Jump to content

100,000,000

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Allen2 (talk | contribs) at 21:14, 2 May 2020 (Selected 9-digit numbers (100,000,001–999,999,999): 100,005,153 is the smallest 9-digit triangular number by T14,142, and 999,961,560 is the highest 9-digit triangular number by T44,720.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

100000000
CardinalOne hundred million
Ordinal100000000th
(one hundred millionth)
Factorization28 × 58
Greek numeral
Roman numeralC
Binary1011111010111100001000000002
Ternary202220111120122013
Senary135312025446
Octal5753604008
Duodecimal295A645412
Hexadecimal5F5E10016

100,000,000 (one hundred million) is the natural number following 99,999,999 and preceding 100,000,001.

In scientific notation, it is written as 108.

East Asian languages treat 100,000,000 as a counting unit, significant as the square of a myriad, also a counting unit. In Chinese, Korean, and Japanese respectively it is (simplified Chinese: 亿; traditional Chinese: ; pinyin: ) (or Chinese: 萬萬; pinyin: wànwàn in ancient texts), eok (억/億) and oku (). These languages do not have single words for a thousand to the second, third, fifth power, etc.

Selected 9-digit numbers (100,000,001–999,999,999)

100,000,001 to 199,999,999

200,000,000 to 299,999,999

300,000,000 to 399,999,999

400,000,000 to 499,999,999

500,000,000 to 599,999,999

  • 536,870,912 – 229
  • 543,339,720 – Pell number[7]
  • 554,999,445 – a Kaprekar constant for digit length 9 in base 10
  • 555,555,555repdigit
  • 596,572,387 – Wedderburn-Etherington number[2]

600,000,000 to 699,999,999

700,000,000 to 799,999,999

800,000,000 to 899,999,999

  • 815,730,721 – 138
  • 888,888,888repdigit
  • 893,871,739 – 197

900,000,000 to 999,999,999

  • 906,150,257 – smallest counterexample to the Polya conjecture
  • 987,654,321 – largest zeroless pandigital number
  • 999,961,560 – highest triangular number with 9 digits and the 44,720th triangular number
  • 999,999,937 – largest 9-digit prime
  • 999,999,999repdigit


References

  1. ^ Sloane, N. J. A. (ed.). "Sequence A003617 (Smallest n-digit prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 7 September 2017.
  2. ^ a b c Sloane, N. J. A. (ed.). "Sequence A001190 (Wedderburn-Etherington numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  3. ^ a b Sloane, N. J. A. (ed.). "Sequence A000108 (Catalan numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  4. ^ a b Sloane, N. J. A. (ed.). "Sequence A001006 (Motzkin numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  5. ^ "Sloane's A000110 : Bell or exponential numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  6. ^ a b Sloane, N. J. A. (ed.). "Sequence A003226 (Automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2019-04-06.
  7. ^ a b Sloane, N. J. A. (ed.). "Sequence A000129 (Pell numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  8. ^ "Sloane's A002201 : Superior highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  9. ^ "Sloane's A004490 : Colossally abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  10. ^ "Sloane's A093112 : a(n) = (2^n-1)^2 - 2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  11. ^ "Sloane's A093069 : a(n) = (2^n + 1)^2 - 2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  12. ^ "Sloane's A004490 : Colossally abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  13. ^ "Sloane's A002201 : Superior highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  14. ^ "Sloane's A005165 : Alternating factorials". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  15. ^ "Sloane's A088054 : Factorial primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  16. ^ "Sloane's A000979 : Wagstaff primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.