Jump to content

Portal:Science

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Snaevar-bot (talk | contribs) at 15:15, 16 November 2012 (r2.7.3) (Robot: Adding mn; removing: hi, it, nl). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.



Main page   Main topics & Categories   Related portals & WikiProjects   Things you can do
edit

Science portal

Scientific knowledge used in practical applications

Science is a systematic discipline that builds and organises knowledge in the form of testable hypotheses and predictions about the universe. Modern science is typically divided into two or three major branches: the natural sciences (e.g., physics, chemistry, and biology), which study the physical world; and the behavioural sciences (e.g., economics, psychology, and sociology), which study individuals and societies. The formal sciences (e.g., logic, mathematics, and theoretical computer science), which study formal systems governed by axioms and rules, are sometimes described as being sciences as well; however, they are often regarded as a separate field because they rely on deductive reasoning instead of the scientific method or empirical evidence as their main methodology. Applied sciences are disciplines that use scientific knowledge for practical purposes, such as engineering and medicine.

The history of science spans the majority of the historical record, with the earliest written records of identifiable predecessors to modern science dating to Bronze Age Egypt and Mesopotamia from around 3000 to 1200 BCE. Their contributions to mathematics, astronomy, and medicine entered and shaped the Greek natural philosophy of classical antiquity, whereby formal attempts were made to provide explanations of events in the physical world based on natural causes, while further advancements, including the introduction of the Hindu–Arabic numeral system, were made during the Golden Age of India. Scientific research deteriorated in these regions after the fall of the Western Roman Empire during the Early Middle Ages (400 to 1000 CE), but in the Medieval renaissances (Carolingian Renaissance, Ottonian Renaissance and the Renaissance of the 12th century) scholarship flourished again. Some Greek manuscripts lost in Western Europe were preserved and expanded upon in the Middle East during the Islamic Golden Age, along with the later efforts of Byzantine Greek scholars who brought Greek manuscripts from the dying Byzantine Empire to Western Europe at the start of the Renaissance.

The recovery and assimilation of Greek works and Islamic inquiries into Western Europe from the 10th to 13th century revived "natural philosophy", which was later transformed by the Scientific Revolution that began in the 16th century as new ideas and discoveries departed from previous Greek conceptions and traditions. The scientific method soon played a greater role in knowledge creation and it was not until the 19th century that many of the institutional and professional features of science began to take shape, along with the changing of "natural philosophy" to "natural science".

New knowledge in science is advanced by research from scientists who are motivated by curiosity about the world and a desire to solve problems. Contemporary scientific research is highly collaborative and is usually done by teams in academic and research institutions, government agencies, and companies. The practical impact of their work has led to the emergence of science policies that seek to influence the scientific enterprise by prioritising the ethical and moral development of commercial products, armaments, health care, public infrastructure, and environmental protection. (Full article...)

Selected article

A ribbon diagram of Dihydrofolate reductase
Enzyme kinetics is the study of the rates of chemical reactions that are catalysed by enzymes. The study of an enzyme's kinetics provides insights into the catalytic mechanism of this enzyme, its role in metabolism, how its activity is controlled in the cell and how drugs and poisons can inhibit its activity.

Enzymes are molecules that manipulate other molecules — the enzymes' substrates. These target molecules bind to an enzyme's active site and are transformed into products through a series of steps known as the enzymatic mechanism. Some enzymes bind multiple substrates and/or release multiple products, such as a protease cleaving one protein substrate into two polypeptide products. Others join substrates together, such as DNA polymerase linking a nucleotide to DNA. Although these mechanisms are often a complex series of steps, there is typically one rate-determining step that determines the overall kinetics. This rate-determining step may be a chemical reaction or a conformational change of the enzyme or substrates, such as those involved in the release of product(s) from the enzyme.

Selected picture

Sonoluminescence is the emission of light by bubbles in a liquid excited by sound.
Sonoluminescence is the emission of light by bubbles in a liquid excited by sound.
Sonoluminescence is the emission of short bursts of light from imploding bubbles in a liquid when excited by sound. The effect was first discovered at the University of Cologne in 1934 as a result of work on sonar. H. Frenzel and H. Schultes put an ultrasound transducer in a tank of photographic developer fluid. They hoped to speed up the development process. Instead, they noticed tiny dots on the film after developing, and realized that the bubbles in the fluid were emitting light with the ultrasound turned on. It was too difficult to analyze the effect in early experiments because of the complex environment of a large number of short-lived bubbles. (This experiment is also ascribed to N. Marinesco and J.J. Trillat in 1933). Sonoluminescence may or may not occur whenever a sound wave of sufficient intensity induces a gaseous cavity within a liquid to quickly collapse. This cavity may take the form of a pre-existing bubble, or may be generated through a process known as cavitation. Sonoluminescence in the laboratory can be made to be stable, so that a single bubble will expand and collapse over and over again in a periodic fashion, emitting a burst of light each time it collapses.

Selected biography

Gregor Mendel (1822–1884) was an Austrian monk who is often called the "father of genetics" for his study of the inheritance of traits in pea plants. Mendel showed that there was particular inheritance of traits according to his laws of inheritance.

It was not until the early 20th century that the importance of his ideas were realized. In 1900, his work was rediscovered by Hugo de Vries, Carl Correns, and Erich von Tschermak. His results were quickly replicated, and genetic linkage quickly worked out. Biologists flocked to the theory, while it was not yet applicable to many phenomena, it sought to give a genotypic understanding of heredity which they felt was lacking in previous studies of heredity, which focused on phenotypic approaches.

Did you know...

Polytechnical_Institute

Purge server cache

Template:Featured portal

Template:Link FA Template:Link FA Template:Link FA