Complex regional pain syndrome

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 50.128.155.168 (talk) at 04:18, 2 January 2014 (→‎Bisphosphonate treatment: Breaking up into more study-oriented/conclusion-driven paragraphs. A couple typos here and there. Good section though! :)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Complex regional pain syndrome
SpecialtyMedicina fisica y rehabilitacion Edit this on Wikidata

Complex regional pain syndrome (CRPS), formerly reflex sympathetic dystrophy (RSD) or "causalgia", reflex neurovascular dystrophy (RND), or amplified musculoskeletal pain syndrome (AMPS), is a chronic systemic disease characterized by severe pain, swelling, and changes in the skin. CRPS is expected to worsen over time.[1] It often initially affects an arm or a leg and often spreads throughout the body; 92% of patients state that they have experienced a spread, and 35% of patients report symptoms in their whole body.[2] Recent evidence has led to the conclusion that Complex Regional Pain Syndrome is a multifactorial disorder with clinical features of neurogenic inflammation, nociceptive sensitisation (which causes extreme sensitivity or allodynia), vasomotor dysfunction, and maladaptive neuroplasticity, generated by an aberrant response to tissue injury.[3] Treatment is complicated, involving drugs, physical therapy, psychologic treatments, and neuromodulation and usually unsatisfactory, especially if begun late.[4]

CRPS is associated with dysregulation of the central nervous system[5] and autonomic nervous system resulting in multiple functional loss, impairment, and disability. The International Association for the Study of Pain has proposed dividing CRPS into two types based on the presence of nerve lesion following the injury.

  • Type I, formerly known as reflex sympathetic dystrophy (RSD), Sudeck's atrophy, reflex neurovascular dystrophy (RND), or algoneurodystrophy, does not have demonstrable nerve lesions. With the vast majority of patients diagnosed with CRPS being of this type, most of the literature thus refers to type I.
  • Type II, formerly known as causalgia, has evidence of obvious nerve damage. Type II CRPS tends towards the more painful and difficult to control aspects of CRPS; type II scores 42 out of 50 on the McGill pain scale [6] (however there is seemingly little or no data pertaining to type I specifically here). In Type II the "cause" of the syndrome is the known or obvious nerve injury, although the cause of the mechanisms of CRPS Type II are as unknown as the mechanisms of Type I.

CRPS has the unfortunate honour of being described as being one of the most painful long term conditions, scoring 42 out of a possible 50 on the McGill pain scale, above such events as amputation and childbirth.[7] Lack of social awareness has inspired patients to campaign for more widespread knowledge of CRPS,[8] and lack of clinical awareness has led to the creation of support groups seeking to self-educate with the latest research.[9]

Evidence suggests that CRPS has both physical and psychological factors. CRPS is said to cause physiological problems (rather than physiological problems causing CRPS); whilst "research does not reveal support for specific personality or psychopathology predictors of the condition" there are psychosocial factors to CRPS (such as reduced quality of life and impaired occupational function) and psychological problems (which include increased depression and anxiety).[10] Unsurprisingly, there is overwhelming evidence of limbic system involvement.[11] Sadly this very poor quality of life for some has led to high rates of depression and suicide among sufferers, which has motivated appeals for greater understanding. The AFPS leaflet on CRPS and prevention of suicide is available online here: CRPS and Suicide Prevention.

Daily vitamin C has been shown to reduce the risk of CRPS after an injury, leading to calls for greater awareness, especially in the emergency room setting. In two placebo-controlled randomized clinical trials Zollinger et al. showed that patients who took 500 mg of vitamin C daily after a wrist fracture were less likely to incur the problem.[12] The cause of CRPS is currently unknown. Precipitating factors include injury and surgery, although there are documented cases that have no demonstrable injury to the original site.

New research is demonstrating how Complex Regional Pain Syndrome is a systemic disease. Potentially any organ could be affected.[13] There are many internal complications that are frequently not acknowledged. CRPS affects the systems of cognition; constitutional, cardiac, and respiratory complications; systemic autonomic dysregulation; neurogenic edema; musculoskeletal, endo-crine, and dermatological manifestations; and urological and gastrointestinal function.[14] Recently work has shown how CRPS can spread to the stomach, with resulting symptoms of daily vomiting and extreme pain,[15] though the pain experienced feels different than that in the extremity.

With the growing body of evidence persuasively indicating the progressive and systemic implications of chronic CRPS,[16] there is concern that these patients may be erroneously also diagnosed with fibromyalgia. Fibromyalgia has a MPQ score of 35.7/50,[17] whereas CRPS averages a 42/50 MPQ. Chronic CRPS patients would react to the pressure points of the brachial plexus, the intercostobrachial (ICB) nerve and concomitant L5-S1, injury.[18] The similarities between multiple sclerosis and CRPS (which include symptoms of muscle twitching and tremors, wobbliness, falling, and visionary disturbances) have inspired research; when MS patients were tested for CRPS, incidents of the disease was more than 50 times higher than in the average population.[19] As glial activation and central sensitization in the central nervous system are evident in both CRPS and MS, favourable results were evident when CRPS was treated with low-dose naltrexone (a glial attenuator used in the treatment of MS).[20]

History and nomenclature

The condition currently known as CRPS was originally described during the American Civil War by Silas Weir Mitchell, who is sometimes also credited with inventing the name "causalgia."[21] However, this term was actually coined by Mitchell's friend Robley Dunglison from the Greek words for heat and for pain.[22] Contrary to what is commonly accepted, it emerges that these causalgias were certainly major by the importance of the vasomotor and sudomotor symptoms but stemmed from minor neurological lesions. Mitchell even thought that the CRPS etiology came from the cohabitation of the altered and unaltered cutaneous fibres on the same nerve distribution territory.[23] In the 1940s, the term reflex sympathetic dystrophy came into use to describe this condition, based on the theory that sympathetic hyperactivity was involved in the pathophysiology.[24] In 1959, Noordenbos observed in caulsalgia patients that "the damage of the nerve is always partial."[25] Misuse of the terms, as well as doubts about the underlying pathophysiology, led to calls for better nomenclature. In 1993, a special consensus workshop held in Orlando, Florida, provided the umbrella term "complex regional pain syndrome", with causalgia and RSD as subtypes.[26]

severe CRPS of right arm
CRPS visible on hands and wrists

Pathophysiology

Evidence from functional MRI data indicates that CRPS could be a systemic disease with a unified diagnosis (rather than a collection of symptoms).[27] The "underlying neuronal matrix" of CRPS is seen to involve cognitive and motor as well as nociceptive processing; pinprick stimulation of a CRPS affected limb was painful (mechanical hyperalgesia) and showed a "significantly increased activation" of not just the S1 cortex (contralateral), S2 (bilateral) areas, and insula (bilateral) but also the associative-somatosensory cortices (contralateral), frontal cortices, and parts of the anterior cingulate cortex.[28] In contrast to previous thoughts reflected in the name RSD, it appears that there is reduced Sympathetic Nervous System outflow, at least in the affected region (although there may be sympatho-afferent coupling).[29] Wind-up (the increased sensation of pain with time)[30] and central nervous system (CNS) sensitization are key neurologic processes that appear to be involved in the induction and maintenance of CRPS.[31]

There is compelling evidence that the N-methyl-D-aspartate (NMDA) receptor has significant involvement in the CNS sensitization process.[32] It is also hypothesized that elevated CNS glutamate levels promote wind-up and CNS sensitization.[31] In addition, there is experimental evidence that demonstrates NMDA receptors in peripheral nerves.[33] Because immunological functions can modulate CNS physiology, it has also been hypothesized that a variety of immune processes may contribute to the initial development and maintenance of peripheral and central sensitization.[34][35] Furthermore, trauma related cytokine release, exaggerated neurogenic inflammation, sympathetic afferent coupling, adrenoreceptor pathology, glial cell activation, cortical reorganisation,[36] and oxidative damage (e.g., by free radicals) are all concepts that have been implicated in the pathophysiology of CRPS.[37]

The pathophysiology of Complex Regional Pain Syndrome has not yet been defined; there is conjecture that CRPS, with its variable manifestations, could be the result of multiple pathophysiologies.[29]

It has been further suggested that CRPS is in fact an auto-immune disease where the body's own antibodies are directed at ones own nerves.[38]

Susceptibility

CRPS can strike at any age, but the mean age at diagnosis is 42.[39] CRPS has been diagnosed in children as young as 2 years old.[40] It affects both men and women; however, CRPS is three times more frequent in females than males.[39] The number of reported CRPS cases among adolescents and young adults is increasing.[41]

Investigators estimate that 2-5% of those with peripheral nerve injury,[39] and 13-70 percent of those with hemiplegia (paralysis of one side of the body),[42] will suffer from CRPS. In addition, some studies have indicated that cigarette smoking was strikingly present in patients and is statistically linked to RSD. In one study, 68% of patients versus 37% of hospitalized controls were found. This may be involved in its pathology by enhancing sympathetic activity, vasoconstriction, or by some other unknown neurotransmitter-related mechanism.[43]

It is also theorized that certain people might be genetically predisposed to develop symptoms of RSD/CRPS after a significant or seemingly insignificant injury has been sustained.[44] These tests are being performed by The Reflex Sympathetic Dystrophy Syndrome Association (RSDSA), American RSD Hope, and Richard G. Boles, M.D. Research began in October 2008, but the outcome has yet to be released to the medical community.[45]

Symptoms

Clinical features of CRPS have been found to be neurogenic inflammation, nociceptive sensitisation, vasomotor dysfunction, and maladaptive neuroplasticity.[3] The symptoms of CRPS usually initially manifest near the site of an injury, which is usually minor. The most common symptoms overall are pain sensations, including burning, stabbing, grinding, and throbbing. Moving or touching the limb is often intolerable. The patient may also experience muscle spasms, local swelling, sensitivity to things such as water, touch, and vibrations, abnormally increased sweating, changes in skin temperature (usually hot but sometimes cold) and color (bright red or a reddish violet), softening and thinning of bones, joint tenderness or stiffness, and/or restricted or painful movement. Falls, pre syncope, and syncope are infrequently reported, as are visual problems. Regional Osteoporosis is possible. The symptoms of CRPS vary in severity and duration. Since CRPS is a systemic problem, potentially any organ can be affected.

The pain of CRPS is continuous, and it is widely recognised that it can be heightened by emotional or physical stress.[46] Limbic system involvement suggests a propensity for trouble with sleeping, mood, appetite, and sexual desire; in a study of 824 patients with CRPS, 92% reported insomnia; 78% irritability, agitation, and anxiety; 73% depression, and 48% poor memory and lack of concentration.[47]

Patients are frequently classified into two groups based upon temperature, whether they are predominately "warm" or "hot" CRPS or "cold" CRPS. The vast majority, approximately 70% of patients, have the "hot" type, which is said to be an acute form of CRPS.[48] Cold CRPS is said to be indicative of a more chronic CRPS, with poorer McGill Pain Questionnaire (MPQ) scores, increased central nervous system involvement, and a higher prevalence of dystonia.[48] Prognosis is not favourable for cold CRPS patients; longitudinal studies suggest these patients have "poorer clinical pain outcomes and show persistent signs of central sensitisation correlating with disease progression".[49]

Previously it was considered that CRPS had three stages; it is now believed that patients with CRPS do not progress through these stages sequentially. These stages may not be time-constrained and could possibly be event-related such as ground-level falls or re-injuries in previous areas. Rather than a progression of CRPS from bad to worse, it is now thought, instead, that patients are likely to have one of the three following types of disease progression:

  1. "Stage" one is characterized by severe, burning pain at the site of the injury, muscle spasms, joint stiffness, restricted mobility, rapid hair and nail growth, and vasospasm. The vasospasm is that which causes the changes in the color and temperature of the skin. Some may experience hyperhydrosis (increased sweating). In mild cases this stage lasts a few weeks, in which it can subside spontaneously or respond rapidly to treatment (physical therapy, pain specialist).
  2. "Stage" two is characterized by more intense pain. Swelling spreads, hair growth diminishes, nails become cracked, brittle, grooved, and spotty, osteoporosis becomes severe and diffuse, joints thicken, and muscles atrophy.
  3. "Stage" three is characterized by irreversible changes in the skin and bones, while the pain becomes unyielding and may involve the entire limb. There is marked muscle atrophy, severely limited mobility of the affected area, and flexor tendon contractions (contractions of the muscles and tendons that flex the joints). Occasionally the limb is displaced from its normal position, and marked bone softening and thinning is more dispersed.

Diagnosis

CRPS types I and II share the common diagnostic criteria shown below. Spontaneous pain or allodynia (pain resulting from a stimulus which would not normally provoke pain, such as a light touch of the skin) is not limited to the territory of a single peripheral nerve and is disproportionate to the inciting event.

  1. There is a history of edema, skin blood flow abnormality, or abnormal sweating in the region of the pain since the inciting event.
  2. No other conditions can account for the degree of pain and dysfunction.

The two types differ only in the nature of the inciting event. Type I CRPS develops following an initiating noxious event that may or may not have been traumatic, while type II CRPS develops after a nerve injury.

No specific test is available for CRPS, which is diagnosed primarily through observation of the symptoms. However, thermography, sweat testing, x-rays, electrodiagnostics, and sympathetic blocks can be used to build up a picture of the disorder. Diagnosis is complicated by the fact that some patients improve without treatment. A delay in diagnosis and/or treatment for this syndrome can result in severe physical and psychological problems. Early recognition and prompt treatment provide the greatest opportunity for recovery.

The International Association for the Study of Pain (IASP) lists the diagnostic criteria for complex regional pain syndrome I (CRPS I) (RSDS) as follows:

  1. The presence of an initiating noxious event or a cause of immobilization
  2. Continuing pain, allodynia (perception of pain from a nonpainful stimulus), or hyperalgesia (an exaggerated sense of pain) disproportionate to the inciting event
  3. Evidence at some time of edema, changes in skin blood flow, or abnormal sudomotor activity in the area of pain
  4. The diagnosis is excluded by the existence of any condition that would otherwise account for the degree of pain and dysfunction.

According to the IASP, CRPS II (causalgia) is diagnosed as follows:

  1. The presence of continuing pain, allodynia, or hyperalgesia after a nerve injury, not necessarily limited to the distribution of the injured nerve
  2. Evidence at some time of edema, changes in skin blood flow, or abnormal sudomotor activity in the region of pain
  3. The diagnosis is excluded by the existence of any condition that would otherwise account for the degree of pain and dysfunction.

The IASP criteria for CRPS I diagnosis has shown a sensitivity ranging from 98–100% and a specificity ranging from 36–55%. Per the IASP guidelines, interobserver reliability for CRPS I diagnosis is poor. Two other criteria used for CRPS I diagnosis are Bruehl's criteria and Veldman's criteria, which have moderate to good interobserver reliability. In the absence of clear evidence supporting one set of criteria over the other, clinicians may use IASP, Bruehl’s, or Veldman’s clinical criteria for diagnosis. While the IASP criteria are nonspecific and possibly not as reproducible as Bruehl’s or Veldman’s criteria, they are cited more widely in literature, including treatment trials.[50]

Thermography

Presently, established empirical evidence suggests against thermography's efficacy as a reliable tool for diagnosing CRPS. Although CRPS may, in some cases, lead to measurably altered blood flow throughout an affected region, many other factors can also contribute to an altered thermographic reading, including the patient's smoking habits, use of certain skin lotions, recent physical activity, and prior history of trauma to the region. Also, not all patients diagnosed with CRPS demonstrate such "vasomotor instability" — less often, still, those in the later stages of the disease.[51] Thus, thermography alone cannot be used as conclusive evidence for - or against - a diagnosis of CRPS and must be interpreted in light of the patient's larger medical history and prior diagnostic studies.[52]

In order to minimise the confounding influence of external factors, patients undergoing infrared thermographic testing must conform to special restrictions regarding the use of certain vasoconstrictors (namely, nicotine and caffeine), skin lotions, physical therapy, and other diagnostic procedures in the days prior to testing. Patients may also be required to discontinue certain pain medications and sympathetic blockers. After a patient arrives at a thermographic laboratory, he or she is allowed to reach thermal equilibrium in a 16–20 °C, draft-free, steady-state room wearing a loose fitting cotton hospital gown for approximately twenty minutes. A technician then takes infrared images of both the patient's affected and unaffected limbs, as well as reference images of other parts of the patient's body, including his or her face, upper back, and lower back. After capturing a set of baseline images, some labs further require the patient to undergo cold-water autonomic-functional-stress-testing to evaluate the function of his or her autonomic nervous system's peripheral vasoconstrictor reflex. This is performed by placing a patient's unaffected limb in a cold water bath (approximately 20 °C) for five minutes while collecting images. In a normal, intact, functioning autonomic nervous system, a patient's affected extremity will become colder. Conversely, warming of an affected extremity may indicate a disruption of the body's normal thermoregulatory vasoconstrictor function, which may sometimes indicate underlying CRPS.[53]

Sweat testing

Abnormal sweating can be detected by several tests. A powder that changes color when exposed to sweat can be applied to the limbs; however, this method does not allow for quantification of sweating. Two quantitative tests that may be used are the resting sweat output test and the quantitative sudomotor axon reflex test. These quantitative sweat tests have been shown to correlate with clinical signs of CRPS.[54]

Radiography

Patchy osteoporosis (post-traumatic osteoporosis), which may be due to disuse of the affected extremity, can be detected through X-ray imagery as early as two weeks after the onset of CRPS. A bone scan of the affected limb may detect these changes even sooner. Bone densitometry can also be used to detect changes in bone mineral density. It can also be used to monitor the results of treatment since bone densitometry parameters improve with treatment.

Electrodiagnostic testing

Electromyography (EMG) and Nerve Conduction Studies (NCS) are important ancillary tests in CRPS because they are among the most reliable methods of detecting nerve injury. They can be used as one of the primary methods to distinguish between CRPS I & II, which differ based on whether there is evidence of actual nerve damage. EMG & NCS are also among the best tests for ruling in or out alternative diagnoses. CRPS is a "diagnosis of exclusion", which requires that there be no other diagnosis that can explain the patient's symptoms. This is very important to emphasise because otherwise patients can be given a wrong diagnosis of CRPS when they actually have a treatable condition that better accounts for their symptoms. An example is severe Carpal Tunnel Syndrome, which can often present in a very similar way to CRPS. Unlike CRPS, Carpal Tunnel Syndrome can often be corrected with surgery in order to alleviate the pain and avoid permanent nerve damage and malformation.[55]

Both EMG and NCS involve some measure of discomfort. EMG involves the use of a tiny needle that is inserted into specific muscles to test the associated muscle and nerve function. Both EMG & NCS involve very mild shocks that in normal patients are comparable to a rubber band snapping on the skin. Although these tests can be very useful in CRPS, thorough informed consent needs to be obtained prior to the procedure, particularly in patients experiencing severe allodynia. In spite of the utility of the test, these patients may wish to decline the procedure in order to avoid discomfort.

Treatment

The general strategy in CRPS treatment is often multi-disciplinary, with the use of different types of medications combined with distinct physical therapies. The treatment principles in children and teenagers are similar.

Physical and occupational therapy

Physical and occupational therapy are important components of the management of CRPS primarily by desensitising the affected body part, restoring motion, and improving function. Physical therapy interventions for CRPS can include specific modalities such as transcutaneous electrical nerve stimulation, progressive weight bearing, tactile desensitization, massage, and contrast bath therapy. These interventions tailored specifically to each individual person can be used to improve pain and function to help people return to normal activities of daily living.[56] Some people at certain stages of the disease are incapable of participating in physical therapy due to touch intolerance. This may be where Graded Motor Imagery and Mirror Therapy (see below) are particularly helpful. People with CRPS often develop guarding behaviors where they avoid using or touching the affected limb. This inactivity exacerbates the disease and perpetuates the pain cycle. Therefore, optimizing the multimodal treatment is paramount to allow for use of the involved body part. Physical therapy works best for most patients, especially goal-directed therapy, where the patient begins from an initial point, regardless of how minimal, and then endeavors to increase activity each week. Therapy is directed at facilitating the patient to engage in physical therapy, movement, and stimulation of the affected areas. One difficulty with the idea of physical therapy, however, is that it means different things to different people. There is one systematic review of the use of physical and occupational therapy for the treatment of CRPS.[57] That review concluded, "Narrative synthesis of the results, based on effect size, found there was good to very good quality level II evidence that graded motor imagery is effective in reducing pain in adults with CRPS-1, irrespective of the outcome measure used. No evidence was found to support treatments frequently recommended in clinical guidelines, such as stress loading. CONCLUSIONS: Graded motor imagery should be used to reduce pain in adult CRPS-1 patients."

Physical therapy has been used under light general anesthesia in an attempt to remobilize the extremity. Such remobilization is used cautiously to avoid damage to atrophied tissue and bones that have become osteodystrophic.

Although there is no denying the importance of a multidisciplinary approach in the management of CRPS,[58] recent research suggests that physical therapy intervention may be successful in decreasing symptoms of CRPS without the use of medications. “Pain exposure” physical therapy (PEPT) is based on the premise that pain may be exacerbated and maintained by psychosocial and behavioural factors, and therefore, these factors must be addressed as a component of CRPS management. PEPT combines a progressive loading exercise program with pain-avoidance behaviour management. Progressive loading (i.e., loading extremities beyond limit of pain) includes passive and active exercises to mobilize joints and muscle stretching and is believed to reduce sensitization (both central and peripheral) and may also restore autonomic deregulation and cortical representation in CRPS. As the name suggests, pain avoidance behaviour management attempts to reduce behaviours that maintain disuse and pain avoidance (e.g., kinesiophobia, pain avoidance and learned non-use, and pain catastrophizing), with the goal of increasing self-confidence in the individual’s physical capabilities.[59]

A recent multiple single-case design study by Van de Meent et al. (2011)[59] found PEPT to be a safe and effective method of treatment for individuals with CRPS. Results showed improvements on a variety of outcomes measures, including pain intensity, kinesiophobia, muscle strength, arm/shoulder/hand disability, walking speed, and perceived health. However, although these results are promising, this is a relatively new topic of study and more research needs to be done in the area.

Drugs

Physicians use a variety of drugs to treat CRPS, including antidepressants, anti-inflammatories such as corticosteroids, COX-inhibitors such as piroxicam, bisphosphonates, vasodilators, GABA analogs such as gabapentin and pregabalin, alpha- or beta-adrenergic-blocking compounds, and the entire pharmacy of opioids. Occasional uses of Butorphanol also can be helpful during moments of heightened pain.

Bisphosphonate treatment

As recently as 2009, bisphosphonates were described as "among the only class of medications that has survived placebo-controlled studies showing statistically significant improvement (in CRPS) with therapy."[60]


Bisphosphonates are often used in diseases featuring bone problems and pain, including osteoporosis and cancer. Studies for CRPS carried out in the 1990s with moderate bisphosphonate dosage levels (including the use of alendronate) did not appear to achieve long-term remission or cures, but offered hope. Throughout the early 2000s, researchers in Paris[61] and northern Italy [62] steadily increased dosages and experimented with other bisphosphonates to improve results, increase response, and put higher percentages of patients treated into long-term remission. Varenna et al's study with Clodronate ("Intravenous Clodronate in the Treatment of Reflex Sympathetic Dystrophy Syndrome. A Randomized, Double Blind, Placebo Controlled Study", 2000) used patients who had CRPS for up to a year and dosed them with 300 mg infusions of clodronate on ten consecutive days (3000 mg total). The group receiving clodronate reported pain falling significantly in the first 40 days and average pain in the group was reported as being close to zero 180 days following treatment.


In Varenna et al's 2013 paper, "Treatment of complex regional pain syndrome type I with neridronate: a randomized, double-blind, placebo-controlled study",[63] patients were given four infusions of 100 mg of intravenous neridronate within 4 to 10 days (400 mg total). The group receiving the neridronate infusions reported rapid reduction in pain levels.


Though Varenna et al's 2000 and 2013 studies exclude patients over one year chronic in one case and over four months chronic in the other case, in Kubalek et al's 2001 paper in which patients were dosed with 60mg pamidronate on three consecutive days ("Treatment of Reflex Sympathetic Dystrophy with Pamidronate: 29 Cases"), four patients were treated who had had the disease for 100+ weeks. Of these, three were reported as pain free by day 45 (including the patient who was over three years chronic).


In their 2004 paper "Efficacy of Pamidronate in Complex Regional Pain Syndrome Type I",[64] Robinson et al report that even with single 60 mg infusions, "several patients with established disease of several years duration responded to pamidronate, perhaps reflecting the heterogeneity of this condition".


In spite of such results, the 2009 European Journal of Pain article "Bisphosphonates for the therapy of complex regional pain syndrome I - Systematic Review" by Florian Brunner et al presents the conclusion that the "very limited data reviewed showed that bisphosphonates have the potential to reduce pain associated with bone loss in patients with CRPS I, however, at present there is not sufficient evidence to recommend their use in practice".[65] However, in 2013 Varenna et al argued that their recent 80 patient double blind, placebo controlled study in which all 78 patients who participated in a lengthy follow-up were dramatically improved and continued to improve (including a normalization of all available follow-up scintigraphy), provided "conclusive evidence that the use of bisphosphonates, at appropriate doses, is the treatment of choice for CRPS."[66] Though neridronate dosed 4 times at 100mg within 4 to 10 days (400 mg total) is currently the bisphosphonate of choice among the university clinics of northern Italy, Varenna et al recommend that in nations where neridronate is not available, 90 mg of pamidronate, administered four times within 4 to 10 days (360 mg total) is the current treatment of choice. It is possible that earlier, low dose exposure to bisphosphonates might desensitize individuals to the effectiveness of the full dose treatments on the level of Kubalek et al and Varenna et al and as such, if the goal of total remission of CRPS is sought, although there is some evidence that they may be of some use, lower doses of bisphosphonates than those recommended in these studies should be avoided. In fact, individuals previously exposed to bisphosphonates were excluded from the 2013 study by Varenna et al[67] .


At the University of Verona, which participated in the Varenna et al study, 7500 I.U. of Vitamin D per week are often given after treatment to help the bones in their healing process. Finally, as Varenna et al states, "The mechanism of action responsible for the brilliant results (of the 2013 study) observed with bisphosphonates for the treatment of CRPS-I remains conjectural, mainly because the exact pathophysiology of the disease is still unknown."[68]

Mirror box therapy

Mirror box therapy uses a mirror box, or a stand alone mirror, to create a reflection of the normal limb such that the patient thinks they are looking at the affected limb. Movement of this reflected normal limb is then performed so that it looks to the patient as though they are performing movement with the affected limb (although it will be pain free due to the fact it is a normal limb being reflected).

Mirror box therapy appears to be beneficial in early CRPS (McCabe et al., 2003b);.[69] However, Lorimer Moseley (University of South Australia) has cautioned that the beneficial effects of mirror therapy for CRPS are still unproven.[70] Importantly, the precise neural mechanisms of action are unknown and need to be studied using a combination of behavioural and neuroimaging approaches.[71]

Graded motor imagery

Because studies have shown that problems in the primary motor cortex are found in patients who suffer from CRPS, treatments have been developed that focus on normalizing motor representations in that part of the brain. One treatment (graded motor imagery)[72] has now been tested in three [73][74][75] randomised controlled trials and has shown to be effective at reducing pain and disability in people with chronic CRPS or phantom limb pain after amputation or avulsion injury of the brachial plexus.

Graded motor imagery is a sequential process that consists of (a) laterality reconstruction, (b) motor imagery, and (c) mirror therapy.[76][77]

Tactile discrimination training

Another approach to CRPS is based on a treatment called sensory discrimination training, which was used for phantom limb pain. A randomised controlled trial [78] demonstrated a significant drop in pain after ten days training. For CRPS, a replicated case series [70] and a randomised repeated measures experiment [79] both demonstrated an effect of tactile discrimination training on pain, disability, and sensory function in people with CRPS of various durations. This treatment has not been tested in a randomised controlled trial.

Local anaesthetic blocks/injections

Injection of a local anesthetic, such as lidocaine, is often the first step in treatment. Injections are repeated as needed. The results of local anesthetic injections are short lasting, and the procedure is risky. However, early intervention with non-invasive management may be preferred to repeated nerve blockade. The use of topical lidocaine patches has not been shown to be of use in the treatment of CRPS-1 and 2.[citation needed]

Intramuscular botox injections

Intramuscular botulinum injections have been shown recently to benefit patients with CRPS symptoms localized to one extremity.[80] These injections may reduce the muscle spasm associated with CRPS and likely also decrease the inflammation associated with CRPS. The main advantages of this treatment are that it is relatively cheap, safe, and easy to administer. The major disadvantage is that it may need to be repeated after a few months.[citation needed]

Spinal cord stimulators

Neurostimulation (spinal cord stimulator) may also be surgically implanted to reduce the pain by directly stimulating the spinal cord. These devices are surgically placed by trained physicians. An electrode is placed in the epidural space in the region of the spinal cord associated with the body part to be treated. Once placed, programming by a knowledgeable clinician will personalize the device to each patient's pain complaints for the optimal outcome. High frequencies are normally utilized for CRPS patients. A systematic review concluded that spinal cord stimulation appears to be an effective therapy in the management of patients with CRPS type I (Level A evidence) and type II (Level D evidence).[81] Moreover, there is evidence to demonstrate that SCS is a cost-effective treatment for CRPS type I.

A randomised controlled trial performed by Kemler et al. (2000) on spinal cord stimulation (SCS) in patients with refractory RSD demonstrated that the group receiving SCS + physical therapy (n=36) had a mean reduction of 2.4 cm (using Visual analogue scale) in the intensity of pain at six months compared to a mean increase of 0.2 cm in the group assigned to receive physical therapy alone (n=18). The intensity of pain was found to be statistically significantly different between the two groups (P < 0.001). In addition, a greater proportion of patients in the SCS + physical therapy reported a 6 (“much improved” outcome) based on a global perceived effect scale compared to physical therapy alone (39% vs. 6%, P = 0.01). However, the study did not find clinically significant improvement in functional status.[82]

Sympathectomy

Surgical, chemical, or radiofrequency sympathectomy — interruption of the affected portion of the sympathetic nervous system — can be used as a last resort in patients with impending tissue loss, edema, recurrent infection, or ischemic necrosis.[83] However, there is little evidence that these permanent interventions alter the pain symptoms of the affected patients, and in addition to the normal risks of surgery, such as bleeding and infection, sympathectomy has several specific risks, such as adverse changes in how nerves function. However, there is some research suggesting good prognosis for patients who have responded favorably to a series of sympathetic blocks (3-6).[citation needed]

Ketamine

Ketamine, a dissociative anesthetic, is being used in the treatment of Complex Regional Pain Syndrome with anecdotal success.[31] During the infusion the patient is monitored constantly, and it should be administered only by a qualified physician such as an anesthesiologist. The theory of ketamine use in CRPS/RSD is primarily advanced by neurologist Dr. Robert J. Schwartzman of Drexel University College of Medicine in Philadelphia and researchers at the University of Tübingen in Germany but was first introduced in the United States by Doctor Ronald Harbut of Little Rock, Arkansas.[citation needed] The hypothesis is that ketamine blocks NMDA receptors that might reboot aberrant brain activity.

There are two treatment modalities; the first consists of a low-dose subanesethesia Ketamine infusion of 10–90 mg per hour over several treatment days. This can be delivered on an outpatient basis and is called the awake or subanesethesia technique.

One study[84] demonstrated that 83% of the patients who participated had complete relief, and many others had some relief of the symptoms. Another evaluation of a ten-day infusion of intravenous ketamine (awake technique) in the CRPS patient concluded that "a four-hour ketamine infusion escalated from 40–80 mg over a 10-day period can result in a significant reduction of pain with increased mobility and a tendency to decreased autonomic dysregulation".[85] Unfortunately, these study designs are very prone to bias, which means high quality randomised controlled trials of ketamine infusion for CRPS are still needed to learn about its effects and side effects.

The second treatment modality consists of putting the patient into a medically induced coma, then administering an extremely high dosage of ketamine; typically between 600 and 900 mg.[86] This version, currently not allowed in the United States, was also banned in Germany before 2010. The only trials are taking place now only in Monterrey, Nuevo León, Mexico.

Topical treatment

CRPS can also be treated with DMSO 50% cream.[87] A novel approach to treat CRPS is with the multimodal stepped care approach. Step by step a topical analgesic will be tried to examine its effectiveness in reducing pain. When a topical analgesic has some pain reducing effects, though not completely, another topical analgesic from a different class can be added to enhance the pain reducing effects.[88] Usually one to four topical agents can be used simultaneously to get an optimal pain reducing effect. Combination therapy between ketamine cream and the anti-inflammatory palmitoylethanolamide seems worth mentioning.

Adjunctive treatment

EEG Biofeedback,[89] various forms of psychotherapy,[90] relaxation techniques, and hypnosis [91] are adjunctive treatments that assist coping.

Amputation

There is no randomised study in medical literature that has studied the response with amputation of patients who have failed the above-mentioned therapies and who continue to be miserable. Nonetheless, there are reports that on average cite about half of the patients will have resolution of their pain, while half will develop phantom limb pain and/or pain at the amputation site. It is likely that like in any other chronic pain syndrome, the brain becomes chronically stimulated with pain, and late amputation may not work as well as it might be expected. In a survey of fifteen patients with CRPS Type 1, eleven responded that their life was better after amputation.[92] Since this is the ultimate treatment of a painful extremity, it should be left as a last resort.

Prognosis

Good progress can be made in treating CRPS if treatment is begun early, ideally within three months of the first symptoms. If treatment is delayed, however, the disorder can quickly spread to the entire limb, and changes in bone, nerve, and muscle may become irreversible. The prognosis is not always good. Johns Hopkins Hospital reports that 77% of sufferers have spreads from the original site or flares in other parts of the body. The limb, or limbs, can experience muscle atrophy, loss of use, and functionally useless parameters that require amputation. RSD/CRPS will not "burn itself out", but if treated early, it is likely to go into remission. Once you are diagnosed with Complex Regional Pain Syndrome the likelihood of it resurfacing after going into remission is significant. It is important that you take precautions and seek immediate treatment upon any injury. Notify the treating physicians of your prior history of Complex Regional Pain Syndrome.[citation needed]

People living with CRPS

Among the more notable people living with CRPS are:

Similar disorders

There are significant similarities between Multiple Sclerosis and CRPS since glial activation and central sensitisation in the central nervous system are present in both. Alongside the symptoms of dystrophy, dystonia, vasomotor, and temperature changes, CRPS patients experience symptoms traditionally associated with MS: pain, strange sensations, numbness and tingling, spasms, allodynia, problems with mobility and balance, visual issues, bladder and bowel problems, sleeping problems, and changes in libido.[citation needed]

CRPS has characteristics similar to those of other disorders, such as shoulder-hand syndrome, which sometimes occurs after a heart attack and is marked by pain and stiffness in the arm and shoulder; Sudeck syndrome, which is prevalent in older people and women and is characterized by bone changes and muscular atrophy but is not always associated with trauma; and Steinbrocker syndrome, which includes symptoms such as gradual stiffness, discomfort, and weakness in the shoulder and hand. Erythromelalgia also shares many components of CRPS (burning pain, redness, temperature hypersensitivity, autonomic dysfunction, vasospasm); they both involve small fiber sensory neurosympathetic components. Erythromelalgia involves a lack of sweating, whereas CRPS often involves increased sweating. Subvariations of both exist. New information lends credibility to previous positions that this is an autoimmune response disease that can be caused by injury or non injury, and can progress from the injured location throughout the entire body to include optic nerves, ear nerves, and other facial nerves. Regarding the facial nerves, the eyes seem to be most vulnerable, with no specific pattern as to one or both. It also has the ability to affect sexual function in both the male and female anatomy, though the ability to engage in sexual activity is limited by the disease itself. There is further information that some cases may have a genetic predisposition for the disease, as with other autoimmune diseases. Myasthenia Gravis is another disease that mirrors many of the symptoms of CRPS.[citation needed]

Current research

The National Institute of Neurological Disorders and Stroke (NINDS), a part of the National Institutes of Health (NIH), supports and conducts research on the brain and central nervous system, including research relevant to RSDS, through grants to major medical institutions across the country. NINDS-supported scientists are working to develop effective treatments for neurological conditions and ultimately, to find ways of preventing them. Investigators are studying new approaches to treat CRPS and intervene more aggressively after traumatic injury to lower the patient's chances of developing the disorder. In addition, NINDS-supported scientists are studying how signals of the sympathetic nervous system cause pain in CRPS patients. Using a technique called microneurography, these investigators are able to record and measure neural activity in single nerve fibers of affected patients. By testing various hypotheses, these researchers hope to discover the unique mechanism that causes the spontaneous pain of CRPS, and that discovery may lead to new ways of blocking pain. Other studies to overcome chronic pain syndromes are discussed in the pamphlet "Chronic Pain: Hope Through Research", published by the NINDS.[citation needed]

Research into treating the condition with Mirror Visual Feedback is being undertaken at the Royal National Hospital for Rheumatic Disease in Bath. Patients are taught how to desensitize in the most effective way, then progress to using mirrors to rewrite the faulty signals in the brain that appear responsible for this condition.[citation needed]

The Netherlands currently has the most comprehensive program of research into CRPS, as part of a multi-million Euro initiative called TREND.[102] German and Australian research teams are also pursuing better understanding and treatments for CRPS.

In animals

CRPS has also been described in animals.[103]

References

  1. ^ http://www.marksandharrison.com/pdf/CRPS.pdf
  2. ^ http://www.rsds.org/pdfsall/SchwartzmanRJ_ErwinKL_AlexanderGM.pdf
  3. ^ a b Johan Marinus, G Lorimer Moseley, Frank Birklein, Ralf Baron, Christian Maihöfner, Wade S Kingery, Jacobus J van Hilten http://bodyinmind.org/wp-content/uploads/sdarticle.pdf
  4. ^ "Neuropathic pain". Merck Manual for Healthcare Professionals.
  5. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1007/s10286-002-0022-1, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1007/s10286-002-0022-1 instead.
  6. ^ Marks and Harrison http://www.marksandharrison.com/pdf/CRPS.pdf
  7. ^ "McGILL Pain Index and CRPS or RSD - American RSDHope". Rsdhope.org. Retrieved 2013-12-23.
  8. ^ "RSD/CRPS Doesn't Own Me". Rsdcrpsdoesntownme.com. Retrieved 2013-12-23.
  9. ^ "RSD/CRPS Research and Developements". Facebook. Retrieved 2013-12-23.
  10. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1007/s10880-012-9322-3, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1007/s10880-012-9322-3 instead.
  11. ^ [1][dead link]
  12. ^ P.E. Zollinger, Vitamin C for prevention of CRPS-I in traumatology and orthopaedic surgery, 2008, ISBN 9789088900099
  13. ^ Schwartzman, Robert J. MD; Erwin, Kirsten L. BS; Alexander, Guillermo M. PhD http://journals.lww.com/clinicalpain/Abstract/2009/05000/The_Natural_History_of_Complex_Regional_Pain.3.aspx
  14. ^ Robert J. Schwartzman http://www.scirp.org/journal/PaperInformation.aspx?PaperID=22695&JournalID=205
  15. ^ http://www.rsds.org/1/publications/review_archive/pdf/Getson_2008Summer.pdf
  16. ^ http://www.rsds.org/pdfsall/Systemic-Complications-of-CRPS.pdf
  17. ^ "Fibromyalgia Pain Characteristics". Pain Education. Retrieved 2013-12-23.
  18. ^ Attention: This template ({{cite pmid}}) is deprecated. To cite the publication identified by PMID 18950448, please use {{cite journal}} with |pmid=18950448 instead.
  19. ^ Attention: This template ({{cite pmid}}) is deprecated. To cite the publication identified by PMID 18354707, please use {{cite journal}} with |pmid=18354707 instead.
  20. ^ Attention: This template ({{cite pmid}}) is deprecated. To cite the publication identified by PMID 23546884, please use {{cite journal}} with |pmid=23546884 instead.
  21. ^ Mitchell, S.W. (1872). Injuries of Nerves and their Consequences. Philadelphia: JB Lippincott.
  22. ^ Richards RL (1967). "The Term 'Causalgia'" (PDF). Medical History. 11 (1): 86–90. PMC 1033672. PMID 5341040.
  23. ^ Spicher, C.J. (2006). Handbook for Somatosensory Rehabilitation. Montpellier, Paris: Sauramps Medical.
  24. ^ Evans JA (1946). "Reflex sympathetic dystrophy". Surg Clin North America. 26 (3): 780–90. PMID 20288177.
  25. ^ Noordenbos, W. (1959). PAIN Problems pertaining to the transmission of nerve impulses which give rise to pain. Amsterdam: Elsevier.
  26. ^ Stanton-Hicks M, Janig W, Hassenbusch S, Haddox JD, Boas R, Wilson P (1995). "Reflex sympathetic dystrophy: changing concepts and taxonomy". Pain. 63 (1): 127–33. doi:10.1016/0304-3959(95)00110-E. PMID 8577483.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  27. ^ Joshua C. Prager (chair of CRPS SIG for IASP) http://www.youtube.com/watch?v=-jLUQpaZKf8
  28. ^ Christian Maihöfner, Clemens Forster, Frank Birklein, Bernhard Neundörfer, Hermann O. Handwerker http://www.painjournalonline.com/article/S0304-3959(04)00570-6/abstract
  29. ^ a b DR WILL HOWARD FFPMANZCA, FFANZCA, DIP MED (PAIN MANAGEMENT) http://www.qld.anzca.edu.au/anzca/resources/college-publications/pdfs/ANZCA%20Blue%20Book%202011%20P9.pdf#page=10
  30. ^ "Pain". Courses.washington.edu. Retrieved 2013-12-23.
  31. ^ a b c Correll GE, Maleki J, Gracely EJ, Muir JJ, Harbut RE (2004). "Subanesthetic ketamine infusion therapy: a retrospective analysis of a novel therapeutic approach to complex regional pain syndrome". Pain Med. 5 (3): 263–75. doi:10.1111/j.1526-4637.2004.04043.x. PMID 15367304.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  32. ^ Kiefer RT, Rohr P, Ploppa A; et al. (2008). "A pilot open-label study of the efficacy of subanesthetic isomeric S(+)-ketamine in refractory CRPS patients". Pain Med. 9 (1): 44–54. doi:10.1111/j.1526-4637.2006.00223.x. PMID 18254766. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  33. ^ Pöyhiä R, Vainio A (2006). "Topically administered ketamine reduces capsaicin-evoked mechanical hyperalgesia". Clin J Pain. 22 (1): 32–6. doi:10.1097/01.ajp.0000149800.39240.95. PMID 16340591.
  34. ^ Watkins LR, Maier SF (2005). "Immune regulation of central nervous system functions: from sickness responses to pathological pain". J. Intern. Med. 257 (2): 139–55. doi:10.1111/j.1365-2796.2004.01443.x. PMID 15656873.
  35. ^ Koffler SP, Hampstead BM, Irani F; et al. (2007). "The neurocognitive effects of 5 day anesthetic ketamine for the treatment of refractory complex regional pain syndrome". Arch Clin Neuropsychol. 22 (6): 719–29. doi:10.1016/j.acn.2007.05.005. PMID 17611073. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  36. ^ Birklein F (2005). "Complex regional pain syndrome". J. Neurol. 252 (2): 131–8. doi:10.1007/s00415-005-0737-8. PMID 15729516.
  37. ^ Zollinger PE, Tuinebreijer WE, Breederveld RS, Kreis RW (2007). "Can Vitamin C Prevent Complex Regional Pain Syndrome in Patients with Wrist Fractures? A Randomized, Controlled, Multicenter Dose-Response Study". J Bone Joint Surg Am. 89 (7): 1424–1431. doi:10.2106/JBJS.F.01147. PMID 17606778.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  38. ^ August 3, 2010 (2010-08-03). "Intravenous Immunoglobulin in Complex Regional Pain Syndrom". Bodyinmind.org. Retrieved 2013-12-23.{{cite web}}: CS1 maint: numeric names: authors list (link)
  39. ^ a b c Veldman PH, Reynen HM, Arntz IE, Goris RJ (1993). "Signs and symptoms of reflex sympathetic dystrophy: prospective study of 829 patients". Lancet. 342 (8878): 1012–6. doi:10.1016/0140-6736(93)92877-V. PMID 8105263.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  40. ^ Güler-Uysal F, Başaran S, Geertzen JH, Göncü K (2003). "A 2½-year-old girl with reflex sympathetic dystrophy syndrome (CRPS type I): case report". Clin Rehabil. 17 (2): 224–7. doi:10.1191/0269215503cr589oa. PMID 12625665.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  41. ^ "RSDSA :: Reflex Sympathetic Dystrophy Syndrome Association". Rsds.org. 2010-01-21. Retrieved 2010-04-10.
  42. ^ Yu D (2004). "Shoulder pain in hemiplegia". Phys Med Rehabil Clin N Am. 15 (3): vi–vii, 683–97. doi:10.1016/S1047-9651(03)00130-X. PMID 15219895. {{cite journal}}: Unknown parameter |month= ignored (help)
  43. ^ Pawelka, S.; Fialka, V.; Ernst, E. (1993). "Reflex sympathetic dystrophy and cigarette smoking". Hand Surgery. 18 (1): 168–9. doi:10.1016/j.0363-5023.1993.90273.6. PMID 8423309.
  44. ^ "RSDSA: research study". Rsds.org. Retrieved 2010-04-10.
  45. ^ Information sheet for individuals with RSD
  46. ^ "Welcome to Map of Medicine Healthguides". Healthguides.mapofmedicine.com. Retrieved 2013-12-23.
  47. ^ "CRPS Abstract". Rsdrx.com. Retrieved 2013-12-23.
  48. ^ a b Attention: This template ({{cite pmid}}) is deprecated. To cite the publication identified by PMID 19204260, please use {{cite journal}} with |pmid=19204260 instead.
  49. ^ Attention: This template ({{cite pmid}}) is deprecated. To cite the publication identified by PMID 15836983, please use {{cite journal}} with |pmid=15836983 instead.
  50. ^ Quisel A, Gill JM, Witherell P (2005). "Complex regional pain syndrome underdiagnosed". J Fam Pract. 54 (6): 524–32. PMID 15939004.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  51. ^ Birklein F, Künzel W, Sieweke N (2001). "Despite clinical similarities there are significant differences between acute limb trauma and complex regional pain syndrome I (CRPS I)". Pain. 93 (2): 165–71. PMID 11427328. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  52. ^ Wasner G, Schattschneider J, Baron R (2002). "Skin temperature side differences--a diagnostic tool for CRPS?". Pain. 98 (1–2): 19–26. PMID 12098613. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  53. ^ Gulevich SJ, Conwell TD, Lane J; et al. (1997). "Stress infrared telethermography is useful in the diagnosis of complex regional pain syndrome, type I (formerly reflex sympathetic dystrophy)". Clin J Pain. 13 (1): 50–9. PMID 9084952. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  54. ^ Sandroni P, Low PA, Ferrer T, Opfer-Gehrking TL, Willner CL, Wilson PR (1998). "Complex regional pain syndrome I (CRPS I): prospective study and laboratory evaluation". Clin J Pain. 14 (4): 282–9. doi:10.1097/00002508-199812000-00003. PMID 9874005.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  55. ^ "Reflex Sympathetic Dystrophy Clinical Practice Guidelines". Rsdfoundation.org. 2003-01-01. Retrieved 2013-12-23.
  56. ^ Lee, B.H., Scharff, L., Setbna, N.F., McCarthy, C.F., Scott-Sutherland, J., Shea, A.M., Sullivan, P., Meier, P., Zurakowski, D., Masek, B.J. & Berde, C.B. (2002). Physical therapy and cognitive-behavioral treatment for complex regional pain syndromes. Journal of Pediatrics, 141(1), 135-140 retrieved from http://www.cebp.nl/media/m1063.pdf
  57. ^ Daly, Anne E.; Bialocerkowski, Andrea E. (2009). "Does evidence support physiotherapy management of adult Complex Regional Pain Syndrome Type One? A systematic review". European Journal of Pain. 13 (4): 339–53. doi:10.1016/j.ejpain.2008.05.003. PMID 18619873.
  58. ^ Shah, A. (2011). "Complex regional pain syndrome" (PDF). Foot Ankle Clinics North America. 16: 351–366. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  59. ^ a b van de Meent, H. (2011). "Safety of "pain exposure" physical therapy in patients with complex regional pain syndrome type 1". Pain. 152: 1431–1438. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  60. ^ Pontell, David (2008). "A clinical approach to complex regional pain syndrome". Clin Podiatr Med Surg. 25(3): 361–80. doi:10.1016/j.cpm.2008.02.011. {{cite journal}}: Check |doi= value (help); Unknown parameter |month= ignored (help)
  61. ^ Kubalek, I. (2001). "Treatment of reflex sympathetic dystrophy with pamidronate: 29 cases". Rheumatology (Oxford). 40 (12): 1394–1397. doi:10.1093/rheumatology/40.12.1394. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  62. ^ Varenna, Massimo (2000). "Intravenous clodronate in the treatment of reflex sympathetic dystrophy syndrome. A randomized, double blind, placebo controlled study". J Rheumatol. 27 (6): 1477–83. PMID [PubMed - indexed for MEDLINE 10852274 [PubMed - indexed for MEDLINE]]. {{cite journal}}: Check |pmid= value (help); Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  63. ^ Varenna, Massimo (2013). "Treatment of complex regional pain syndrome type I with neridronate: a randomized, double-blind, placebo-controlled study". Rheumatology (Oxford). 52 (3): 534–42. doi:10.1093/rheumatology/kes312. PMID 23204550. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  64. ^ Robinson, JN (2004). "Efficacy of pamidronate in complex regional pain syndrome type I". Pain Med. 5 (3): 276–80. PMID 15367305. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  65. ^ Brunner, F (2009). "Bisphosphonates for the therapy of complex regional pain syndrome I--systematic review". European Journal of Pain. 13 (1): 17–21. doi:10.1016/j.ejpain.2008.03.005. PMID 18440845. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  66. ^ Varenna, Massimo (2013). "Treatment of complex regional pain syndrome type I with neridronate: a randomized, double-blind, placebo-controlled study". Rheumatology (Oxford). 52 (3): 534–42. doi:10.1093/rheumatology/kes312. PMID 23204550. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  67. ^ Varenna, Massimo (2013). "Treatment of complex regional pain syndrome type I with neridronate: a randomized, double-blind, placebo-controlled study". Rheumatology (Oxford). 52 (3): 534–42. doi:10.1093/rheumatology/kes312. PMID 23204550. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  68. ^ Varenna, Massimo (2013). "Treatment of complex regional pain syndrome type I with neridronate: a randomized, double-blind, placebo-controlled study". Rheumatology (Oxford). 52 (3): 534–42. doi:10.1093/rheumatology/kes312. PMID 23204550. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  69. ^ McCabe CS, Haigh RC, Ring EF, Halligan PW, Wall PD, Blake DR (2003). "A controlled pilot study of the utility of mirror visual feedback in the treatment of complex regional pain syndrome (type 1)". Rheumatology (Oxford). 42 (1): 97–101. PMID 12509620. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  70. ^ a b Moseley, G; Zalucki, N; Wiech, K (2008). "Tactile discrimination, but not tactile stimulation alone, reduces chronic limb pain". Pain. 137 (3): 600–8. doi:10.1016/j.pain.2007.10.021. PMID 18054437.
  71. ^ Swart CM, Stins JF, Beek PJ (2009). "Cortical changes in complex regional pain syndrome (CRPS)". Eur J Pain. 13 (9): 902–7. doi:10.1016/j.ejpain.2008.11.010. PMID 19101181. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) as PDF
  72. ^ noi — graded motor imagery
  73. ^ Lorimer (2009-10-28). "Graded motor imagery is effective for long-standing complex regional pain syndrome". Bodyinmind.com.au. Retrieved 2010-04-10.
  74. ^ Lorimer (2009-10-21). "Is successful rehabilitation of complex regional pain syndrome due to sustained attention to the affected limb?". Bodyinmind.com.au. Retrieved 2010-04-10.
  75. ^ admin (2009-10-07). "Graded motor imagery for chronic pain". Bodyinmind.com.au. Retrieved 2010-04-10.
  76. ^ Shah, A., & Kirchner, J.S. (2011). Complex regional pain syndrome. Foot Ankle Clinics North America, 16, 351-366
  77. ^ "Graded Motor Imagery". Graded Motor Imagery. Retrieved 2013-12-23.
  78. ^ Flor, H; Denke, C; Schaefer, M; Grüsser, S (2001). "Effect of sensory discrimination training on cortical reorganisation and phantom limb pain". Lancet. 357 (9270): 1763–4. doi:10.1016/S0140-6736(00)04890-X. PMID 11403816.
  79. ^ admin (2009-11-25). "Training the Brain 3 – Brain changes, S1 reorganisation". Bodyinmind.com.au. Retrieved 2010-04-10.
  80. ^ Attention: This template ({{cite pmid}}) is deprecated. To cite the publication identified by PMID 21927045, please use {{cite journal}} with |pmid=21927045 instead.
  81. ^ Taylor, R; Buyten, J; Buchser, E (2006). "Spinal cord stimulation for complex regional pain syndrome: A systematic review of the clinical and cost-effectiveness literature and assessment of prognostic factors". European Journal of Pain. 10 (2): 91–101. doi:10.1016/j.ejpain.2005.02.004. PMID 16310712.
  82. ^ Kemler MA, de Vet HC, Barendse GA, van den Wildenberg FA, van Kleef M (2008). "Effect of spinal cord stimulation for chronic complex regional pain syndrome Type I: five-year final follow-up of patients in a randomized controlled trial". J. Neurosurg. 108 (2): 292–8. doi:10.3171/JNS/2008/108/2/0292. PMID 18240925. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  83. ^ Stanton-Hicks M, Baron R, Boas R, Gordh T, Harden N, Hendler N, Koltzenburg M, Raj P, Wilder R (1998). "Complex Regional Pain Syndromes: guidelines for therapy". Clin J Pain. 14 (2): 155–66. doi:10.1097/00002508-199806000-00012. PMID 9647459.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  84. ^ Correll, Graeme E.; Maleki, Jahangir; Gracely, Edward J.; Muir, Jesse J.; Harbut, Ronald E. (2004). "Subanesthetic Ketamine Infusion Therapy: A Retrospective Analysis of a Novel Therapeutic Approach to Complex Regional Pain Syndrome". Pain Medicine. 5 (3): 263–75. doi:10.1111/j.1526-4637.2004.04043.x. PMID 15367304.
  85. ^ Goldberg ME, Domsky R, Scaringe D; et al. (2005). "Multi-day low dose ketamine infusion for the treatment of complex regional pain syndrome". Pain Physician. 8 (2): 175–9. PMID 16850072. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  86. ^ CNN report on Ketamine therapy for CRPS/RSD, September 1, 2006
  87. ^ Zuurmond WW, Langendijk PN, Bezemer PD, Brink HE, de Lange JJ, van loenen AC. (1996). "Treatment of acute reflex sympathetic dystrophy with DMSO 50% in a fatty cream". Acta Anaesthesiol Scand. 34 (40): 364–7. PMID 8721469.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  88. ^ Kopsky DJ. Keppel Hesselink JM (2011). "Multimodal Stepped Care Approach Involving Topical Analgesics for Severe Intractable Neuropathic Pain in CRPS Type 1: A Case Report". Case Report Med. 2011: 319750. doi:10.1155/2011/319750. PMC 3199095. PMID 22028723.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  89. ^ Grunert BK, Devine CA, Sanger JR, Matloub HS, Green D (1990). "Thermal self-regulation for pain control in reflex sympathetic dystrophy syndrome". J Hand Surg [Am]. 15 (4): 615–8. doi:10.1016/S0363-5023(09)90024-7. PMID 2199569.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  90. ^ The Psychologist's Role in the Chronic Pain of Reflex Sympathetic Dystrophy. Rosemarie Scolaro Moser, Ph.D. Printed in New Jersey Psychologist, Spring 1999, pp. 24–25.
  91. ^ Gainer MJ (1992). "Hypnotherapy for reflex sympathetic dystrophy". Am J Clin Hypn. 34 (4): 227–32. PMID 1349789.
  92. ^ "The Journal of Bone & Joint Surgery | Therapy-Resistant Complex Regional Pain Syndrome Type I: To Amputate or Not?". Jbjs.org. Retrieved 2013-12-23.
  93. ^ Rachel Morris http://www.paralympics.org.uk/gb/athletes/rachel-morris
  94. ^ Danielle Brown http://en.wikipedia.org/wiki/Danielle_Brown
  95. ^ For Grace: Radene Marie Cook http://www.forgrace.org/women/in/pain/C252
  96. ^ ArtSpan: Radene Marie Cook http://www.painartist.com
  97. ^ LA Times: Jill Kinmont Boothe is still going strong http://articles.latimes.com/2011/may/22/sports/la-sp-crowe-20110523
  98. ^ For Grace: Tiiu Leek http://www.forgrace.org/women/in/pain/C93/
  99. ^ Shin Dong Wook http://www.allkpop.com/2013/01/actor-shin-dong-wook-suffering-from-rare-disease
  100. ^ Paratriathlon: The Pain Barrier http://www.jim-smith.co.uk/blog/wp-content/uploads/2011/02/220-article-part-1.pdf
  101. ^ Gemma Collis http://www.paralympics.org.uk/gb/athletes/gemma-collis
  102. ^ TREND homepage.
  103. ^ Bergadano A, Moens Y, Schatzmann U (2006). "Continuous extradural analgesia in a cow with complex regional pain syndrome". Vet Anaesth Analg. 33 (3): 189–92. doi:10.1111/j.1467-2995.2005.00245.x. PMID 16634945.{{cite journal}}: CS1 maint: multiple names: authors list (link)

External links

Template:Arthritis in children