Disdyakis triacontahedron

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Disdyakis triacontahedron
Disdyakis triacontahedron
click for spinning version
Type Catalan
Conway notation mD or dbD
Coxeter diagram CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node f1.png
Face polygon DU28 facets.png
scalene triangle
Faces 120
Edges 180
Vertices 62 = 12 + 20 + 30
Face configuration V4.6.10
Symmetry group Ih, H3, [5,3], (*532)
Rotation group I, [5,3]+, (532)
Dihedral angle 164° 53' 17"
Dual polyhedron truncated icosidodecahedron
Properties convex, face-transitive
Disdyakis triacontahedron

In geometry, a disdyakis triacontahedron, hexakis icosahedron or kisrhombic triacontahedron[1] is a Catalan solid with 120 faces and the dual to the Archimedean truncated icosidodecahedron. As such it is face uniform but with irregular face polygons. It looks a bit like an inflated rhombic triacontahedron—if one replaces each face of the rhombic triacontahedron with a single vertex and four triangles in a regular fashion one ends up with a disdyakis triacontahedron. That is, the disdyakis triacontahedron is the Kleetope of the rhombic triacontahedron. It also has the most faces among the Archimedean and Catalan solids, with the snub dodecahedron, with 92 faces, in second place.

If the bipyramids and the trapezohedra are excluded, the disdyakis triacontahedron has the most faces of any other strictly convex polyhedron where every face of the polyhedron has the same shape.


The edges of the polyhedron projected onto a sphere form 15 great circles, and represent all 15 mirror planes of reflective Ih icosahedral symmetry, as shown in this image. Combining pairs of light and dark triangles define the fundamental domains of the nonreflective (I) icosahedral symmetry. The edges of a compound of five octahedra also represent the 10 mirror planes of icosahedral symmetry.

Disdyakis triacontahedron.png
Disdyakis triacontahedron
Icosahedral reflection domains.png
Disdyakis triacontahedron dodecahedral.png
Disdyakis triacontahedron icosahedral.png
Disdyakis triacontahedron rhombic triacontahedral.png
Rhombic triacontahedral
Spherical disdyakis triacontahedron.png
Spherical compound of five octahedra.png
compound of five octahedra

Orthogonal projections[edit]

The disdyakis triacontahedron has three types of vertices which can be centered in orthogonally projection:

Orthogonal projections
[2] [6] [10]
Image Dual dodecahedron t012 f4.png Dual dodecahedron t012 A2.png Dual dodecahedron t012 H3.png
Dodecahedron t012 f4.png Dodecahedron t012 A2.png Dodecahedron t012 H3.png

Related polyhedra[edit]

Family of uniform icosahedral polyhedra
Symmetry: [5,3], (*532) [5,3]+, (532)
Uniform polyhedron-53-t0.png Uniform polyhedron-53-t01.png Uniform polyhedron-53-t1.png Uniform polyhedron-53-t12.png Uniform polyhedron-53-t2.png Uniform polyhedron-53-t02.png Uniform polyhedron-53-t012.png Uniform polyhedron-53-s012.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
{5,3} t{5,3} r{5,3} t{3,5} {3,5} rr{5,3} tr{5,3} sr{5,3}
Duals to uniform polyhedra
Icosahedron.svg Triakisicosahedron.jpg Rhombictriacontahedron.svg Pentakisdodecahedron.jpg Dodecahedron.svg Deltoidalhexecontahedron.jpg Disdyakistriacontahedron.jpg Pentagonalhexecontahedronccw.jpg
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3. V3.4.5.4 V4.6.10 V3.

It is topologically related to a polyhedra sequence defined by the face configuration V4.6.2n. This group is special for having all even number of edges per vertex and form bisecting planes through the polyhedra and infinite lines in the plane, and continuing into the hyperbolic plane for any n ≥ 7.

With an even number of faces at every vertex, these polyhedra and tilings can be shown by alternating two colors so all adjacent faces have different colors.

Each face on these domains also corresponds to the fundamental domain of a symmetry group with order 2,3,n mirrors at each triangle face vertex.

*n32 symmetry mutations of omnitruncated tilings: 4.6.2n
Spherical Euclid. Compact hyperb. Paraco. Noncompact hyperbolic
Figures Spherical truncated trigonal prism.png Uniform tiling 332-t012.png Uniform tiling 432-t012.png Uniform tiling 532-t012.png Uniform polyhedron-63-t012.png H2 tiling 237-7.png H2 tiling 238-7.png H2 tiling 23i-7.png H2 tiling 23j12-7.png H2 tiling 23j9-7.png H2 tiling 23j6-7.png H2 tiling 23j3-7.png
Config. 4.6.4 4.6.6 4.6.8 4.6.10 4.6.12 4.6.14 4.6.16 4.6.∞ 4.6.24i 4.6.18i 4.6.12i 4.6.6i
Duals Spherical hexagonal bipyramid.png Spherical tetrakis hexahedron.png Spherical disdyakis dodecahedron.png Spherical disdyakis triacontahedron.png Tiling Dual Semiregular V4-6-12 Bisected Hexagonal.svg H2checkers 237.png H2checkers 238.png H2checkers 23i.png H2 checkers 23j12.png H2 checkers 23j9.png H2 checkers 23j6.png H2 checkers 23j3.png
Config. V4.6.4 V4.6.6 V4.6.8 V4.6.10 V4.6.12 V4.6.14 V4.6.16 V4.6.∞ V4.6.24i V4.6.18i V4.6.12i V4.6.6i


  1. ^ Conway, Symmetries of things, p.284

External links[edit]