Jump to content

Gentisic acid

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Edgar181 (talk | contribs) at 12:33, 23 August 2012 (Undid revision 508741134 by NotWith (talk)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Gentisic acid[1]
Names
IUPAC name
2,5-dihydroxybenzoic acid
Other names
DHB
2,5-dihydroxybenzoic acid
5-Hydroxysalicylic acid
Gentianic acid
Carboxyhydroquinone
2,5-Dioxybenzoic Acid
Hydroquinonecarboxylic acid
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.007.017 Edit this at Wikidata
KEGG
UNII
  • InChI=1S/C7H6O4/c8-4-1-2-6(9)5(3-4)7(10)11/h1-3,8-9H,(H,10,11) checkY
    Key: WXTMDXOMEHJXQO-UHFFFAOYSA-N checkY
  • InChI=1/C7H6O4/c8-4-1-2-6(9)5(3-4)7(10)11/h1-3,8-9H,(H,10,11)
    Key: WXTMDXOMEHJXQO-UHFFFAOYAO
  • O=C(O)c1cc(O)ccc1O
Properties
C7H6O4
Molar mass 154.12 g/mol
Appearance white to yellow powder
Melting point 200 - 205 C (Sublimes)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Gentisic acid is a dihydroxybenzoic acid. It is a derivative of benzoic acid and a minor (1%) product of the metabolic break down of aspirin, excreted by the kidneys.[2] It is also found in wine.[3]

Production

Gentisic acid is produced by carboxylation of hydroquinone.[4]

C6H4(OH)2 + CO2 → C6H3(CO2H)(OH)2

This conversion is an example of a Kolbe–Schmitt reaction.

Applications

As a hydroquinone, gentisic acid is readily oxidised and is used as an antioxidant excipient in some pharmaceutical preparations.

In the laboratory, it is used as a sample matrix in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, [5] and has been shown to conveniently detect peptides incorporating the boronic acid moiety by MALDI. [6]

References

  1. ^ Gentisic acid - Compound Summary, PubChem.
  2. ^ Levy, G (1972-09-31). "Salicylate accumulation kinetics in man". New England Journal of Medicine. 287 (9): 430–2. doi:10.1056/NEJM197208312870903. PMID 5044917. {{cite journal}}: Check date values in: |date= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  3. ^ Comparison of Phenolic Acids and Flavan-3-ols During Wine Fermentation of Grapes with Different Harvest Times. Rong-Rong Tian, Qiu-Hong Pan, Ji-Cheng Zhan, Jing-Ming Li, Si-Bao Wan, Qing-Hua Zhang and Wei-Dong Huang, Molecules, 2009, 14, pages 827-838, doi:10.3390/molecules14020827
  4. ^ Phillip M. Hudnall "Hydroquinone" in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim. 2005 Wiley-VCH, Weinheim. doi:10.1002/14356007.a13_499.
  5. ^ Strupat K, Karas M, Hillenkamp F (1991). "2,5-Dihidroxybenzoic acid: a new matrix for laser desorption-ionization mass spectrometry". Int. J. Mass Spectrom. Ion Processes. 72 (111): 89–102. Bibcode:1991IJMSI.111...89S. doi:10.1016/0168-1176(91)85050-V.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Crumpton, J. (2011). "Facile Analysis and Sequencing of Linear and Branched Peptide Boronic Acids by MALDI Mass Spectrometry". Analytical Chemistry. 83 (9): 3548–3554. doi:10.1021/ac2002565. PMC 3090651. PMID 21449540. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)