100,000,000

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
100000000
CardinalOne hundred million
Ordinal100000000th
(one hundred millionth)
Factorization28 × 58
Greek numeral
Roman numeralC
Binary1011111010111100001000000002
Ternary202220111120122013
Octal5753604008
Duodecimal295A645412
Hexadecimal5F5E10016

100,000,000 (one hundred million) is the natural number following 99,999,999 and preceding 100,000,001.

In scientific notation, it is written as 108.

East Asian languages treat 100,000,000 as a counting unit, significant as the square of a myriad, also a counting unit. In Chinese, Korean, and Japanese respectively it is yi (simplified Chinese: 亿; traditional Chinese: ; pinyin: ) (or Chinese: 萬萬; pinyin: wànwàn in ancient texts), eok (억/億) and oku (). These languages do not have single words for a thousand to the second, third, fifth powers, etc.

100,000,000 is also the fourth power of 100 and also the square of 10000.

Selected 9-digit numbers (100,000,001–999,999,999)[edit]

100,000,001 to 199,999,999[edit]

  • 100,000,007 = smallest nine digit prime[1]
  • 100,005,153 = smallest triangular number with 9 digits and the 14,142nd triangular number
  • 100,020,001 = 100012, palindromic square
  • 100,544,625 = 4653, the smallest 9-digit cube
  • 102,030,201 = 101012, palindromic square
  • 102,334,155 = Fibonacci number
  • 102,400,000 = 405
  • 104,060,401 = 102012 = 1014, palindromic square
  • 105,413,504 = 147
  • 107,890,609 = Wedderburn-Etherington number[2]
  • 111,111,111 = repunit, square root of 12345678987654321
  • 111,111,113 = Chen prime, Sophie Germain prime, cousin prime.
  • 113,379,904 = 106482 = 4843 = 226
  • 115,856,201 = 415
  • 119,481,296 = logarithmic number[3]
  • 121,242,121 = 110112, palindromic square
  • 123,454,321 = 111112, palindromic square
  • 123,456,789 = smallest zeroless base 10 pandigital number
  • 125,686,521 = 112112, palindromic square
  • 126,491,971 = Leonardo prime
  • 129,140,163 = 317
  • 129,145,076 = Leyland number
  • 129,644,790 = Catalan number[4]
  • 130,691,232 = 425
  • 134,217,728 = 5123 = 89 = 227
  • 134,218,457 = Leyland number
  • 136,048,896 = 116642 = 1084
  • 139,854,276 = 118262, the smallest zeroless base 10 pandigital square
  • 142,547,559 = Motzkin number[5]
  • 147,008,443 = 435
  • 148,035,889 = 121672 = 5293 = 236
  • 157,115,917 – number of parallelogram polyominoes with 24 cells.[6]
  • 157,351,936 = 125442 = 1124
  • 164,916,224 = 445
  • 165,580,141 = Fibonacci number
  • 167,444,795 = cyclic number in base 6
  • 170,859,375 = 157
  • 177,264,449 = Leyland number
  • 179,424,673 = 10,000,000th prime number
  • 184,528,125 = 455
  • 188,378,402 = number of ways to partition {1,2,...,11} and then partition each cell (block) into subcells.[7]
  • 190,899,322 = Bell number[8]
  • 191,102,976 = 138242 = 5763 = 246
  • 192,622,052 = number of free 18-ominoes
  • 199,960,004 = number of surface-points of a tetrahedron with edge-length 9999[9]

200,000,000 to 299,999,999[edit]

300,000,000 to 399,999,999[edit]

400,000,000 to 499,999,999[edit]

  • 400,080,004 = 200022, palindromic square
  • 400,763,223 = Motzkin number[5]
  • 404,090,404 = 201022, palindromic square
  • 405,071,317 = 11 + 22 + 33 + 44 + 55 + 66 + 77 + 88 + 99
  • 410,338,673 = 177
  • 418,195,493 = 535
  • 429,981,696 = 207362 = 1444 = 128 = 100,000,00012 AKA a gross-great-great-gross (10012 great-great-grosses)
  • 433,494,437 = Fibonacci prime, Markov prime
  • 442,386,619 = alternating factorial[20]
  • 444,101,658 = number of (unordered, unlabeled) rooted trimmed trees with 27 nodes[21]
  • 444,444,444 = repdigit
  • 459,165,024 = 545
  • 467,871,369 = number of triangle-free graphs on 14 vertices[22]
  • 477,638,700 = Catalan number[4]
  • 479,001,599 = factorial prime[23]
  • 479,001,600 = 12!
  • 481,890,304 = 219522 = 7843 = 286
  • 499,999,751 = Sophie Germain prime

500,000,000 to 599,999,999[edit]

  • 503,284,375 = 555
  • 522,808,225 = 228652, palindromic square
  • 535,828,591 = Leonardo prime
  • 536,870,911 = third composite Mersenne number with a prime exponent
  • 536,870,912 = 229
  • 536,871,753 = Leyland number
  • 542,474,231 = k such that the sum of the squares of the first k primes is divisible by k.[24]
  • 543,339,720 = Pell number[12]
  • 550,731,776 = 565
  • 554,999,445 = a Kaprekar constant for digit length 9 in base 10
  • 555,555,555 = repdigit
  • 574,304,985 = 19 + 29 + 39 + 49 + 59 + 69 + 79 + 89 + 99 [25]
  • 575,023,344 = 14-th derivative of xx at x=1[26]
  • 594,823,321 = 243892 = 8413 = 296
  • 596,572,387 = Wedderburn-Etherington prime[2]

600,000,000 to 699,999,999[edit]

  • 601,692,057 = 575
  • 612,220,032 = 187
  • 617,323,716 = 248462, palindromic square
  • 644,972,544 = 8643, 3-smooth number
  • 656,356,768 = 585
  • 666,666,666 = repdigit
  • 670,617,279 = highest stopping time integer under 109 for the Collatz conjecture

700,000,000 to 799,999,999[edit]

800,000,000 to 899,999,999[edit]

  • 801,765,089 = 9293
  • 804,357,000 = 9303
  • 806,954,491 = 9313
  • 809,557,568 = 9323
  • 812,166,237 = 9333
  • 814,780,504 = 9343
  • 815,730,721 = 138
  • 815,730,721 = 1694
  • 817,400,375 = 9353
  • 820,025,856 = 9363
  • 822,656,953 = 9373
  • 825,293,672 = 9383
  • 827,936,019 = 9393
  • 830,584,000 = 9403
  • 833,237,621 = 9413
  • 835,210,000 = 1704
  • 835,896,888 = 9423
  • 837,759,792 – number of parallelogram polyominoes with 26 cells.[28]
  • 838,561,807 = 9433
  • 841,232,384 = 9443
  • 843,908,625 = 9453
  • 844,596,301 = 615
  • 846,590,536 = 9463
  • 849,278,123 = 9473
  • 851,971,392 = 9483
  • 854,670,349 = 9493
  • 855,036,081 = 1714
  • 857,375,000 = 9503
  • 860,085,351 = 9513
  • 862,801,408 = 9523
  • 865,523,177 = 9533
  • 868,250,664 = 9543
  • 870,983,875 = 9553
  • 873,722,816 = 9563
  • 875,213,056 = 1724
  • 876,467,493 = 9573
  • 879,217,912 = 9583
  • 881,974,079 = 9593
  • 884,736,000 = 9603
  • 887,503,681 = 316
  • 887,503,681 = 9613
  • 888,888,888repdigit
  • 890,277,128 = 9623
  • 893,056,347 = 9633
  • 893,554,688 = 2-automorphic number[29]
  • 893,871,739 = 197
  • 895,745,041 = 1734

900,000,000 to 999,999,999[edit]

  • 906,150,257 = smallest counterexample to the Polya conjecture
  • 916,132,832 = 625
  • 923,187,456 = 303842, the largest zeroless pandigital square
  • 942,060,249 = 306932, palindromic square
  • 987,654,321 = largest zeroless pandigital number
  • 992,436,543 = 635
  • 997,002,999 = 9993, the largest 9-digit cube
  • 999,950,884 = 316222, the largest 9-digit square
  • 999,961,560 = highest triangular number with 9 digits and the 44,720th triangular number
  • 999,999,937 = largest 9-digit prime number
  • 999,999,999 = repdigit

References[edit]

  1. ^ Sloane, N. J. A. (ed.). "Sequence A003617 (Smallest n-digit prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 7 September 2017.
  2. ^ a b c Sloane, N. J. A. (ed.). "Sequence A001190 (Wedderburn-Etherington numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  3. ^ Sloane, N. J. A. (ed.). "Sequence A002104 (Logarithmic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^ a b Sloane, N. J. A. (ed.). "Sequence A000108 (Catalan numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  5. ^ a b Sloane, N. J. A. (ed.). "Sequence A001006 (Motzkin numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  6. ^ Sloane, N. J. A. (ed.). "Sequence A006958 (Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. ^ Sloane, N. J. A. (ed.). "Sequence A000258 (Expansion of e.g.f. exp(exp(exp(x)-1)-1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. ^ "Sloane's A000110 : Bell or exponential numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  9. ^ Sloane, N. J. A. (ed.). "Sequence A005893 (Number of points on surface of tetrahedron)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. ^ Sloane, N. J. A. (ed.). "Sequence A005893 (Number of points on surface of tetrahedron)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  11. ^ a b Sloane, N. J. A. (ed.). "Sequence A003226 (Automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2019-04-06.
  12. ^ a b Sloane, N. J. A. (ed.). "Sequence A000129 (Pell numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  13. ^ "Sloane's A002201 : Superior highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  14. ^ "Sloane's A004490 : Colossally abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  15. ^ Sloane, N. J. A. (ed.). "Sequence A277288 (Positive integers n such that n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  16. ^ Sloane, N. J. A. (ed.). "Sequence A006958 (Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  17. ^ Sloane, N. J. A. (ed.). "Sequence A277288 (Positive integers n such that n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  18. ^ "Sloane's A004490 : Colossally abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  19. ^ "Sloane's A002201 : Superior highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  20. ^ "Sloane's A005165 : Alternating factorials". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  21. ^ Sloane, N. J. A. (ed.). "Sequence A002955 (Number of (unordered, unlabeled) rooted trimmed trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  22. ^ Sloane, N. J. A. (ed.). "Sequence A006785 (Number of triangle-free graphs on n vertices)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  23. ^ "Sloane's A088054 : Factorial primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  24. ^ Sloane, N. J. A. (ed.). "Sequence A111441 (Numbers k such that the sum of the squares of the first k primes is divisible by k)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
  25. ^ Sloane, N. J. A. (ed.). "Sequence A031971". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  26. ^ Sloane, N. J. A. (ed.). "Sequence A005727". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  27. ^ "Sloane's A000979 : Wagstaff primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  28. ^ Sloane, N. J. A. (ed.). "Sequence A006958 (Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  29. ^ Sloane, N. J. A. (ed.). "Sequence A030984 (2-automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-09-01.