R. Graham Cooks

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Robert Graham Cooks
Residence United States
Nationality United States
Fields Chemist
Institutions Purdue University
Alma mater University of Natal
Cambridge University
Doctoral advisor Frank L. Warren
Peter Sykes
Known for Mass Spectrometry

Robert Graham Cooks is the Henry Bohn Hass Distinguished Professor of Chemistry at Purdue University. He is an ISI Highly Cited Chemist,[1] with over 950 publications and an H-index of 81.[2]

Early life and education[edit]

He received his BS from University of Natal, South Africa in 1961; his Ph.D. from University of Natal, South Africa in 1965; and his Ph.D. from Cambridge University, Great Britain in 1967.

Research interests[edit]

Research in Cooks' laboratory (the Aston Laboratory) has contributed to a diverse assortment of areas within mass spectrometry, ranging from fundamental research to instrument and method development to applications. Cooks' research interests over the course of his career have included the following (citations are representative): the study of gas-phase ion reactions (e.g., unimolecular reactions of activated radical ions,[3][4][5] metastable decay,[6][7] ion/molecule reactions,[8][9][10] and charge exchange reactions [11][12][13]); early developments in tandem mass spectrometry (e.g., complex mixture analysis[14][15][16][17] and instrumentation[18][19][20]); Mass-Analyzed Ion Kinetic Energy Spectroscopy (MIKES);[21][22] kinetic isotope effects;[23][24][25] the Kinetic Method for thermochemical determinations;[26][27][28] Angle-Resolved Mass Spectrometry;[29][30] Energy-Resolved Mass Spectrometry (ERMS);[31][32] chiral analysis;[33][34] ion activation/dissociation processes (collision-induced dissociation (CID),[35][36][37] surface-induced dissociation (SID),[38][39] and photodissociation (PD) [40]); desorption/ionization processes (e.g., secondary ion mass spectrometry (SIMS),[41][42][43] laser desorption ionization (LD),[44] and desorption electrospray ionization (DESI) [45][46]); preparative mass spectrometry (‘ion soft-landing’ and related phenomena);[47][48][49] ionization techniques (Matrix-Enhanced Laser Desorption,[50] DESI,[51][52] Atmospheric Pressure Thermal Desorption/Ionization (APTDI),[53] Low Temperature Plasma (LTP),[54] Paper Spray,[55][56] and Leaf Spray [57]); the development of quadrupole ion traps (QITs) and related technologies (e.g., ion injection into QITs,[58] broadband isolation/excitation,[59] resonance ejection,[60] high mass resolution,[61] ion cloud tomography,[62] the Cylindrical Ion Trap (CIT),[63] and the Rectilinear Ion Trap (RIT) [64]); trapped ion motion phenomena and simulations;[65][66][67] Membrane Introduction Mass Spectrometry (MIMS);[68] the origin of life (homochirality);[69][70] chemical imaging;[71][72][73] the development of portable mass spectrometers or miniature mass spectrometers [74][75] and related technologies.[76][77]

Awards and Fellowships[edit]

See also[edit]

References[edit]

  1. ^ https://web.archive.org/20111204141150/http://highlycited.com:80/categories/chemistry/. Archived from the original on December 4, 2011. Retrieved January 1, 2012.  Missing or empty |title= (help)
  2. ^ "H-index ranking of living chemists" (PDF). December 2011. Retrieved 2015-03-27. 
  3. ^ Williams, D.H.; Cooks, R.G. "The Role of 'Frequency Factors' in Determining the Difference Between Low and High Voltage Mass Spectra". Chem. Commun 1968: 663. doi:10.1039/C19680000663. 
  4. ^ Cooks, R.G. (1969). "Bond Formation Upon Electron Impact". Org. Mass Spectrom 2 (5): 481–519. doi:10.1002/oms.1210020505. 
  5. ^ Cooks, R.G.; Bernasek, S.L. (1970). "Carbon Scrambling Upon Electron Impact". J. Amer. Chem. Soc. 92 (7): 2129–2131. doi:10.1021/ja00710a055. 
  6. ^ R. G. Cooks, J. H. Beynon, R. M. Caprioli, G. R. Lester Metastable Ions. Elsevier, Amsterdam, 1973. pp. ix + 296.
  7. ^ Terwilliger, D.T.; Elder, J.F.; Beynon, J.H.; Cooks, R.G. (1975). "The Shapes of Metastable Peaks". Int. J. Mass Spectrom. Ion Phys. 16 (3): 225–242. doi:10.1016/0020-7381(75)87022-7. 
  8. ^ Burinsky, D.J.; Cooks, R.G. (1982). "Gas Phase Dieckmann Ester Condensation Characterized by Mass Spectrometry/Mass Spectrometry". J. Org. Chem. 47 (25): 4864–4869. doi:10.1021/jo00146a009. 
  9. ^ Burinsky, D.J.; Campana, J.E.; Cooks, R.G. (1984). "Bimolecular Condensation Reactions in the Gas Phase. The Schiff Base Synthesis". Int. J. Mass Spectrom. Ion Proc. 62 (3): 303–315. doi:10.1016/0168-1176(84)87117-7. 
  10. ^ Chen, Hao; Chen, Huanwen; Cooks, R. Graham. "Meisenheimer Complexes Bonded at Carbon and at Oxygen in the Gas Phase". J. Am. Soc. Mass Spectrom 2004 (15): 998–1004. doi:10.1016/j.jasms.2004.03.006. 
  11. ^ Cooks, R.G.; Beynon, J.H.; Ast, T. (1972). "Stripping Reactions of Gaseous Ions in the Mass Spectrometer". J. Amer. Chem. Soc. 94 (3): 1004–1006. doi:10.1021/ja00758a055. 
  12. ^ LaramÆe, J.A.; Cameron, D.; Cooks, R.G. (1981). "Collision Induced Dissociation Mass Spectrometry: Target Gas Effects upon Scattering and Charge Exchange". J. Am. Chem. Soc. 103 (1): 12–17. doi:10.1021/ja00391a003. 
  13. ^ Bier, M.E.; Vincenti, M.; Cooks, R.G.; Keough, T. (1987). "Ion/Surface Collisions Which Lead to Charge Permutation". Rapid Communications in Mass Spectrometry 1: 92–94. doi:10.1002/rcm.1290010604. 
  14. ^ Kruger, T.L.; Litton, J.F.; Kondrat, R.W.; Cooks, R.G. (1976). "Mixture Analysis by Mass-Analyzed Ion Kinetic Energy Spectrometry". Anal. Chem. 48 (14): 2113–2119. doi:10.1021/ac50008a016. 
  15. ^ Kondrat, R.W.; Cooks, R.G. (1978). "Direct Analysis of Mixtures by Mass Spectrometry". Anal. Chem. 50 (1): A81. doi:10.1021/ac50023a006. 
  16. ^ Glish, G.L.; Shaddock, V.M.; Harmon, K.; Cooks, R.G. (1980). "Rapid Analysis of Complex Mixtures by Mass Spectrometry/Mass Spectrometry". Anal. Chem. 52 (1): 165–167. doi:10.1021/ac50051a038. 
  17. ^ Cooks, Robert (1978). "Multiple Reaction Monitoring in Mass Spectrometry/Mass Spectrometry for Direct Analysis of Complex Mixtures". Analytical Chemistry 50 (14): 2017–2021. doi:10.1021/ac50036a020. 
  18. ^ Wright, L.G.; Schwartz, J.C.; Cooks, R.G. (1986). "Hybrid Mass Spectrometers: Versatile Research Instruments". Trends Anal. Chem. 5: 236–240. doi:10.1016/0165-9936(86)85061-0. 
  19. ^ Schey; Cooks, R.G.; Grix, R.; Wollnik, H. (1987). "A Tandem Time-of-Flight Mass Spectrometer for Surface Induced Dissociation". Int. J. Mass Spectrom. Ion Proc. 77 (1): 49–61. doi:10.1016/0168-1176(87)83023-9. 
  20. ^ Schwartz, J. C.; Wade, A. P.; Enke, C. G.; Cooks, R.G. (1990). "Systematic Delineation of Scan Modes in Multidimensional Mass Spectrometry". Anal. Chem. 62: 11809–1818. doi:10.1021/ac00216a016. 
  21. ^ Beynon, J.H.; Cooks, R.G.; Amy, J.W.; Baitinger, W.E.; Ridley, T.Y. (1973). "Design and Performance of a Mass-Analyzed Ion Kinetic Energy Spectrometer". Anal. Chem. 45: 1023A. doi:10.1021/ac60334a763. 
  22. ^ Zakett, D.; Shaddock, V.M.; Cooks, R.G. (1979). "Analysis of Coal Liquids by Mass-Analyzed Ion Kinetic Energy Spectrometry". Anal. Chem. 51 (11): 1849–1852. doi:10.1021/ac50047a054. 
  23. ^ Bertrand, M.; Beynon, J.H.; Cooks, R.G. (1972). "Isotope Effects Upon Kinetic Energy Release in Metastable Ion Fragmentations". Int. J. Mass Spectrom. Ion Phys. 9: 346–350. doi:10.1016/0020-7381(72)80061-5. 
  24. ^ Zakett, D.; Flynn, R.G.A. (1978). "Chlorine Isotope Effects in Mass Spectrometry by Multiple Reaction Monitoring". J. Phys. Chem. 82 (22): 2359–2362. doi:10.1021/j100511a002. 
  25. ^ Green, Jason R.; Cooks, R. Graham (2004). "Inverse Heavy-Atom Kinetic Isotope Effects in Chloroalkanes". J. Phys. Chem. A 108 (46): 10039–10043. doi:10.1021/jp046228g. 
  26. ^ Cooks, R.G.; Kruger, T.L. (1977). "Intrinsic Basicity Determination Using Metastable Ions". J. Amer. Chem. Soc. 99 (4): 1279–1281. doi:10.1021/ja00446a059. 
  27. ^ Cooks, R. G.; Koskinen, J. T.; Thomas, P. D. (1999). "The Kinetic Method of Making Thermochemical Determinations". Journal of Mass Spectrometry 34 (2): 85–92. doi:10.1002/(SICI)1096-9888(199902)34:2<85::AID-JMS795>3.0.CO;2-#. 
  28. ^ Zheng, X.; Cooks, R. Graham (2002). "Thermochemical Determinations by the Kinetic Method with Direct Entropy Correction". J. Phys. Chem. A 106: 9939–9946. doi:10.1021/jp020595f. 
  29. ^ Laramee, J.A.; Carmody, J.; Cooks, R.G. (1979). "Angle Resolved Mass Spectrometry". Int. J. Mass Spectrom. and Ion Phys. 31 (4): 333–343. doi:10.1016/0020-7381(79)80071-6. 
  30. ^ Hubik, A.R.; Hemberger, P.H.; LaramÆe, J.A.; Cooks, R.G. (1980). "Control of Energy Deposition by Impact Parameter in Polyatomic Ion Collisions". J. Am. Chem. Soc. 102: 3997–4000. doi:10.1021/ja00532a003. 
  31. ^ McLuckey, S.A.; Sallans, L.; Cody, R.G.; Burnier, R.C.; Verma, S.; Freiser, B.S.; Cooks, R.G. (1982). "Energy-Resolved Tandem and Fourier-Transform Mass Spectrometry". Int. J. Mass Spectrom. Ion Phys. 44 (3-4): 215–229. doi:10.1016/0020-7381(82)80026-0. 
  32. ^ KenttÆmaa, H.I.; Cooks, R.G. (1985). "Tautomer Characterization by Energy Resolved Mass Spectrometry. Dimethyl Phosphite and Dimethyl Phosphonate Ions". J. Amer. Chem. Soc. 107: 1881–1886. doi:10.1021/ja00293a013. 
  33. ^ Tao, W. Andy; Cooks, R. Graham (2003). "Chiral Analysis by Mass Spectrometry". Anal. Chem. 75: 25A–31A. doi:10.1021/ac0312110. 
  34. ^ Young, Brandy L.; Cooks, R. Graham (2007). "Improvements in Quantitative Chiral Determinations using the Mass Spectrometric Kinetic Method". International Journal of Mass Spectrometry 267 (1-3): 199–204. doi:10.1016/j.ijms.2007.02.036. 
  35. ^ Brodbelt, J.S.; Wysocki, V.H.; Cooks, R.G. (1988). "Thermochemical vs. Kinetic Control of Reaction in an Ion Trap Mass Spectrometer". Org. Mass Spectrom 23 (1): 54–56. doi:10.1002/oms.1210230111. 
  36. ^ Wysocki, V.H.; Ross, M.M.; Horning, S.R.; Cooks, R.G. (1988). "Remote-Site (Charge-Remote) Fragmentation". Rapid Commun. Mass Spectrom 2: 214–216. doi:10.1002/rcm.1290021009. 
  37. ^ R. G. Cooks, "Collision-induced Dissociation: Readings and Commentary", J. Mass Spectrom. 30, (1995) 1215- 1221.
  38. ^ Winger, B.E.; Julian, Jr.; Cooks, R.G.; Chidsey, C.E.D. (1991). "Surface Reactions and Surface-Induced Dissociation of Polyatomic Ions at Self-Assembled Organic Monolayer Surfaces". J. Am. Chem. Soc. 113: 8967–8969. doi:10.1021/ja00023a067. 
  39. ^ Cooks, R.G.; Ast, T.; Pradeep, T.; Wysocki, V. (1994). "Reactions of Ions with Organic Surfaces". Accounts of Chemical Research 27: 316–323. doi:10.1021/ar00047a001. 
  40. ^ Louris, J.N.; Brodbelt, J.S.; Cooks, R.G. (1987). "Photodissociation in a Quadrupole Ion Trap Mass Spectrometer Using a Fiber Optic Interface". Int. J. Mass Spectrom. Ion Proc. 75 (3): 345–352. doi:10.1016/0168-1176(87)83045-8. 
  41. ^ Grade, H.; Winograd, N.; Cooks, R.G. (1977). "Cationization of Organic Molecules in Secondary Ion Mass Spectrometry". J. Amer. Chem. Soc. 99 (23): 7725–7726. doi:10.1021/ja00465a062. 
  42. ^ Busch, K.L.; Cooks, R.G. (1982). "Mass Spectrometry of Large, Fragile and Involatile Molecules". Science 218: 247–254. doi:10.1126/science.218.4569.247. 
  43. ^ Pachuta, S.J.; Cooks, R.G. (1987). "Mechanism in Molecular SIMS". Chem. Rev. 87 (3): 647–669. doi:10.1021/cr00079a009. 
  44. ^ Zakett, D.; Schoen, A.E.; Cooks, R.G.; Hemberger, P.H. (1981). "Laser-Desorption Mass Spectrometry/Mass Spectrometry and the Mechanism of Desorption Ionization". J. Am. Chem. Soc. 103 (5): 1295–1297. doi:10.1021/ja00395a086. 
  45. ^ Costa, Anthony B.; Cooks, R. Graham. "Simulation of Atmospheric Transport and Droplet Thin-Film Collisions in Desorption Electrospray Ionization". Chemical Communications 2007: 3915–3917. doi:10.1039/b710511h. 
  46. ^ Costa, Anthony B; Cooks, R. Graham. "Simulated Splashes: Elucidating the Mechanism of Desorption Electrospray Ionization Mass Spectrometry". Chemical Physics Letters 2008 (464): 1–8. doi:10.1016/j.cplett.2008.08.020. 
  47. ^ Cooks, R. Graham; Jo, Sung-Chan; Green, Jason R. (2004). "Collisions of Organic Ions at Surfaces". Appl. Surf. Sci. 231: 13–21. doi:10.1016/j.apsusc.2004.03.017. 
  48. ^ Nie, Zongxiu; Li, Guangtao; Goodwin, Michael P.; Gao, Liang; Cyriac, Jobin; Cooks, R. Graham (2009). "In situ SIMS Analysis and Reactions of Surfaces after Soft-Landing of Mass-selected Cations and Anions in an Ion Trap Mass Spectrometer". Journal of the American Society of Mass Spectrometry 20 (6): 949–956. doi:10.1016/j.jasms.2009.02.019. 
  49. ^ Espy, Ryan D.; Badu-Tawiah, Abraham; Cooks, R. Graham. "Analysis and Modification of Surfaces using Molecular Ions in the Ambient Environment". Current Opinions in Chemical Biology 2011 (15): 741–747. doi:10.1016/j.cbpa.2011.06.006. 
  50. ^ Wright, L.G.; Cooks, R.G.; Wood, K.V. (1985). "Matrix Enhanced Laser Desorption in Mass Spectrometry and Tandem Mass Spectrometry". Biomed. Mass Spectrom 12 (4): 159–162. doi:10.1002/bms.1200120404. 
  51. ^ Cooks, R. Graham; Ouyang, Zheng; Takats, Zoltan; Wiseman, Justin M. (2006). "Ambient Mass Spectrometry". Science 311 (5767): 1566–1570. doi:10.1126/science.1119426. PMID 16543450. 
  52. ^ Venter, Andre; Nefliu, Marcela; Cooks, R. Graham (2008). "Ambient Desorption Ionization Mass Spectrometry". Trends in Analytical Chemistry 27: 284–290. doi:10.1016/j.trac.2008.01.010. 
  53. ^ Chen, H.; Eberlin, L. S.; Nefliu, M.; Augusti, R.; Cooks, R. G. "Organic Reactions of Ionic Intermediates Promoted by Atmospheric-Pressure Thermal Activation". Angewandte Chemie International Edition 2008 (47): 3422–3425. doi:10.1002/anie.200800072. 
  54. ^ Harper, Jason D.; Nicholas, A.Charipar; Mulligan, Christopher C.; Cooks, R. Graham; Ouyang, Zheng (Dec 2008). "Low Temperature Plasma Probe for Ambient Desorption Ionization". Analytical Chemistry 2008 (80): 9097–9104. doi:10.1021/ac801641a. PMID 19551980. 
  55. ^ Wang, He; Liu, Jiangjiang; Cooks, R. Graham; Ouyang, Zheng (2009). "Paper Spray for Direct Analysis of Complex Mixtures using Mass Spectrometry". Angewandte Chemie International Edition 49: 877–880. doi:10.1002/anie.200906314. 
  56. ^ Manicke, Nicholas E.; Abu-Rabie, Paul; Spooner, Neil; Ouyang, Zheng; Cooks, R. Graham (2011). "Quantitative Analysis of Therapeutic Drugs in Dried Blood Spot Samples by Paper Spray Mass Spectrometry: An Avenue to Therapeutic Drug Monitoring". Journal of the American Society of Mass Spectrometry 22: 1501–1507. doi:10.1007/s13361-011-0177-x. 
  57. ^ Liu, Jiangjiang; Wang, He; Cooks, R. Graham; Ouyang, Zheng (2011). "Leaf Spray: Direct Chemical Analysis of Plant Material and Living Plants by Mass Spectrometry". Analytical Chemistry 83: 7608–7613. doi:10.1021/ac2020273. 
  58. ^ Louris, J.N.; Amy, J.W.; Ridley, T.Y.; Cooks, R.G. (1989). "Injection of Ions Into a Quadrupole Ion Trap Mass Spectrometer". Int. J. Mass Spectrom. Ion Proc. 88 (2-3): 97–111. doi:10.1016/0168-1176(89)85010-4. 
  59. ^ Soni, M.; Frankevich, V.; Nappi, M.; Santini, R. E.; Amy, J. W.; Cooks, R. G. (1996). "Broad- Band Fourier Transform Quadrupole Ion Trap Mass Spectrometry". Anal. Chem. 68: 3314–3320. doi:10.1021/ac960577s. 
  60. ^ Williams, J.D.; Cox, K.A.; Cooks, R.G.; McLuckey, S.A.; Hart, K.J.; Goeringer, D.E. (1994). "Resonance Ejection Ion Trap Mass Spectrometry and Non-Linear Field Contributions: The Effect of Scan Direction on Mass Resolution". Anal. Chem. 66: 725–729. doi:10.1021/ac00077a023. 
  61. ^ Williams, J.D.; Cox, K.A.; Kaiser, R.E.; Jr; Cooks, R.G. (1991). "High Mass-Resolution Using a Quadrupole Ion Trap Mass Spectrometer". Rapid Commun. Mass Spectrom 5: 327–329. doi:10.1002/rcm.1290050706. 
  62. ^ Hemberger, P.H.; Nogar, N.S.; Williams, J.D.; Cooks, R.G.; Syka, J.E.P. (1992). "Laser Photodissociation Probe for Ion Tomography Studies in a Quadrupole Ion Trap Mass Spectrometer". Chem. Phys. Letters 191: 405–410. doi:10.1016/0009-2614(92)85400-5. 
  63. ^ Wells, M.; Badman, E. R.; Cooks, R. G. (1998). "A Quadrupole Ion Trap with Cylindrical Geometry Operated in the Mass-Selective Instability Mode". Anal. Chem. 70 (3): 438–444. doi:10.1021/ac971198h. 
  64. ^ Ouyang, Zheng; Wu, Guangxiang; Song, Yishu; Li, Hongyan; Plass, Wolfgang R.; Cooks, R. Graham (2004). "Rectilinear Ion Trap: Concepts, Calculations, and Analytical Performance of a New Mass Analyzer". Anal. Chem. 76: 4595–4605. doi:10.1021/ac049420n. PMID 15307768. 
  65. ^ Bui, H. A.; Cooks, R. G. (1998). "Windows Version of the Ion Trap Simulation Program, ITSIM: A Powerful Heuristic and Predictive Tool in Ion Trap Mass Spectrometry". J. Mass Spectrom 33: 297–304. doi:10.1002/(SICI)1096-9888(199804)33:4<297::AID-JMS665>3.0.CO;2-V. 
  66. ^ Plass, Wolfgang R.; Li, Hongyan; Cooks, R. Graham (2003). "Theory, Simulation and Measurement of Chemical Mass Shifts in RF Quadrupole Ion Traps". Int. J. Mass Spectrom 228: 237–267. doi:10.1016/S1387-3806(03)00216-1. 
  67. ^ Wu, Guangxiang; Noll, Robert J.; Plass, Wolfgang R.; Hu, Qizhi; Perry, Richard H.; Cooks, R. Graham (2006). "Ion Trajectory Simulations of Axial AC Dipolar Excitation in the Orbitrap". International Journal of Mass Spectrometry 254 (1-2): 53–62. doi:10.1016/j.ijms.2006.05.007. 
  68. ^ Kotiaho, T.; Lauritsen, F.R.; Choudhury, T.K.; Cooks, R.G. (1991). "Membrane Introduction Mass Spectrometry". Anal. Chem. 63 (18): 875A–883A. doi:10.1021/ac00018a001. 
  69. ^ Yang, Pengxiang; Xu, Ruifeng; Nanita, Sergio C.; Cooks, R. Graham (2006). "Thermal Formation of Homochiral Serine Clusters and Implications for the Origin of Homochirality". Journal of the American Chemical Society 128 (51): 17074–17086. doi:10.1021/ja064617d. 
  70. ^ Perry, R. H.; Wu, C.; Nefliu, M.; Cooks, R. G. "Serine Sublimes with Spontaneous Chiral Amplification". Chemical Communications 2007: 1071–1073. doi:10.1039/b616196k. 
  71. ^ Wiseman, J.M.; Ifa, D.R.; Venter, A.; Cooks, R.G. (2008). "Ambient molecular imaging by desorption electrospray ionization mass spectrometry". Nature Protocols 3 (3): 517–524. doi:10.1038/nprot.2008.11. 
  72. ^ Eberlin, Livia S.; Ifa, Demian R.; Wu, Chunping; Cooks, R. Graham (2010). "Three-Dimensional Vizualization of Mouse Brain by Lipid Analysis Using Ambient Ionization Mass Spectrometry". Angewandte Chemie International Edition 49: 873–876. doi:10.1002/anie.200906283. 
  73. ^ Dill, Allison L.; Eberlin, Livia S.; Ifa, Demian R.; Cooks, R. Graham (2011). "Perspectives in Imaging using Mass Spectrometry". Chemical Communications 47: 2741–2746. doi:10.1039/C0CC03518A. 
  74. ^ Snyder, D T; Pulliam, C J; Ouyang, Z; Cooks, R G. "Miniature and fieldable mass spectrometers: Recent advances". Anal. Chem. 88: 2–29. doi:10.1021/acs.analchem.5b03070. 
  75. ^ Soparawalla, Santosh; Tadjimukhamedov, Fatkhulla K.; Wiley, Joshua S.; Ouyang, Zheng; Cooks, R. Graham (2011). "In situ analysis of agrochemical residues on fruit using ambient ionization on a handheld mass spectrometer". Analyst 136: 4392–4396. doi:10.1039/C1AN15493A. 
  76. ^ Ouyang, Zheng; Noll, Robert J.; Cooks, R. Graham (2009). "Handheld Miniature Ion Trap Mass Spectrometers". Analytical Chemistry 81 (7): 2421–2425. doi:10.1021/ac900292w. 
  77. ^ Ouyang, Zheng; Cooks, R. Graham (2009). "Miniature Mass Spectrometers". Annual Review of Analytical Chemistry 2: 187–214. doi:10.1146/annurev-anchem-060908-155229. 
  78. ^ Glish G (2008). "Focus Honoring R. Graham Cooks, Recipient of the 2006 ASMS Award for Distinguished Contribution in Mass Spectrometry". J. Am. Soc. Mass Spectrom. 19 (2): 159–60. doi:10.1016/j.jasms.2007.11.011. PMID 18160305. 

External links[edit]