Jump to content

NGC 1333

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Monkbot (talk | contribs) at 09:55, 1 January 2021 (Task 18 (cosmetic): eval 9 templates: hyphenate params (4×);). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

NGC 1333
Reflection nebula
An infrared image of NGC 1333 by the Spitzer Space Telescope
Observation data: J2000.0 epoch
Right ascension03h 29m 11.3s[1]
Declination+31° 18′ 36″[1]
Distance967 ly (296.5 pc)[1] ly
Apparent magnitude (V)5.6
Apparent dimensions (V)6′ x 3′
ConstellationPerseus
DesignationsCed 16, GN 03.26.1, LBN 741[2]
See also: Lists of nebulae

NGC 1333 is a reflection nebula located in the northern constellation Perseus, positioned next to the southern constellation border with Taurus and Aries.[3] It was first discovered by German astronomer Eduard Schönfeld in 1855.[4] The nebula is visible as a hazy patch in a small telescope, while a larger aperture will show a pair of dark nebulae designated Barnard 1 and Barnard 2.[5] It is associated with a dark cloud L1450 (Barnard 205). Estimates of the distance to this nebula range from 980–1,140 ly (300–350 pc).[4]

This nebula is in the western part[4] of the Perseus molecular cloud and is a young region of very active star formation,[6] being one of the best-studied objects of its type.[4] It contains a fairly typical hierarchy of star clusters that are still embedded in the molecular cloud in which they formed,[7] which are split into two main sub-groups to the north and south. Most of the infrared emission is happening in the southern part of the nebula. A significant portion of the stars seen in the infrared are in the pre-main sequence stage of their evolution.[6]

The nebula region has a combined mass of approximately 450 M,[4] while the cluster contains around 150 stars with a median age of a million years and a combined mass of 100 M. The average star formation rate is 10×10−4 M yr–1.[4] Within the nebular are 20 young stellar objects producing outflows, including Herbig–Haro objects. A total of 95 X-ray sources that are associated with known members of embedded star clusters.[6] In 2011 researchers reported finding 30 to 40 brown dwarf objects in the cloud and in the Rho Ophiuchi cloud complex.[8]

References

  1. ^ a b c Soubiran, C.; et al. (November 2018). "Open cluster kinematics with Gaia DR2". Astronomy & Astrophysics. 619: 11. arXiv:1808.01613. Bibcode:2018A&A...619A.155S. doi:10.1051/0004-6361/201834020. A155.
  2. ^ "NGC 1333". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2020-08-15.
  3. ^ Sinnott, Roger W.; Perryman, Michael A. C. (1997). Millennium Star Atlas. Vol. 1. Sky Publishing Corporation and the European Space Agency. ISBN 0-933346-84-0.
  4. ^ a b c d e f Walawender, J.; et al. (December 2008). Reipurth, Bo (ed.). NGC 1333: A Nearby Burst of Star Formation (PDF). ASP Monograph Publications. Vol. 1. p. 346. Retrieved 2020-08-15. {{cite book}}: |work= ignored (help)
  5. ^ Inglis, Michael (2004). Astronomy of the Milky Way. Springer London. p. 167. ISBN 1-85233-709-5.
  6. ^ a b c Getman, Konstantin V.; et al. (August 2002). "Chandra Study of Young Stellar Objects in the NGC 1333 Star-forming Cloud". The Astrophysical Journal. 575 (1): 354–377. arXiv:astro-ph/0204252. Bibcode:2002ApJ...575..354G. doi:10.1086/341219.
  7. ^ Schulz, Norbert S. (2005). From Dust To Stars. Praxis Publishing Limited. p. 213. ISBN 9783540237112.
  8. ^ "Rogue Failed Star Is One of Smallest Ever Seen". space.com. Retrieved 11 October 2011.
  9. ^ "Champions League". www.spacetelescope.org. Retrieved 4 November 2019.
  10. ^ "The smoking gun of a newborn star". www.spacetelescope.org. Retrieved 31 December 2018.