Before the featured portal process ceased in 2017, this had been designated as a featured portal.

Portal:Chemistry

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Introduction

Chemistry is the scientific discipline involved with compounds composed of atoms, i.e. elements, and molecules, i.e. combinations of atoms: their composition, structure, properties, behavior and the changes they undergo during a reaction with other compounds. Chemistry addresses topics such as how atoms and molecules interact via chemical bonds to form new chemical compounds. There are four types of chemical bonds: covalent bonds, in which compounds share one or more electron(s); ionic bonds, in which a compound donates one or more electrons to another compound to produce ions (cations and anions); hydrogen bonds; and Van der Waals force bonds.

In the scope of its subject, chemistry occupies an intermediate position between physics and biology. It is sometimes called the central science because it provides a foundation for understanding both basic and applied scientific disciplines at a fundamental level. Examples include plant chemistry (botany), the formation of igneous rocks (geology), how atmospheric ozone is formed and how environmental pollutants are degraded (ecology), the properties of the soil on the moon (astrophysics), how medications work (pharmacology), and how to collect DNA evidence at a crime scene (forensics).

The history of chemistry spans a period from very old times to the present. Since several millennia BC, civilizations were using technologies that would eventually form the basis of the various branches of chemistry. Examples include extracting metals from ores, making pottery and glazes, fermenting beer and wine, extracting chemicals from plants for medicine and perfume, rendering fat into soap, making glass, and making alloys like bronze. Chemistry was preceded by its protoscience, alchemy, which is an intuitive but non-scientific approach to understanding the constituents of matter and their interactions. It was unsuccessful in explaining the nature of matter and its transformations, but, by performing experiments and recording the results, alchemists set the stage for modern chemistry. Chemistry as a body of knowledge distinct from alchemy began to emerge when a clear differentiation was made between them by Robert Boyle in his work The Sceptical Chymist (1661). While both alchemy and chemistry are concerned with matter and its transformations, the crucial difference was given by the scientific method that chemists employed in their work. Chemistry is considered to have become an established science with the work of Antoine Lavoisier, who developed a law of conservation of mass that demanded careful measurement and quantitative observations of chemical phenomena. The history of chemistry is intertwined with the history of thermodynamics, especially through the work of Willard Gibbs.

Featured article

The electron transport chain in the mitochondrion is the site of oxidative phosphorylation in eukaryotes.
Oxidative phosphorylation is a metabolic pathway that uses energy released by the oxidation of nutrients to produce adenosine triphosphate (ATP). Although the many forms of life on Earth utilize a range of different nutrients, almost all carry out oxidative phosphorylation to produce ATP, the molecule that supplies energy to metabolism. This pathway is probably so pervasive because it is a highly efficient way of storing energy, compared to alternative fermentation processes such as glycolysis.

Although oxidative phosphorylation is a vital part of metabolism, it produces reactive oxygen species such as free radicals that damage cells and contribute to ageing and disease. The enzymes carrying out this metabolic pathway are also the target of many drugs and poisons that inhibit their activities.

Selected picture

Gallium crystals
Credit: Greatpatton

Gallium is a chemical element in the periodic table that has the symbol Ga and atomic number 31. A rare, soft silvery metallic poor metal, gallium is a brittle solid at low temperatures but liquefies slightly above room temperature and indeed will melt in the hand. It occurs in trace amounts in bauxite and zinc ores. An important application is in the compound gallium arsenide, used as a semiconductor, most notably in light-emitting diodes (LEDs).

Categories

History and Philosophy of Chemistry

Antoine Lavoisier

Many chemists have an interest in the history of chemistry. Those with philosophical interests will be interested that the philosophy of chemistry has quite recently developed along a path somewhat different from the general philosophy of science.

Other articles that might interest you are:

There is a Wikipedia Project on the History of Science and a portal for the philosophy of science.

Chemistry Resources

Info icon.png

Wikipedia:WikiProject Chemicals/Data is a collection of links and references that are useful for chemistry-related works. This includes free online chemical databases, publications, patents, computer programs, and various tools.

Science is Fun University of Wisconsin–Madison Chemistry Professor Bassam Z. Shakhashiri, shares the fun of science.

unit-conversion.info A good place to figure out what equals what.

General Chemistry Online Clear text and comprehensive coverage of general chemistry topics by Fred Senese, Dept. of Chemistry Frostburg State University

General Chemistry Demonstration at Purdue Video clips (and descriptions) of lecture demonstrations.

Intota Chemistry Experts A large online listing of real-world chemistry expert biographies provides examples of the many areas of expertise and careers in chemistry.

Chemistry Webercises Directory A large listing of chemistry resources maintained by Steven Murov, Emeritus Chemistry Professor Modesto Junior College.

MathMol MathMol (Mathematics and Molecules) is a good starting point for those interested in the field of molecular modeling.

Chemistry Educational Resources and Essential References from Wiley, the world's largest chemistry publisher

ABC-Chemistry A directory of free full-text journals in chemistry, biochemistry and related subjects.

The Element Song A goofy little song about all of the elements.

Selected biography

Hermann Emil Fischer
Hermann Emil Fischer (1852-1919) was a German chemist, and recipient of the Nobel Prize for Chemistry in 1902. Many consider Fischer to be the most brilliant chemist who ever lived, because of his numerous contributions to science, especially chemistry and biochemistry. Among these is his discovery of phenylhydrazine. He also undertook vast studies on purines. This work showed that various substances such as adenine, xanthine, caffeine, uric acid, and guanine, all belonged to one homogeneous family, and could be derived from one another. He reasoned this to be due to their common origins from a parent molecule, a bicyclic nitrogenous structure into which the characteristic urea group entered. Fischer regarded this structure as hypothetical, and named it 'purine' in 1884. He synthesised it in 1898. He is also famed for his work on sugars.

Techniques used by chemists

Equipment used by chemists

Chemistry in society

Chemistry in industry

WikiProjects

Periodic Table

Group 1 2 3   4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Alkali metals Alkaline earth metals Pnicto­gens Chal­co­gens Halo­gens Noble gases
Period

1

Hydro­gen1H1.008 He­lium2He4.0026
2 Lith­ium3Li6.94 Beryl­lium4Be9.0122 Boron5B10.81 Carbon6C12.011 Nitro­gen7N14.007 Oxy­gen8O15.999 Fluor­ine9F18.998 Neon10Ne20.180
3 So­dium11Na22.990 Magne­sium12Mg24.305 Alumin­ium13Al26.982 Sili­con14Si28.085 Phos­phorus15P30.974 Sulfur16S32.06 Chlor­ine17Cl35.45 Argon18Ar39.948
4 Potas­sium19K39.098 Cal­cium20Ca40.078 Scan­dium21Sc44.956 Tita­nium22Ti47.867 Vana­dium23V50.942 Chrom­ium24Cr51.996 Manga­nese25Mn54.938 Iron26Fe55.845 Cobalt27Co58.933 Nickel28Ni58.693 Copper29Cu63.546 Zinc30Zn65.38 Gallium31Ga69.723 Germa­nium32Ge72.630 Arsenic33As74.922 Sele­nium34Se78.971 Bromine35Br79.904 Kryp­ton36Kr83.798
5 Rubid­ium37Rb85.468 Stront­ium38Sr87.62 Yttrium39Y88.906 Zirco­nium40Zr91.224 Nio­bium41Nb92.906 Molyb­denum42Mo95.95 Tech­netium43Tc​[98] Ruthe­nium44Ru101.07 Rho­dium45Rh102.91 Pallad­ium46Pd106.42 Silver47Ag107.87 Cad­mium48Cd112.41 Indium49In114.82 Tin50Sn118.71 Anti­mony51Sb121.76 Tellur­ium52Te127.60 Iodine53I126.90 Xenon54Xe131.29
6 Cae­sium55Cs132.91 Ba­rium56Ba137.33 Lan­thanum57La138.91 1 asterisk Haf­nium72Hf178.49 Tanta­lum73Ta180.95 Tung­sten74W183.84 Rhe­nium75Re186.21 Os­mium76Os190.23 Iridium77Ir192.22 Plat­inum78Pt195.08 Gold79Au196.97 Mer­cury80Hg200.59 Thallium81Tl204.38 Lead82Pb207.2 Bis­muth83Bi208.98 Polo­nium84Po​[209] Asta­tine85At​[210] Radon86Rn​[222]
7 Fran­cium87Fr​[223] Ra­dium88Ra​[226] Actin­ium89Ac​[227] 1 asterisk Ruther­fordium104Rf​[267] Dub­nium105Db​[268] Sea­borgium106Sg​[269] Bohr­ium107Bh​[270] Has­sium108Hs​[270] Meit­nerium109Mt​[278] Darm­stadtium110Ds​[281] Roent­genium111Rg​[282] Coper­nicium112Cn​[285] Nihon­ium113Nh​[286] Flerov­ium114Fl​[289] Moscov­ium115Mc​[290] Liver­morium116Lv​[293] Tenness­ine117Ts​[294] Oga­nesson118Og​[294]
1 asterisk Cerium58Ce140.12 Praseo­dymium59Pr140.91 Neo­dymium60Nd144.24 Prome­thium61Pm​[145] Sama­rium62Sm150.36 Europ­ium63Eu151.96 Gadolin­ium64Gd157.25 Ter­bium65Tb158.93 Dyspro­sium66Dy162.50 Hol­mium67Ho164.93 Erbium68Er167.26 Thulium69Tm168.93 Ytter­bium70Yb173.05 Lute­tium71Lu174.97  
1 asterisk Thor­ium90Th232.04 Protac­tinium91Pa231.04 Ura­nium92U238.03 Neptu­nium93Np​[237] Pluto­nium94Pu​[244] Ameri­cium95Am​[243] Curium96Cm​[247] Berkel­ium97Bk​[247] Califor­nium98Cf​[251] Einstei­nium99Es​[252] Fer­mium100Fm​[257] Mende­levium101Md​[258] Nobel­ium102No​[259] Lawren­cium103Lr​[266]

Note: Nihonium, moscovium, tennessine, and oganesson have only recently been named.

Things you can do

Nuvola apps korganizer.svg

Here are some things you can do:


Collaboration of the Month

Nuvola apps edu science.png The current Chemistry Article Improvement Drive is Sodium hydroxide.
Every month a different chemistry-related topic, stub or non-existent article may be picked. Please improve the article any way you can.

Related portals

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

Wikibooks
Books

Commons
Media

Wikinews 
News

Wikiquote 
Quotations

Wikisource 
Texts

Wikiversity
Learning resources

Wiktionary 
Definitions

Wikidata 
Database

  1. ^ Meija, J.; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305. 
  2. ^ IUPAC 2016, Table 2, 3 combined; uncertainty removed.