Jump to content

Radiator: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Reverted edits by 93.96.27.247 (talk) to last version by 82.32.26.159
No edit summary
Line 4: Line 4:
{{This|radiators in [[automobiles]], [[buildings]], and [[electronics]]|Radiator (disambiguation)}}
{{This|radiators in [[automobiles]], [[buildings]], and [[electronics]]|Radiator (disambiguation)}}


'''Radiators''' dont use radiators the blow up ur car!!transfer heat primarily by [[thermal radiation]] (see: [[infrared heating]]), while a device which relied primarily on natural or forced [[convection]] would be called a "convector". In practice, the term "radiator" refers to any of a number of devices in which a liquid circulates through exposed pipes (often with fins or other means of increasing surface area), notwithstanding that such devices tend to transfer heat mainly by convection and might logically be called convectors. The term "convector" refers to a class of devices in which the source of heat is not directly exposed.
'''Radiators''' and '''convectors''' are types of [[heat exchanger]]s designed to transfer [[thermal energy]] from one medium to another for the purpose of cooling and heating. The majority of radiators are constructed to function in [[automobiles]], [[buildings]], and [[electronics]].

One might expect the term "radiator" to apply to devices which transfer heat primarily by [[thermal radiation]] (see: [[infrared heating]]), while a device which relied primarily on natural or forced [[convection]] would be called a "convector". In practice, the term "radiator" refers to any of a number of devices in which a liquid circulates through exposed pipes (often with fins or other means of increasing surface area), notwithstanding that such devices tend to transfer heat mainly by convection and might logically be called convectors. The term "convector" refers to a class of devices in which the source of heat is not directly exposed.


== Automobiles ==
== Automobiles ==

Revision as of 15:40, 13 February 2009

Radiators dont use radiators the blow up ur car!!transfer heat primarily by thermal radiation (see: infrared heating), while a device which relied primarily on natural or forced convection would be called a "convector". In practice, the term "radiator" refers to any of a number of devices in which a liquid circulates through exposed pipes (often with fins or other means of increasing surface area), notwithstanding that such devices tend to transfer heat mainly by convection and might logically be called convectors. The term "convector" refers to a class of devices in which the source of heat is not directly exposed.

Automobiles

A typical automobile coolant radiator

In automobiles with a liquid-cooled internal combustion engine a radiator is connected to channels running through the engine and cylinder head, through which a liquid (coolant) is pumped. This liquid may be water (in climates where water is unlikley to freeze), but is more commonly a mixture of water and antifreeze in proportions appropriate to the climate. Antifreeze itself is usually ethylene glycol or propylene glycol (with a small amount of corrosion inhibitor).

The radiator transfers the heat from the fluid inside to the air outside, thereby cooling the engine. Radiators are also often used to cool automatic transmissions, air conditioners, and sometimes to cool engine oil. Radiators are typically mounted in a position where they receive airflow from the forward movement of the vehicle, such as behind a front grill. Where engines are mid- or rear-mounted, it is common to mount the radiator behind a front grill to achieve sufficient airflow, even though this requires long coolant pipes. Alternatively, the radiator may draw air from the flow over the top of the vehicle or from a side-mounted grill. For long vehicles, such as buses, side airflow is most common for engine and transmission cooling and top airflow most common for air conditioner cooling.

Radiator construction

Automobile radiators are constructed of a pair of header tanks, linked by a core with many narrow passageways, thus a high surface area relative to its volume. This core is usually made of stacked layers of metal sheet, pressed to form channels and soldered or brazed together. For many years radiators were made from brass or copper cores soldered to brass headers. Modern radiators save money and weight by using plastic headers and may use aluminium cores. This construction is less easily repaired than traditional materials.

Honeycomb radiator tubes

An earlier construction method was the honeycomb radiator. Round tubes were swaged into hexagons at their ends, then stacked together and soldered. As they only touched at their ends, this formed what became in effect a solid water tank with many air tubes through it. [1]

Vintage cars may also have used radiator cores made from coiled tube, a less-efficient but simpler construction.

Coolant pumps

Radiators first used downward vertical flow, driven solely by a thermosyphon effect. Coolant is heated in the engine, becoming less dense and so rising, cooled, denser coolant in the radiator falling in turn. This effect is sufficient for low-power stationary engines, but inadequate for all but the earliest automobiles. A common fallacy is to assume that a greater vertical separation between engine and radiator can increase the thermosyphon effect. Once the hot and cold headers are separated sufficiently to reach their equilibrium temperatures though, any further separation merely increases pipework length and flow restriction.

All automobiles for many years have used centrifugal pumps to circulate their coolant, driven by geared drives or more commonly by a belt drive. This "fan belt" has a well-established reputation for being slightly unreliable, a failure being rapidly obvious as the engine overheats. Despite the name though, it's the coolant pump's failure that causes the overheating, not the fan.

Heater

A system of valves or baffles, or both, is usually incorporated to simultaneously operate a small radiator inside the car. This small radiator, and the associated blower fan, is called the heater core, and serves to warm the cabin interior. Like the radiator, the heater core acts by removing heat from the engine. For this reason, automotive technicians often advise operators to turn on the heater and set it to high if the engine is overheating.

Temperature control

Waterflow control

car engine thermostat

The engine temperature is primarily controlled by a wax-pellet type of thermostat, a valve which opens once the engine has reached its optimum operating temperature.

When the engine is cold the thermostat is closed, with a small bypass flow so that the thermostat experiences changes to the coolant temperature as the engine warms up. Coolant is directed by the thermostat to the inlet of the circulating pump and is returned directly to the engine, bypassing the radiator. Directing water to circulate only through the engine allows the temperature to reach optimum operating temperature as quickly as possible whilst avoiding localised "hot spots". Once the coolant reaches the thermostat's activation temperature it opens, allowing water to flow through the radiator to prevent the temperature rising higher.

Once at optimum temperature, the thermostat controls the flow of coolant to the radiator so that the engine continues to operate at optimum temperature. Under peak load conditions, such as labouring slowly up a steep hill whilst heavily laden on a hot day, the thermostat will be approaching fully open because the engine will be producing near to maximum power while the velocity of air flow across the radiator is low. (The velocity of air flow across the radiator has a major effect on its ability to dissipate heat.) Conversely, when cruising fast downhill on a motorway on a cold night on a light throttle, the thermostat will be nearly closed because the engine is producing little power, and the radiator is able to dissipate much more heat than then engine is producing. Allowing too much flow of coolant to the radiator would result in the engine being over cooled and operating at lower than optimum temperature. A side effect of this would be that the passenger compartment heater would not be able to put out enough heat to keep the passengers warm.

The thermostat is therefore constantly moving throughout its range, responding to changes in vehicle operating load, speed and external temperature, to keep the engine at its optimum operating temperature.

Airflow control

Other factors influence the temperature of the engine including radiator size and the type of radiator fan. The size of the radiator (and thus its cooling capacity) is chosen such that it can keep the engine at the design temperature under the most extreme conditions a vehicle is likely to encounter (such as climbing a mountain whilst fully loaded on a hot day).

Airflow speed through a radiator is a major influence on the heat it loses. Vehicle speed affects this, in rough proportion to the engine effort, thus giving crude self-regulatory feedback. Where an additional cooling fan is driven by the engine, this also tracks engine speed similarly.

Engine-driven fans are often regulated by a viscous-drive clutch from the drivebelt, which slips and reduces the fan speed at low temperatures. This improves fuel efficiency by not wasting power on driving the fan unnecessarily. On modern vehicles, further regulation of cooling rate is provided by either variable speed or cycling radiator fans. Electric fans are controlled by a thermostatic switch or the engine control unit. Electric fans also have the advantage of giving good airflow and cooling at low engine revs or when stationary, such as in slow-moving traffic.

Before the development of viscous-drive and electric fans, engines were fitted with simple fixed fans that drew air through the radiator at all times. Vehicles whose design required the installation of a large radiator to cope with heavy work at high temperatures (such as commercial vehicles and tractors would often run cool in cold weather under light loads, even with the presence of a thermostat, as the large radiator and fixed fan caused a rapid and significant drop in coolant temperature as soon as the thermostat opened. This problem could be solved by fitting a radiator blind to the radiator which could be adjusted to partially or fully block the airflow. At its simplest the blind was a roll of material (such as canvas or rubber that was unfurled along the length of the radiator to cover the desired portion. Some vehicles had a series of shutters that could be adjusted from the driver's seat to provide a very fine degree of control.

These AEC Regent III buses are fitted with radiator blinds, seen here covering the lower half of the radiators.

Coolant pressure

Because the thermal efficiency of internal combustion engines increases with internal temperature the coolant is kept at higher-than-atmospheric pressure to increase its boiling point. A calibrated pressure-relief valve is usually incorporated in the radiator's fill cap. This pressure varies between models, but is typically 9 psi (0.6 bar) - 15 psi (1.0 bar).

As the coolant expands with increasing temperature its pressure in the closed system must increase. Ultimately the pressure relief valve opens and excess fluid is dumped into an overflow container. Fluid overflow ceases when the thermostat modulates the rate of cooling to keep the temperature of the coolant at optimum. When the coolant cools and contracts (as conditions change or when the engine is switched off) the fluid is returned to the radiator through additional valving in the cap.

Coolant

Before World War II, radiator coolant was usually plain water. Antifreeze was used solely to control freezing, and this was often only done in cold weather.

Development in high-performance aircraft engines required improved coolants with higher boiling points, leading to the adoption of glycol or water-glycol mixtures. These led to the adoption of glycols for their antifreeze properties too.

Since the development of aluminium or mixed-metal engines, corrosion inhibition has become even more important than antifreeze, and in all regions and seasons too.

Boiling or overheating

On this type system, if the coolant in the overflow container gets too low, fluid transfer to overflow will cause an increased loss by vaporizing the engine coolant.

Severe engine damage can be caused by overheating, by overloading or system defect, when the coolant is evaporated to a level below the water pump. This can happen without warning because, at that point, the sending units are not exposed to the coolant to indicate the excessive temperature.

To protect the unwary the cap often contains a mechanism that attempts to relieve the internal pressure before the cap can be fully opened. Some scalding of one's hands can easily occur in this event. Opening a hot radiator drops the system pressure immediately and may cause a sudden ebullition of super-heated coolant which can cause severe burns (see geyser).

History

The invention of the automobile water radiator is attributed to Karl Benz. Wilhelm Maybach designed the first honeycomb radiator for the Mercedes 35hp.[2]

Supplementary radiators

Some engines have an oil cooler, a separate small radiator to cool the engine oil. Cars with an automatic transmission often have extra connections to the radiator, allowing the transmission fluid to transfer its heat to the coolant in the radiator. These may be either oil-air radiators, as for a smaller version of the main radiator. More simply they may be oil-water coolers, where an oil pipe is inserted inside the water radiator. As water is denser than air, this offers comparable cooling (within limits) from a less complex and thus cheaper oil cooler.

Turbo charged or supercharged engines may have an intercooler, which is an air-to-air or air-to-water radiator used to cool the incoming air charge—not to cool the engine.

Aircraft

Aircraft with liquid-cooled piston engines (usually inline engines rather than radial) also require radiators. As airspeed is higher than for cars, these are efficiently cooled in flight and so do not require large areas or cooling fans. Many high-performance aircraft however suffer extreme overheating problems when idling on the ground - a mere 7 minutes for a Spitfire. [3]

Surface radiators

Reducing drag is a major goal in aircraft design, including the design of cooling systems. An early technique was to take advantage of an aircraft's abundant airflow to replace the honeycomb core (many surfaces, with a high ratio of surface to volume) by a surface mounted radiator. This uses a single surface blended into the fuselage or wing skin, with the coolant flowing through pipes at the back of this surface.

As they are so dependent on airspeed, surface radiators are even more prone to overheating when ground-running. Racing aircraft such as the Supermarine S.6B, a racing seaplane with radiators built into the upper surfaces of its floats, have been described as "being flown on the temperature gauge" as the main limit on their performance. [4]

Surface radiators have also been used by a few high-speed racing cars, such as Malcolm Campbell's Blue Bird of 1928.

Radiator thrust

An aircraft radiator comprises a duct wherein heat is added. As a result, this is effectively a jet engine. High-performance piston aircraft with well-designed low-drag radiators (notably the P-51 Mustang) derived a significant portion of their thrust from this effect. At one point, there were even plans to equip the Spitfire with a ramjet, by injecting fuel into this duct after the radiator and igniting it. Although ramjets normally require a supersonic airspeed, this light-up speed can be reduced where heat is being added, such as in a radiator duct.

Steam cooling

Pressurized cooling systems operate by adding heat to the coolant fluid, causing it to rise in temperature in inverse proportion to its specific heat capacity. With the need to keep the final temperature below boiling point, this limits the amount of heat that a given mass-flow of coolant can dissipate.

Attempts were made with aero-engines of the 1930s, notably the Rolls-Royce Goshawk, to exceed this limit by allowing the coolant to boil. This absorbs an amount of heat equivalent to the specific heat of vaporization, which for water is more than five times the energy required to heat the same quantity of water from 0°C to 100°C. Obviously this allows the necessary cooling effect with far less coolant requiring to be circulated.

The practical difficulty was the need to provide condensers rather than radiators. Cooling was now needed not just for hot dense liquid coolant, but for low-density steam. This required a condenser far larger and with higher drag than a radiator. For aircraft, especially high-speed aircraft, these were soon realised to be unworkable and so steam cooling was abandoned.

Buildings

A cast iron household radiator

In buildings a radiator is a heating device, which is warmed by steam from a boiler, or by hot water being pumped through it from a water heater (usually, if not quite accurately, referred to as a "boiler").

Such radiators transfer the majority of their heat by radiation and by convection.

Conventional radiators

A conventional hot-water radiator consists of a sealed hollow metal container, usually flat in shape. Hot water enters at the top of the radiator by way of pressure, from a pump elsewhere in the building, or by convection.

As it gives out heat the hot water cools and sinks to the bottom of the radiator and is forced out of a pipe at the other end. The pipe either has a large surface area or attached fins to increase its surface area and therefore contact with surrounding air. The air near a radiator is then heated and produces a convection current in the room drawing in cold air to heat.

If set up improperly, radiators, and their supply and return pipes, can make loud banging noises like someone hammering on the pipes. This is due to either the pipes rubbing on surrounding surfaces while expanding and contracting due to heat changes or to sudden fluctuations of the supplied water pressure. Proper mounting of the radiators and supply pipes will reduce expansion noises, while upward-mounted stub ends with a trapped bubble of air (not interfering with flow, as would an un-bled radiator) will provide a cushion against pressure fluctuations, an anti-hammer device.

Stereotypical cast iron radiators (as pictured) are no longer common in new construction, replaced mostly with copper pipes which have aluminum fins to increase their surface area. In the U.K., modern domestic radiators tend to be of sheet steel construction (often with steel fins), though copper/aluminium is often found in industrial Air Handling System heat exchangers.

The radiator was invented in 1855 by Franz SanGalli. He was the first to produce a system of central heating and patented his invention in Germany and the US.

There are many designs and varieties of radiators, from conventional to modern style. Radiators are sometimes seen as an art form, much like sculpture.

For homes with radiators, Energy Star recommends placing heat-resistant reflectors between radiators and exterior walls to keep warmth coming into the room instead of seeping outside [5].

Steam

Single-pipe steam radiator

Steam has the advantage of flowing through the pipes under its own pressure without the need for pumping. For this reason, it was adopted earlier, before electric motors and pumps became available. Steam is also far easier to distribute than hot water throughout large, tall buildings like skyscrapers. However, the higher temperatures at which steam systems operate make them inherently less efficient, as unwanted heat loss is inevitably greater.

Steam pipes and radiators are also prone to producing banging sounds often incorrectly called "water hammer". Water hammer is a specific plumbing noise, not a generic name for pipe clatter. The bang is created if condensate fails to drain properly; this is often caused by buildings settling and the resultant pooling of condensate in pipes and radiators that no longer tilt slightly back towards the boiler.

Fan assisted radiators

A more recent type of heater used in homes is the fan assisted radiator. It contains a heat exchanger fed by hot water from the heating system. A thermostatic switch senses the heat and energises an electric fan which blows air over the heat exchanger.

Advantages of this type of heater are its small size and even distribution of heat around the room. Disadvantages are the noise produced by the fan, and the need for an electricity supply.

Underfloor heating

During construction, tubing is placed on the floor throughout the room, and later covered with a concrete layer.

The current trend in radiant heating is towards underfloor heating, where warm water is circulated under the entire floor of each room in a building. A network of pipes, tubing or heating cables is buried in the floor, and a gentle heat rises into the room. Because of the large area of this type of radiator, the floor only needs to be heated a few degrees above the desired room temperature, and as a result, convection is almost non-existent. These systems are reputed to have a high level of comfort, but are generally difficult to install into existing buildings. For best results, a floor covering that conducts heat well (such as tiles) should be used.

The hypocaust was a Roman heating system using a similar principle of operation.

Bleeding

All "radiant" (ie. heat radiates from hot water) systems need to be bled, or purged of air, on occasion.

If there is air (or other gases such as Hydrogen) trapped inside the radiator, then the water cannot rise to the top, and only the bottom area gets hot. A bleed screw near the top of the radiator allows the trapped air to be 'bled' from the system, and thus restore correct operation. Often radiators located on upper floors will accumulate more air than ones on lower floors as the air will tend to rise to the topmost point in the system. These may have to be bled more often. Usually radiators are bled once or twice per season, or as needed. Another reason to exclude air is to minimise corrosion of the steel pressed radiators. Note that most central heating systems need a corrosion inhibitor added into the circulating hot water, so that the production of Hydrogen is minimised. This is created in untreated systems, by the action of the hot water on the iron in the absence of air (stripping off the oxygen atom to leave hydrogen as H2 when iron oxide is created). Note that if air is getting into the radiators frequently, this may be the sign of a leak somewhere, such as a dripping valve, or loose joint.

Baseboard

Baseboard or pedestal heaters are often electric, and take up less space than a large radiator. They can be installed in front of the baseboard or recessed inside the wall. Pedestal heating is the system employed in the Vatican Museum and in the Hermitage Museum in Saint Petersburg.[citation needed]

Electronics

In electronics, a radiator is also known as a radiating element. Radiating elements are a basic subdivision of an antenna. Radiating elements are capable of transmitting or receiving electromagnetic energy.

See also

Sources

  1. Haynes Opel Omega & Senator Service and Repair Manual, 1996, ISBN 1-85960-342-4
  1. ^ Rankin Kennedy C.E. (1912). The Book of the Motor Car. Caxton.
  2. ^ "Mercedes 35hp".
  3. ^ Alfred Price (2007). Spitfire Manual. Haynes. ISBN 1844254623.
  4. ^ Michael Donne (1981). Leader of the Skies (Rolls-Royce 75th anniversary). Frederick Muller. ISBN 0-584-10476-6.
  5. ^ http://sierraclub.typepad.com/greenlife/2008/09/green-your-rent.html