass)to make FAME, fatty acid methyl ester, this surely disqualifies it from being called bio-diesel! replies appreciated <email removed>

No, "diesel" fuel is a specific fractional distillate of crude oil, containing certain chemicals. It is not anything that will burn in a diesel engine. The processing of biomass converts it to diesel. Rmhermen 16:43, 22 November 2006 (UTC)[reply]

protection requested

Due to the volume of ongoing vandalism of this article, I have just made a request for semi-protection at Wikipedia:Requests for page protection. This would prevent anonymous users from editing the page. Keep your fingers crossed. Cgingold 11:04, 6 December 2006 (UTC)[reply]

Biodiesel and Volkswagen

There is a seemingly comprehensive chart in the article that shows which VW models are capable of running on neat biodiesel, but it has no citation. Considering that it seems to give stats that directly contradict VW, I would really like to see some attribution.

In america, VW says that B5 is the maximum blend acceptable and that this is only true for B5 that is sold commercially. http://www.vw.com/vwcom/content/objects/pdf/service_maint/BIODIESEL_ENG.pdf Christopher 22:30, 4 February 2007 (UTC)[reply]

In addition, I've been thinking about possibly deleting that chart entirely -- regardless of its accuracy (or lack of) -- since it seems to me to devote a disproportionate amount of space to one make of car, Volkswagen. Unless other people think there's a good reason to keep, it probably ought to go. Cgingold 12:58, 5 February 2007 (UTC)[reply]
I don't think it should be deleted outright - it should be moved to a different page or to a subpage. It's good information, provided that it is accurate, it just doesn't belong on this page. Christopher 15:55, 5 February 2007 (UTC)[reply]

This chart was added on Dec. 22 by Rnt20. I put a note on his user page asking where it came from. http://en.wikipedia.org/w/index.php?title=Biodiesel&oldid=95892791 Christopher 16:09, 5 February 2007 (UTC)[reply]

Hi, I am happy for this chart to be (re)moved. I only put it on the Wikipedia page because:

  1. Volkswagen emailed me a PDF document which lists all this data, but I can't find it on their website
  2. The previous text on Wikipedia seemed to disagree completely with what Volkswagen sent

Here is the text of the email:

Sehr geehrter Herr Dr. Tubbs,

vielen Dank fuer Ihre Anfrage.

Das oben genannte Fahrzeug ist fuer den Betrieb mit Kraftstoff nach der EN 14214 (Biodiesel) freigegeben. Die Normung EN 14214 ersetzt die bisherigen Normen DIN E 51 606 und DIN V 51 606.

Sollte es dennoch zu Schwierigkeiten am Kraftstofffilter und am Einspritzsystem kommen, obwohl Sie diese Hinweise und Vorgaben eingehalten haben, ist mangelnde Qualitaet des Kraftstoffes die Ursache.

Wir empfehlen Ihnen, sich vor dem Betanken zu vergewissern, dass die Normung EN 14214 an der Zapfsaeule genannt wird.

Wurde nachtraeglich eine Standheizung in Ihrem Fahrzeug eingebaut, informieren Sie sich bitte beim Zulieferer des Geraetes ueber die Vertraeglichkeit mit Biodiesel.

Wir hoffen, dass Ihnen diese Informationen weiterhelfen.

Mit freundlichen Gruessen

i.V. Bernd Schmitter i.V. Katja Schott

Volkswagen AG 38436 Wolfsburg Tel +49 (0) 800 8655792436 Fax +49 (0) 800 3298655792436 Mail to kundenbetreuung@volkswagen.de Homepage http://www.volkswagen.de


And here is the text pasted (messily!) from the PDF document attached to the email

Diese Auflistung umfasst alle Volkswagen PKW, die mit Biodiesel (RME) betrieben werden können bzw. für die ein Nachrüstsatz für den Betrieb mit RME zur Verfügung steht. 0RGHOO 6HULHQPl‰LJ�ELRGLHVHOWDXJOLFK 1DFKUVWP|JOLFKNHLWHQ Fox nicht biodieseltauglich nicht vorgesehen Lupo/Lupo 3L alle - New Beetle/ New Beetle Cabriolet alle - Polo Typ 6N alle Ausnahme: Post Polo - nicht vorgesehen Polo Classic Polo Variant alle - Polo Typ 9N alle - Golf/Vento Typ 1HX0 Typ 1H ab Modelljahr '96 (auch TDI) alle ab Modelljahr '92 (außer TDI) Nachrüstsatz Limousine 1H0 298 215 Nachrüstsatz Variant 1H9 298 215 Golf Ecomatic Typ 1HX0 ab Fahrgestell-Nr. 1HRP491791 bis Fahrgestell-Nr. 1HRP491790 Nachrüstsatz 1H0 298 215 Golf/Bora Typ 1J alle - Touran nicht biodieseltauglich nicht vorgesehen Jetta 1KM nicht biodieseltauglich nicht vorgesehen Golf V/Golf Plus Typ 1K / Typ 1KP serienmäßig nicht biodieseltauglich, als Sonderausstattung (PR-Nr. 2G0) wird für den Golf V und den Golf Plus ein Biodieselpaket angeboten nicht vorgesehen Passat Typ 35I ab Modelljahr '96 (auch TDI) Limousine/Variant ab Fg.-Nr. 31PE240001 31PB240001 Nachrüstsatz 3A0 298 215 Passat Typ 3B/3BG alle, $XVQDKPH��3DVVDW�����7',�'3) nicht vorgesehen Passat Typ 3C nicht biodieseltauglich nicht vorgesehen Sharan ab Modelljahr 1997 nicht vorgesehen Phaeton Fz mit DPF nicht biodieseltauglich nicht vorgesehen Touareg Fz mit DPF nicht biodieseltauglich nicht vorgesehen Caddy Typ 9K Wirbelkammer und SDI ab Produktionsdatum KW 23/96 nicht vorgesehen · Die zehnte Stelle der Fahrgestell-Nummer gibt das Modelljahr an: zum Beispiel T = 1996, V = 1997, W = 1998, X = 1999 oder Y = 2000. · Der RME-Kraftstoff muss der DIN EN 14 214 (FAME) entsprechen. · Bei Betrieb mit RME-Kraftstoff müssen zusätzliche Wartungsarbeiten durchgeführt werden. · Beachten Sie bitte die Hinweise in der Bedienungsanleitung zum Betrieb mit RME. ,KUH�9RONVZDJHQ�.XQGHQEHWUHXXQJ

Marqee?

Under the description section there appears the bb code tags for marquee, however while editing the page no such code appears. Perhaps this is only a problem for Safari users?

Cancer Risk Reduction Proof

http://journeytoforever.org/biodiesel.html

1/4 the way down the page there are links to studies that prove the ~90% reduction in cancer risk.