Jump to content

Gyroelongated bipyramid

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 88.153.153.226 (talk) at 19:38, 16 August 2020 (n can be different of 5 :-)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Set of gyroelongated bipyramids

The pentagonal gyroelongated bipyramid is the regular icosahedron.
Faces 4n triangles
Edges 6n
Vertices 2n+2
Symmetry group Dnd, [2+,2n], (2*n), order 4n
Rotation group Dn, [2,n]+, (22n), order 2n
Dual polyhedron truncated trapezohedra
Properties convex

In geometry, the gyroelongated bipyramids are an infinite set of polyhedra, constructed by elongating an n-gonal bipyramid by inserting an n-gonal antiprism between its congruent halves.

Forms

Two members of the set can be deltahedra, that is, constructed entirely of equilateral triangles: the gyroelongated square bipyramid, a Johnson solid, and the icosahedron, a Platonic solid. The gyroelongated triangular bipyramid can be made with equilateral triangles, but is not a deltahedron because it has coplanar faces, i.e. is not strictly convex. With pairs of triangles merged into rhombi, it can be seen as a trigonal trapezohedron. The other members can be constructed with isosceles triangles.

n 3 4 5 6 n
Type Coplanar Equilateral Regular Coplanar
Shape Gyroelongated triangular bipyramid Gyroelongated square bipyramid Gyroelongated pentagonal bipyramid
(icosahedron)
Gyroelongated hexagonal bipyramid Gyroelongated bipyramid
Image
Faces 12 16 20 24 4n
Dual Triangular truncated trapezohedron Square truncated trapezohedron Pentagonal truncated trapezohedron
(Dodecahedron)
Hexagonal truncated trapezohedron Truncated trapezohedra

See also