R. Graham Cooks

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Robert Graham Cooks
Residence United States
Nationality United States
Fields Chemist
Institutions Purdue University
Alma mater University of Natal
Cambridge University
Doctoral advisor Frank L. Warren
Peter Sykes
Known for Mass Spectrometry

Robert Graham Cooks is the Henry Bohn Hass Distinguished Professor of Chemistry in the Aston Laboratory of Mass Spectrometry at Purdue University. He is an ISI Highly Cited Chemist,[1] with over 1,000 publications and an H-index of 94.[2]

Education[edit]

Cooks received a bachelor of science and master of science degrees from the University of Natal in South Africa in 1961 and 1963, respectively. He received a Ph.D. from the University of Natal in 1965 and a second Ph.D. from Cambridge University in 1967.

Research interests[edit]

Research in Cooks' laboratory (the Aston Laboratory) has contributed to a diverse assortment of areas within mass spectrometry, ranging from fundamental research to instrument and method development to applications. Cooks' research interests over the course of his career have included the following (citations are representative): the study of gas-phase ion chemistry (e.g., unimolecular reactions of activated radical ions,[3][4][5] metastable decay,[6][7] ion/molecule reactions,[8][9][10] and charge exchange reactions [11][12][13]); early developments in tandem mass spectrometry (e.g., complex mixture analysis[14][15][16][17] and instrumentation[18][19][20]); Mass-Analyzed Ion Kinetic Energy Spectrometry (MIKES);[21][22] kinetic isotope effects;[23][24][25] the Kinetic Method for thermochemical determinations;[26][27][28] Angle-Resolved Mass Spectrometry;[29][30] Energy-Resolved Mass Spectrometry (ERMS);[31][32] chiral analysis;[33][34] ion activation/dissociation processes (collision-induced dissociation (CID),[35][36][37] surface-induced dissociation (SID),[38][39] and photodissociation (PD)[40]); desorption/ionization processes (e.g., secondary ion mass spectrometry (SIMS),[41][42][43] laser desorption ionization (LD),[44] and desorption electrospray ionization (DESI)[45][46]); preparative mass spectrometry (‘ion soft-landing’ and related phenomena);[47][48][49] ionization techniques (Matrix-Enhanced Laser Desorption,[50] DESI,[51][52] Atmospheric Pressure Thermal Desorption/Ionization (APTDI),[53] Low Temperature Plasma (LTP),[54] Paper Spray,[55][56] and Leaf Spray [57]); the development of quadrupole ion traps (QITs) and related technologies (e.g., ion injection into QITs,[58] broadband isolation/excitation,[59] resonance ejection,[60] high mass resolution,[61] ion cloud tomography,[62] the Cylindrical Ion Trap (CIT),[63] and the Rectilinear Ion Trap (RIT) [64]); trapped ion motion phenomena and simulations;[65][66][67] Membrane Introduction Mass Spectrometry (MIMS);[68] abiogenisis (also known as "the origin of life") via homochirality;[69][70] chemical imaging;[71][72][73] the development of portable mass spectrometers or miniature mass spectrometers [74][75] and related technologies.[76][77]

Awards and Fellowships[edit]

See also[edit]

References[edit]

  1. ^ "Chemistry - Research Analytics". Archived from the original on December 4, 2011. Retrieved January 1, 2012. 
  2. ^ "Web of Science" (PDF). December 2011. Retrieved 2015-03-27. 
  3. ^ Williams, D.H.; Cooks, R.G. "The Role of 'Frequency Factors' in Determining the Difference Between Low and High Voltage Mass Spectra". Chemical Communications (London). 1968: 663. doi:10.1039/C19680000663. 
  4. ^ Cooks, R.G. (1969). "Bond Formation Upon Electron Impact". Organic Mass Spectrometry. 2 (5): 481–519. doi:10.1002/oms.1210020505. 
  5. ^ Cooks, R.G.; Bernasek, S.L. (1970). "Carbon Scrambling Upon Electron Impact". Journal of the American Chemical Society. 92 (7): 2129–2131. doi:10.1021/ja00710a055. 
  6. ^ Cooks, R. G.; Beynon, J. H.; Caprioli, R. M.; Lester, G. R. (1973). Metastable Ions. Amsterdam: Elsevier. pp. ix + 296. 
  7. ^ Terwilliger, D.T.; Elder, J.F.; Beynon, J.H.; Cooks, R.G. (1975). "The Shapes of Metastable Peaks". International Journal of Mass Spectrometry and Ion Physics. 16 (3): 225–242. doi:10.1016/0020-7381(75)87022-7. 
  8. ^ Burinsky, D.J.; Cooks, R.G. (1982). "Gas Phase Dieckmann Ester Condensation Characterized by Mass Spectrometry/Mass Spectrometry". The Journal of Organic Chemistry. 47 (25): 4864–4869. doi:10.1021/jo00146a009. 
  9. ^ Burinsky, D.J.; Campana, J.E.; Cooks, R.G. (1984). "Bimolecular Condensation Reactions in the Gas Phase. The Schiff Base Synthesis". International Journal of Mass Spectrometry and Ion Processes. 62 (3): 303–315. doi:10.1016/0168-1176(84)87117-7. 
  10. ^ Chen, Hao; Chen, Huanwen; Cooks, R. Graham. "Meisenheimer Complexes Bonded at Carbon and at Oxygen in the Gas Phase". Journal of the American Society for Mass Spectrometry. 2004 (15): 998–1004. doi:10.1016/j.jasms.2004.03.006. 
  11. ^ Cooks, R.G.; Beynon, J.H.; Ast, T. (1972). "Stripping Reactions of Gaseous Ions in the Mass Spectrometer". Journal of the American Chemical Society. 94 (3): 1004–1006. doi:10.1021/ja00758a055. 
  12. ^ LaramÆe, J.A.; Cameron, D.; Cooks, R.G. (1981). "Collision Induced Dissociation Mass Spectrometry: Target Gas Effects upon Scattering and Charge Exchange". Journal of the American Chemical Society. 103 (1): 12–17. doi:10.1021/ja00391a003. 
  13. ^ Bier, M.E.; Vincenti, M.; Cooks, R.G.; Keough, T. (1987). "Ion/Surface Collisions Which Lead to Charge Permutation". Rapid Communications in Mass Spectrometry. 1: 92–94. doi:10.1002/rcm.1290010604. 
  14. ^ Kruger, T.L.; Litton, J.F.; Kondrat, R.W.; Cooks, R.G. (1976). "Mixture Analysis by Mass-Analyzed Ion Kinetic Energy Spectrometry". Analytical Chemistry. 48 (14): 2113–2119. doi:10.1021/ac50008a016. 
  15. ^ Kondrat, R.W.; Cooks, R.G. (1978). "Direct Analysis of Mixtures by Mass Spectrometry". Analytical Chemistry. 50 (1): A81. doi:10.1021/ac50023a006. 
  16. ^ Glish, G.L.; Shaddock, V.M.; Harmon, K.; Cooks, R.G. (1980). "Rapid Analysis of Complex Mixtures by Mass Spectrometry/Mass Spectrometry". Analytical Chemistry. 52 (1): 165–167. doi:10.1021/ac50051a038. 
  17. ^ Cooks, Robert (1978). "Multiple Reaction Monitoring in Mass Spectrometry/Mass Spectrometry for Direct Analysis of Complex Mixtures". Analytical Chemistry. 50 (14): 2017–2021. doi:10.1021/ac50036a020. 
  18. ^ Wright, L.G.; Schwartz, J.C.; Cooks, R.G. (1986). "Hybrid Mass Spectrometers: Versatile Research Instruments". TrAC Trends in Analytical Chemistry. 5: 236–240. doi:10.1016/0165-9936(86)85061-0. 
  19. ^ Schey; Cooks, R.G.; Grix, R.; Wollnik, H. (1987). "A Tandem Time-of-Flight Mass Spectrometer for Surface Induced Dissociation". International Journal of Mass Spectrometry and Ion Processes. 77 (1): 49–61. doi:10.1016/0168-1176(87)83023-9. 
  20. ^ Schwartz, J. C.; Wade, A. P.; Enke, C. G.; Cooks, R.G. (1990). "Systematic Delineation of Scan Modes in Multidimensional Mass Spectrometry". Analytical Chemistry. 62: 11809–1818. doi:10.1021/ac00216a016. 
  21. ^ Beynon, J.H.; Cooks, R.G.; Amy, J.W.; Baitinger, W.E.; Ridley, T.Y. (1973). "Design and Performance of a Mass-Analyzed Ion Kinetic Energy Spectrometer". Analytical Chemistry. 45: 1023A. doi:10.1021/ac60334a763. 
  22. ^ Zakett, D.; Shaddock, V.M.; Cooks, R.G. (1979). "Analysis of Coal Liquids by Mass-Analyzed Ion Kinetic Energy Spectrometry". Analytical Chemistry. 51 (11): 1849–1852. doi:10.1021/ac50047a054. 
  23. ^ Bertrand, M.; Beynon, J.H.; Cooks, R.G. (1972). "Isotope Effects Upon Kinetic Energy Release in Metastable Ion Fragmentations". International Journal of Mass Spectrometry and Ion Physics. 9: 346–350. doi:10.1016/0020-7381(72)80061-5. 
  24. ^ Zakett, D.; Flynn, R.G.A. (1978). "Chlorine Isotope Effects in Mass Spectrometry by Multiple Reaction Monitoring". The Journal of Physical Chemistry. 82 (22): 2359–2362. doi:10.1021/j100511a002. 
  25. ^ Green, Jason R.; Cooks, R. Graham (2004). "Inverse Heavy-Atom Kinetic Isotope Effects in Chloroalkanes". The Journal of Physical Chemistry A. 108 (46): 10039–10043. doi:10.1021/jp046228g. 
  26. ^ Cooks, R.G.; Kruger, T.L. (1977). "Intrinsic Basicity Determination Using Metastable Ions". Journal of the American Chemical Society. 99 (4): 1279–1281. doi:10.1021/ja00446a059. 
  27. ^ Cooks, R. G.; Koskinen, J. T.; Thomas, P. D. (1999). "The Kinetic Method of Making Thermochemical Determinations". Journal of Mass Spectrometry. 34 (2): 85–92. doi:10.1002/(SICI)1096-9888(199902)34:2<85::AID-JMS795>3.0.CO;2-#. 
  28. ^ Zheng, X.; Cooks, R. Graham (2002). "Thermochemical Determinations by the Kinetic Method with Direct Entropy Correction". The Journal of Physical Chemistry A. 106: 9939–9946. doi:10.1021/jp020595f. 
  29. ^ Laramee, J.A.; Carmody, J.; Cooks, R.G. (1979). "Angle Resolved Mass Spectrometry". International Journal of Mass Spectrometry and Ion Physics. 31 (4): 333–343. doi:10.1016/0020-7381(79)80071-6. 
  30. ^ Hubik, A.R.; Hemberger, P.H.; LaramÆe, J.A.; Cooks, R.G. (1980). "Control of Energy Deposition by Impact Parameter in Polyatomic Ion Collisions". Journal of the American Chemical Society. 102: 3997–4000. doi:10.1021/ja00532a003. 
  31. ^ McLuckey, S.A.; Sallans, L.; Cody, R.G.; Burnier, R.C.; Verma, S.; Freiser, B.S.; Cooks, R.G. (1982). "Energy-Resolved Tandem and Fourier-Transform Mass Spectrometry". International Journal of Mass Spectrometry and Ion Physics. 44 (3–4): 215–229. doi:10.1016/0020-7381(82)80026-0. 
  32. ^ KenttÆmaa, H.I.; Cooks, R.G. (1985). "Tautomer Characterization by Energy Resolved Mass Spectrometry. Dimethyl Phosphite and Dimethyl Phosphonate Ions". Journal of the American Chemical Society. 107: 1881–1886. doi:10.1021/ja00293a013. 
  33. ^ Tao, W. Andy; Cooks, R. Graham (2003). "Chiral Analysis by Mass Spectrometry". Analytical Chemistry. 75: 25A–31A. doi:10.1021/ac0312110. 
  34. ^ Young, Brandy L.; Cooks, R. Graham (2007). "Improvements in Quantitative Chiral Determinations using the Mass Spectrometric Kinetic Method". International Journal of Mass Spectrometry. 267 (1–3): 199–204. doi:10.1016/j.ijms.2007.02.036. 
  35. ^ Brodbelt, J.S.; Wysocki, V.H.; Cooks, R.G. (1988). "Thermochemical vs. Kinetic Control of Reaction in an Ion Trap Mass Spectrometer". Organic Mass Spectrometry. 23 (1): 54–56. doi:10.1002/oms.1210230111. 
  36. ^ Wysocki, V.H.; Ross, M.M.; Horning, S.R.; Cooks, R.G. (1988). "Remote-Site (Charge-Remote) Fragmentation". Rapid Communications in Mass Spectrometry. 2: 214–216. doi:10.1002/rcm.1290021009. 
  37. ^ Cooks, R. G. (1995). "Collision-induced Dissociation: Readings and Commentary" (PDF). Journal of Mass Spectrometry. 30: 1215–1221. doi:10.1002/jms.1190300902. 
  38. ^ Winger, B.E.; Julian, Jr.; Cooks, R.G.; Chidsey, C.E.D. (1991). "Surface Reactions and Surface-Induced Dissociation of Polyatomic Ions at Self-Assembled Organic Monolayer Surfaces". Journal of the American Chemical Society. 113: 8967–8969. doi:10.1021/ja00023a067. 
  39. ^ Cooks, R.G.; Ast, T.; Pradeep, T.; Wysocki, V. (1994). "Reactions of Ions with Organic Surfaces". Accounts of Chemical Research. 27: 316–323. doi:10.1021/ar00047a001. 
  40. ^ Louris, J.N.; Brodbelt, J.S.; Cooks, R.G. (1987). "Photodissociation in a Quadrupole Ion Trap Mass Spectrometer Using a Fiber Optic Interface". International Journal of Mass Spectrometry and Ion Processes. 75 (3): 345–352. doi:10.1016/0168-1176(87)83045-8. 
  41. ^ Grade, H.; Winograd, N.; Cooks, R.G. (1977). "Cationization of Organic Molecules in Secondary Ion Mass Spectrometry". Journal of the American Chemical Society. 99 (23): 7725–7726. doi:10.1021/ja00465a062. 
  42. ^ Busch, K.L.; Cooks, R.G. (1982). "Mass Spectrometry of Large, Fragile and Involatile Molecules". Science. 218: 247–254. doi:10.1126/science.218.4569.247. PMID 17838611. 
  43. ^ Pachuta, S.J.; Cooks, R.G. (1987). "Mechanism in Molecular SIMS". Chemical Reviews. 87 (3): 647–669. doi:10.1021/cr00079a009. 
  44. ^ Zakett, D.; Schoen, A.E.; Cooks, R.G.; Hemberger, P.H. (1981). "Laser-Desorption Mass Spectrometry/Mass Spectrometry and the Mechanism of Desorption Ionization". Journal of the American Chemical Society. 103 (5): 1295–1297. doi:10.1021/ja00395a086. 
  45. ^ Costa, Anthony B.; Cooks, R. Graham. "Simulation of Atmospheric Transport and Droplet Thin-Film Collisions in Desorption Electrospray Ionization". Chemical Communications. 2007: 3915–3917. doi:10.1039/b710511h. 
  46. ^ Costa, Anthony B; Cooks, R. Graham. "Simulated Splashes: Elucidating the Mechanism of Desorption Electrospray Ionization Mass Spectrometry". Chemical Physics Letters. 2008 (464): 1–8. doi:10.1016/j.cplett.2008.08.020. 
  47. ^ Cooks, R. Graham; Jo, Sung-Chan; Green, Jason R. (2004). "Collisions of Organic Ions at Surfaces". Applied Surface Science. 231: 13–21. doi:10.1016/j.apsusc.2004.03.017. 
  48. ^ Nie, Zongxiu; Li, Guangtao; Goodwin, Michael P.; Gao, Liang; Cyriac, Jobin; Cooks, R. Graham (2009). "In situ SIMS Analysis and Reactions of Surfaces after Soft-Landing of Mass-selected Cations and Anions in an Ion Trap Mass Spectrometer". Journal of the American Society of Mass Spectrometry. 20 (6): 949–956. doi:10.1016/j.jasms.2009.02.019. 
  49. ^ Espy, Ryan D.; Badu-Tawiah, Abraham; Cooks, R. Graham. "Analysis and Modification of Surfaces using Molecular Ions in the Ambient Environment". Current Opinions in Chemical Biology. 2011 (15): 741–747. doi:10.1016/j.cbpa.2011.06.006. 
  50. ^ Wright, L.G.; Cooks, R.G.; Wood, K.V. (1985). "Matrix Enhanced Laser Desorption in Mass Spectrometry and Tandem Mass Spectrometry". Biological Mass Spectrometry. 12 (4): 159–162. doi:10.1002/bms.1200120404. 
  51. ^ Cooks, R. Graham; Ouyang, Zheng; Takats, Zoltan; Wiseman, Justin M. (2006). "Ambient Mass Spectrometry". Science. 311 (5767): 1566–1570. doi:10.1126/science.1119426. PMID 16543450. 
  52. ^ Venter, Andre; Nefliu, Marcela; Cooks, R. Graham (2008). "Ambient Desorption Ionization Mass Spectrometry". TrAC Trends in Analytical Chemistry. 27: 284–290. doi:10.1016/j.trac.2008.01.010. 
  53. ^ Chen, H.; Eberlin, L. S.; Nefliu, M.; Augusti, R.; Cooks, R. G. "Organic Reactions of Ionic Intermediates Promoted by Atmospheric-Pressure Thermal Activation". Angewandte Chemie International Edition. 47: 3422–3425. doi:10.1002/anie.200800072. PMID 18357600. 
  54. ^ Harper, Jason D.; Nicholas, A.Charipar; Mulligan, Christopher C.; Cooks, R. Graham; Ouyang, Zheng (Dec 2008). "Low Temperature Plasma Probe for Ambient Desorption Ionization". Analytical Chemistry. 80: 9097–9104. doi:10.1021/ac801641a. PMID 19551980. 
  55. ^ Wang, He; Liu, Jiangjiang; Cooks, R. Graham; Ouyang, Zheng (2009). "Paper Spray for Direct Analysis of Complex Mixtures using Mass Spectrometry". Angewandte Chemie International Edition. 49: 877–880. doi:10.1002/anie.200906314. 
  56. ^ Manicke, Nicholas E.; Abu-Rabie, Paul; Spooner, Neil; Ouyang, Zheng; Cooks, R. Graham (2011). "Quantitative Analysis of Therapeutic Drugs in Dried Blood Spot Samples by Paper Spray Mass Spectrometry: An Avenue to Therapeutic Drug Monitoring". Journal of the American Society of Mass Spectrometry. 22: 1501–1507. doi:10.1007/s13361-011-0177-x. 
  57. ^ Liu, Jiangjiang; Wang, He; Cooks, R. Graham; Ouyang, Zheng (2011). "Leaf Spray: Direct Chemical Analysis of Plant Material and Living Plants by Mass Spectrometry". Analytical Chemistry. 83: 7608–7613. doi:10.1021/ac2020273. PMID 21916420. 
  58. ^ Louris, J.N.; Amy, J.W.; Ridley, T.Y.; Cooks, R.G. (1989). "Injection of Ions Into a Quadrupole Ion Trap Mass Spectrometer". International Journal of Mass Spectrometry and Ion Processes. 88 (2–3): 97–111. doi:10.1016/0168-1176(89)85010-4. 
  59. ^ Soni, M.; Frankevich, V.; Nappi, M.; Santini, R. E.; Amy, J. W.; Cooks, R. G. (1996). "Broad- Band Fourier Transform Quadrupole Ion Trap Mass Spectrometry". Analytical Chemistry. 68: 3314–3320. doi:10.1021/ac960577s. PMID 21619266. 
  60. ^ Williams, J.D.; Cox, K.A.; Cooks, R.G.; McLuckey, S.A.; Hart, K.J.; Goeringer, D.E. (1994). "Resonance Ejection Ion Trap Mass Spectrometry and Non-Linear Field Contributions: The Effect of Scan Direction on Mass Resolution". Analytical Chemistry. 66: 725–729. doi:10.1021/ac00077a023. 
  61. ^ Williams, J.D.; Cox, K.A.; Kaiser, R.E.; Jr; Cooks, R.G. (1991). "High Mass-Resolution Using a Quadrupole Ion Trap Mass Spectrometer". Rapid Communications in Mass Spectrometry. 5: 327–329. doi:10.1002/rcm.1290050706. 
  62. ^ Hemberger, P.H.; Nogar, N.S.; Williams, J.D.; Cooks, R.G.; Syka, J.E.P. (1992). "Laser Photodissociation Probe for Ion Tomography Studies in a Quadrupole Ion Trap Mass Spectrometer". Chemical Physics Letters. 191: 405–410. doi:10.1016/0009-2614(92)85400-5. 
  63. ^ Wells, M.; Badman, E. R.; Cooks, R. G. (1998). "A Quadrupole Ion Trap with Cylindrical Geometry Operated in the Mass-Selective Instability Mode". Analytical Chemistry. 70 (3): 438–444. doi:10.1021/ac971198h. PMID 21644742. 
  64. ^ Ouyang, Zheng; Wu, Guangxiang; Song, Yishu; Li, Hongyan; Plass, Wolfgang R.; Cooks, R. Graham (2004). "Rectilinear Ion Trap: Concepts, Calculations, and Analytical Performance of a New Mass Analyzer". Analytical Chemistry. 76: 4595–4605. doi:10.1021/ac049420n. PMID 15307768. 
  65. ^ Bui, H. A.; Cooks, R. G. (1998). "Windows Version of the Ion Trap Simulation Program, ITSIM: A Powerful Heuristic and Predictive Tool in Ion Trap Mass Spectrometry". Journal of Mass Spectrometry. 33: 297–304. doi:10.1002/(SICI)1096-9888(199804)33:4<297::AID-JMS665>3.0.CO;2-V. 
  66. ^ Plass, Wolfgang R.; Li, Hongyan; Cooks, R. Graham (2003). "Theory, Simulation and Measurement of Chemical Mass Shifts in RF Quadrupole Ion Traps". International Journal of Mass Spectrometry. 228: 237–267. doi:10.1016/S1387-3806(03)00216-1. 
  67. ^ Wu, Guangxiang; Noll, Robert J.; Plass, Wolfgang R.; Hu, Qizhi; Perry, Richard H.; Cooks, R. Graham (2006). "Ion Trajectory Simulations of Axial AC Dipolar Excitation in the Orbitrap". International Journal of Mass Spectrometry. 254 (1–2): 53–62. doi:10.1016/j.ijms.2006.05.007. 
  68. ^ Kotiaho, T.; Lauritsen, F.R.; Choudhury, T.K.; Cooks, R.G. (1991). "Membrane Introduction Mass Spectrometry". Analytical Chemistry. 63 (18): 875A–883A. doi:10.1021/ac00018a001. 
  69. ^ Yang, Pengxiang; Xu, Ruifeng; Nanita, Sergio C.; Cooks, R. Graham (2006). "Thermal Formation of Homochiral Serine Clusters and Implications for the Origin of Homochirality". Journal of the American Chemical Society. 128 (51): 17074–17086. doi:10.1021/ja064617d. PMID 17177460. 
  70. ^ Perry, R. H.; Wu, C.; Nefliu, M.; Cooks, R. G. "Serine Sublimes with Spontaneous Chiral Amplification". Chemical Communications. 2007: 1071–1073. doi:10.1039/b616196k. 
  71. ^ Wiseman, J.M.; Ifa, D.R.; Venter, A.; Cooks, R.G. (2008). "Ambient molecular imaging by desorption electrospray ionization mass spectrometry". Nature Protocols. 3 (3): 517–524. doi:10.1038/nprot.2008.11. 
  72. ^ Eberlin, Livia S.; Ifa, Demian R.; Wu, Chunping; Cooks, R. Graham (2010). "Three-Dimensional Vizualization of Mouse Brain by Lipid Analysis Using Ambient Ionization Mass Spectrometry". Angewandte Chemie International Edition. 49: 873–876. doi:10.1002/anie.200906283. PMC 2958060Freely accessible. PMID 20041465. 
  73. ^ Dill, Allison L.; Eberlin, Livia S.; Ifa, Demian R.; Cooks, R. Graham (2011). "Perspectives in Imaging using Mass Spectrometry". Chemical Communications. 47: 2741–2746. doi:10.1039/C0CC03518A. 
  74. ^ Snyder, D T; Pulliam, C J; Ouyang, Z; Cooks, R G. "Miniature and fieldable mass spectrometers: Recent advances". Analytical Chemistry. 88: 2–29. doi:10.1021/acs.analchem.5b03070. PMID 26422665. 
  75. ^ Soparwalla, Santosh; Tadjimukhamedov, Fatkhulla K.; Wiley, Joshua S.; Ouyang, Zheng; Cooks, R. Graham (2011). "In situ analysis of agrochemical residues on fruit using ambient ionization on a handheld mass spectrometer". Analyst. 136: 4392–4396. doi:10.1039/C1AN15493A. 
  76. ^ Ouyang, Zheng; Noll, Robert J.; Cooks, R. Graham (2009). "Handheld Miniature Ion Trap Mass Spectrometers". Analytical Chemistry. 81 (7): 2421–2425. doi:10.1021/ac900292w. 
  77. ^ Ouyang, Zheng; Cooks, R. Graham (2009). "Miniature Mass Spectrometers". Annual Review of Analytical Chemistry. 2: 187–214. doi:10.1146/annurev-anchem-060908-155229. 
  78. ^ Glish G (2008). "Focus Honoring R. Graham Cooks, Recipient of the 2006 ASMS Award for Distinguished Contribution in Mass Spectrometry". Journal of the American Society for Mass Spectrometry. 19 (2): 159–60. doi:10.1016/j.jasms.2007.11.011. PMID 18160305. 
  79. ^ "Purdue professor and former student win Nobel Signature Award for Graduate Education in Chemistry - Purdue University". www.purdue.edu. Retrieved 2016-10-09. 

External links[edit]