Before the featured portal process ceased in 2017, this had been designated as a featured portal.


From Wikipedia, the free encyclopedia
Jump to navigation Jump to search


An oil painting of a chemist (Ana Kansky, painted by Henrika Šantel in 1932)

Chemistry is the scientific study of the properties and behavior of matter. It is a natural science that covers the elements that make up matter to the compounds composed of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during a reaction with other substances.

In the scope of its subject, chemistry occupies an intermediate position between physics and biology. It is sometimes called the central science because it provides a foundation for understanding both basic and applied scientific disciplines at a fundamental level. For example, chemistry explains aspects of plant growth (botany), the formation of igneous rocks (geology), how atmospheric ozone is formed and how environmental pollutants are degraded (ecology), the properties of the soil on the moon (cosmochemistry), how medications work (pharmacology), and how to collect DNA evidence at a crime scene (forensics).

Chemistry addresses topics such as how atoms and molecules interact via chemical bonds to form new chemical compounds. There are two types of chemical bonds:

Selected article

Space-filling image of an alanine cyclol "fabric", proposed by Winrich in 1936.
The cyclol hypothesis was the first structural model of a folded, globular protein. It was developed by Dorothy Wrinch in the late 1930's, and was based on three assumptions. Firstly, the hypothesis assumes that two peptide groups can be crosslinked by a cyclol reaction; these crosslinks are covalent analogs of non-covalent hydrogen bonds between peptide groups. These reactions have been observed in the ergopeptides and other compounds. Secondly, it assumes that, under some conditions, amino acids will naturally make the maximum possible number of cyclol crosslinks, resulting in cyclol molecules and cyclol fabrics. Finally, the hypothesis assumes that globular proteins have a tertiary structure corresponding to Platonic solids and semiregular polyhedra formed of cyclol fabrics with no free edges.

Although incorrect as a model for the structure of globular proteins, several elements of the cyclol model were later verified, such as the cyclol reaction itself and the hypothesis that hydrophobic interactions are chiefly responsible for protein folding. The cyclol hypothesis stimulated many scientists to research questions in protein structure and chemistry, and was a precursor of the more accurate models hypothesized for the DNA double helix and protein secondary structure. The proposal and testing of the cyclol model also provides an excellent illustration of empirical falsifiability acting as part of the scientific method.


History and Philosophy of Chemistry

Antoine Lavoisier

Many chemists have an interest in the history of chemistry. Those with philosophical interests will be interested that the philosophy of chemistry has quite recently developed along a path somewhat different from the general philosophy of science.

Other articles that might interest you are:

There is a Wikipedia Project on the History of Science.

Chemistry Resources

Info icon.png

Wikipedia:WikiProject Chemicals/Data is a collection of links and references that are useful for chemistry-related works. This includes free online chemical databases, publications, patents, computer programs, and various tools. A good place to figure out what equals what.

General Chemistry Online Clear text and comprehensive coverage of general chemistry topics by Fred Senese, Dept. of Chemistry Frostburg State University

General Chemistry Demonstration at Purdue Video clips (and descriptions) of lecture demonstrations.

Chemistry Webercises Directory A large listing of chemistry resources maintained by Steven Murov, Emeritus Chemistry Professor Modesto Junior College.

MathMol MathMol (Mathematics and Molecules) is a good starting point for those interested in the field of molecular modeling.

ABC-Chemistry A directory of free full-text journals in chemistry, biochemistry and related subjects.

The Element Song A goofy little song about all of the elements.

Selected image

Bismuth crystal
A bismuth crystal covered with an iridescent oxide surface. Bismuth is a post-transition metal with the atomic number 83. It is generally considered to be the last naturally occurring stable, non-radioactive element on the periodic table, although it is actually slightly radioactive. Bismuth compounds are used in cosmetics, medicines, and in medical procedures. As the toxicity of lead has become more apparent in recent years, alloy uses for bismuth metal as a replacement for lead have become an increasing part of bismuth's commercial importance.

Selected biography

Harold Urey
Harold Urey (1893-1981) was an American physical chemist, who won the 1934 Nobel Prize in Chemistry for his work on isotopes, specifically the discovery of deuterium, a hydrogen isotope, and the production of heavy water. He also performed pioneering research in cosmochemistry, which studies the origin and development of elements and their isotopes, primarily within the solar system. Urey, along with his student Stanley Miller, may be best remembered for the renowned Miller-Urey experiment, which shows that a mixture of ammonia, methane and hydrogen, when exposed to ultraviolet radiation and water, can interact to form amino acids, the "building blocks" of terrestrial life. This experiment followed on from Urey's work on the oxygen isotope 18O, and is considered to be pioneering work in the field of paleoclimatology, as it attempts to explain the composition of the early Earth's atmosphere.

Techniques used by chemists

Equipment used by chemists

Chemistry in society

Chemistry in industry



Periodic Table

Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hydrogen &
alkali metals
Alkaline earth metals Pnicto­gens Chal­co­gens Halo­gens Noble


Hydro­gen1H1.0080 He­lium2He4.0026
2 Lith­ium3Li6.94 Beryl­lium4Be9.0122 Boron5B10.81 Carbon6C12.011 Nitro­gen7N14.007 Oxy­gen8O15.999 Fluor­ine9F18.998 Neon10Ne20.180
3 So­dium11Na22.990 Magne­sium12Mg24.305 Alumin­ium13Al26.982 Sili­con14Si28.085 Phos­phorus15P30.974 Sulfur16S32.06 Chlor­ine17Cl35.45 Argon18Ar39.95
4 Potas­sium19K39.098 Cal­cium20Ca40.078 Scan­dium21Sc44.956 Tita­nium22Ti47.867 Vana­dium23V50.942 Chrom­ium24Cr51.996 Manga­nese25Mn54.938 Iron26Fe55.845 Cobalt27Co58.933 Nickel28Ni58.693 Copper29Cu63.546 Zinc30Zn65.38 Gallium31Ga69.723 Germa­nium32Ge72.630 Arsenic33As74.922 Sele­nium34Se78.971 Bromine35Br79.904 Kryp­ton36Kr83.798
5 Rubid­ium37Rb85.468 Stront­ium38Sr87.62 Yttrium39Y88.906 Zirco­nium40Zr91.224 Nio­bium41Nb92.906 Molyb­denum42Mo95.95 Tech­netium43Tc​[97] Ruthe­nium44Ru101.07 Rho­dium45Rh102.91 Pallad­ium46Pd106.42 Silver47Ag107.87 Cad­mium48Cd112.41 Indium49In114.82 Tin50Sn118.71 Anti­mony51Sb121.76 Tellur­ium52Te127.60 Iodine53I126.90 Xenon54Xe131.29
6 Cae­sium55Cs132.91 Ba­rium56Ba137.33 1 asterisk Lute­tium71Lu174.97 Haf­nium72Hf178.49 Tanta­lum73Ta180.95 Tung­sten74W183.84 Rhe­nium75Re186.21 Os­mium76Os190.23 Iridium77Ir192.22 Plat­inum78Pt195.08 Gold79Au196.97 Mer­cury80Hg200.59 Thallium81Tl204.38 Lead82Pb207.2 Bis­muth83Bi208.98 Polo­nium84Po​[209] Asta­tine85At​[210] Radon86Rn​[222]
7 Fran­cium87Fr​[223] Ra­dium88Ra​[226] 1 asterisk Lawren­cium103Lr​[266] Ruther­fordium104Rf​[267] Dub­nium105Db​[268] Sea­borgium106Sg​[269] Bohr­ium107Bh​[270] Has­sium108Hs​[269] Meit­nerium109Mt​[278] Darm­stadtium110Ds​[281] Roent­genium111Rg​[282] Coper­nicium112Cn​[285] Nihon­ium113Nh​[286] Flerov­ium114Fl​[289] Moscov­ium115Mc​[290] Liver­morium116Lv​[293] Tenness­ine117Ts​[294] Oga­nesson118Og​[294]
1 asterisk Lan­thanum57La138.91 Cerium58Ce140.12 Praseo­dymium59Pr140.91 Neo­dymium60Nd144.24 Prome­thium61Pm​[145] Sama­rium62Sm150.36 Europ­ium63Eu151.96 Gadolin­ium64Gd157.25 Ter­bium65Tb158.93 Dyspro­sium66Dy162.50 Hol­mium67Ho164.93 Erbium68Er167.26 Thulium69Tm168.93 Ytter­bium70Yb173.05  
1 asterisk Actin­ium89Ac​[227] Thor­ium90Th232.04 Protac­tinium91Pa231.04 Ura­nium92U238.03 Neptu­nium93Np​[237] Pluto­nium94Pu​[244] Ameri­cium95Am​[243] Curium96Cm​[247] Berkel­ium97Bk​[247] Califor­nium98Cf​[251] Einstei­nium99Es​[252] Fer­mium100Fm​[257] Mende­levium101Md​[258] Nobel­ium102No​[259]

Related portals

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:


  1. ^ Meija, Juris; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305.
  2. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
Discover Wikipedia using portals