Undergraduate Texts in Mathematics

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Undergraduate Texts in Mathematics (UTM) is a series of undergraduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are small yellow books of a standard size.

The books in this series tend to be written at a more elementary level than the similar Graduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level.

There is no Springer-Verlag numbering of the books like in the Graduate Texts in Mathematics series. The books are numbered here by year of publication.

List of books[edit]

  1. Halmos, Paul R. (1974). Finite-Dimensional Vector Spaces. ISBN 978-0-387-90093-3. 
  2. Halmos, Paul Richard (1974). Lectures on Boolean algebras. ISBN 978-0-387-90094-0. 
  3. Halmos, Paul R. (1974). Naive Set Theory. ISBN 978-0-387-90092-6. 
  4. Martin, George E. (1975). The Foundations of Geometry and the Non-Euclidean Plane. ISBN 978-1-4612-5727-1. 
  5. Kemeny, John G.; Snell, J. Laurie (1976). Finite Markov Chains: With a New Appendix: "Generalization of a Fundamental Matrix". ISBN 978-0-387-90192-3. 
  6. Singer, I. M.; Thorpe, J. A. (1976). Lecture Notes on Elementary Topology and Geometry. ISBN 978-0-387-90202-9. 
  7. Apostol, Tom M. (1976). Introduction to Analytic Number Theory. ISBN 978-0-387-90163-3. 
  8. Sigler, L. E. (1976). Algebra. ISBN 978-0-387-90195-4. 
  9. Fleming, Wendell (1977). Functions of Several Variables. ISBN 978-0-387-90206-7. 
  10. Croom, F.H. (1978). Basic Concepts of Algebraic Topology. ISBN 978-0-387-90288-3. 
  11. LeCuyer, Edward J. (1978). Introduction to College Mathematics with A Programming Language. ISBN 978-0-387-90280-7. 
  12. Duda, E.; Whyburn, G. (1979). Dynamic Topology. ISBN 978-0-387-90358-3. 
  13. Jantosciak, J.; Prenowitz, W. (1979). Join Geometries: A Theory of Convex Sets and Linear Geometry. ISBN 978-0-387-90340-8. 
  14. Malitz, Jerome (1979). Introduction to Mathematical Logic: Set Theory - Computable Functions - Model Theory. ISBN 978-0-387-90346-0. 
  15. Wilson, R. L. (1979). Much Ado About Calculus: A Modern Treatment with Applications Prepared for Use with the Computer. ISBN 978-0-387-90347-7. 
  16. Thorpe, John A. (1979). Elementary Topics in Differential Geometry. ISBN 978-0-387-90357-6. doi:10.1007/978-1-4612-6153-7. 
  17. Franklin, Joel (1980). Methods of Mathematical Economics: Linear and Nonlinear Programming. Fixed-Point Theorems. ISBN 978-0-387-90481-8. 
  18. Macki, Jack; Strauss, Aaron (1981). Introduction to Optimal Control Theory. ISBN 978-0-387-90624-9. 
  19. Foulds, L. R. (1981). Optimization Techniques: An Introduction. ISBN 978-0-387-90586-0. 
  20. Fischer, E. (1982). Intermediate Real Analysis. ISBN 978-0-387-90721-5. 
  21. Martin, George E. (1982). Transformation Geometry: An Introduction to Symmetry. ISBN 978-0-387-90636-2. 
  22. Martin, George E. (1983). The Foundations of Geometry and the Non-Euclidean Plane. ISBN 978-0-387-90694-2. 
  23. Owen, David R. (1983). A First Course in the Mathematical Foundations of Thermodynamics. ISBN 978-0-387-90897-7. 
  24. Smith, K. T. (1983). Primer of Modern Analysis: Directions for Knowing All Dark Things, Rhind Papyrus, 1800 B.C. ISBN 978-0-387-90797-0. 
  25. Armstrong, M. A. (1983). Basic Topology. ISBN 978-0-387-90839-7. doi:10.1007/978-1-4757-1793-8. 
  26. Dixmier, Jacques (1984). General Topology. ISBN 0-387-90972-9. 
  27. Morrey, Charles B. Jr.; Protter, Murray H. (1984). Intermediate Calculus. ISBN 978-0-387-96058-6. 
  28. Curtis, Charles W. (1984). Linear Algebra: An Introductory Approach. ISBN 978-0-387-90992-9. 
  29. Driver, R.D. (1984). Why Math?. ISBN 978-0-387-90973-8. 
  30. Foulds, L. R. (1984). Combinatorial Optimization for Undergraduates. ISBN 978-0-387-90977-6. 
  31. Jänich, Klaus (1984). Topology. ISBN 978-0-387-90892-2. 
  32. Bühler, W. K.; Cornell, G.; Opolka, H.; Scharlau, W. (1985). From Fermat to Minkowski: Lectures on the Theory of Numbers and Its Historical Development. ISBN 978-0-387-90942-4. 
  33. Marsden, Jerrold; Weinstein, Alan (1985). Calculus I. ISBN 978-0-387-90974-5. 
  34. Marsden, Jerrold; Weinstein, Alan (1985). Calculus II. ISBN 978-0-387-90975-2. 
  35. Marsden, Jerrold; Weinstein, Alan (1985). Calculus III. ISBN 978-0-387-90985-1. 
  36. Lang, Serge (1985). Introduction to Linear Algebra. ISBN 978-0-387-96205-4. 
  37. Stanton, Dennis; White, Dennis (1986). Constructive Combinatorics. ISBN 978-0-387-96347-1. 
  38. Klambauer, Gabriel (1986). Aspects of Calculus. ISBN 978-0-387-96274-0. 
  39. Lang, Serge (1986). A First Course in Calculus (5th ed.). ISBN 978-0-387-96201-6. doi:10.1007/978-1-4419-8532-3. 
  40. James, I. M. (1987). Topological and Uniform Spaces. ISBN 978-0-387-96466-9. 
  41. Lang, Serge (1987). Calculus of Several Variables. ISBN 978-0-387-96405-8. 
  42. Lang, Serge (1987). Linear Algebra. ISBN 978-0-387-96412-6. 
  43. Peressini, Anthony L.; Sullivan, Francis E.; Uhl, J.J. Jr. (1988). The Mathematics of Nonlinear Programming. ISBN 978-0-387-96614-4. 
  44. Samuel, Pierre (1988). Projective Geometry. ISBN 978-0-387-96752-3. 
  45. Armstrong, Mark A. (1988). Groups and Symmetry. ISBN 978-0-387-96675-5. doi:10.1007/978-1-4757-4034-9. 
  46. Brémaud, Pierre (1988). An Introduction to Probabilistic Modeling. ISBN 978-0-387-96460-7. doi:10.1007/978-1-4612-1046-7. 
  47. Bressoud, David M. (1989). Factorization and Primality Testing. ISBN 978-0-387-97040-0. doi:10.1007/978-1-4612-4544-5. 
  48. Brickman, Louis (1989). Mathematical Introduction to Linear Programming and Game Theory. ISBN 978-0-387-96931-2. doi:10.1007/978-1-4612-4540-7. 
  49. Strayer, James K. (1989). Linear Programming and Its Applications. ISBN 978-0-387-96930-5. doi:10.1007/978-1-4612-1009-2. 
  50. Flanigan, Francis J.; Kazdan, Jerry L. (1990). Calculus Two: Linear and Nonlinear Functions (2nd ed.). ISBN 978-0-387-97388-3. 
  51. Iooss, Gerard; Joseph, Daniel D. (1990). Elementary Stability and Bifurcation Theory (2nd ed.). ISBN 978-0-387-97068-4. doi:10.1007/978-1-4612-0997-3. 
  52. Hoffmann, Karl-Heinz; Hämmerlin, Günther (1991). Numerical Mathematics. ISBN 978-0-387-97494-1. doi:10.1007/978-1-4612-4442-4. 
  53. Morrey, Charles B. Jr.; Protter, Murray H. (1991). A First Course in Real Analysis (2nd ed.). ISBN 978-0-387-97437-8. doi:10.1007/978-1-4419-8744-0. 
  54. Bressoud, David M. (1991). Second Year Calculus: From Celestial Mechanics to Special Relativity. ISBN 978-0-387-97606-8. doi:10.1007/978-1-4612-0959-1. 
  55. Millman, Richard S.; Parker, George D. (1991). Geometry: A Metric Approach with Models (2nd ed.). ISBN 978-0-387-97412-5. 
  56. Palka, Bruce P. (1991). An Introduction to Complex Function Theory. ISBN 978-0-387-97427-9. 
  57. Banchoff, Thomas; Wermer, John (1992). Linear Algebra Through Geometry (2nd ed.). ISBN 978-0-387-97586-3. doi:10.1007/978-1-4612-4390-8. 
  58. Devlin, Keith (1993). The Joy of Sets: Fundamentals of Contemporary Set Theory (2nd ed.). ISBN 978-0-387-94094-6. doi:10.1007/978-1-4612-0903-4. 
  59. Kinsey, L. Christine (1993). Topology of Surfaces. ISBN 978-0-387-94102-8. doi:10.1007/978-1-4612-0899-0. 
  60. Valenza, Robert J. (1993). Linear Algebra: An Introduction to Abstract Mathematics. ISBN 978-0-387-94099-1. doi:10.1007/978-1-4612-0901-0. 
  61. Ebbinghaus, H. -D.; Flum, J.; Thomas, W. (1994). Mathematical Logic (2nd ed.). ISBN 978-0-387-94258-2. doi:10.1007/978-1-4757-2355-7. 
  62. Berberian, Sterling K. (1994). A First Course in Real Analysis. ISBN 978-0-387-94217-9. doi:10.1007/978-1-4419-8548-4. 
  63. Jänich, Klaus (1994). Linear Algebra. ISBN 978-0-387-94128-8. doi:10.1007/978-1-4612-4298-7. 
  64. Pedrick, George (1994). A First Course in Analysis. ISBN 978-0-387-94108-0. doi:10.1007/978-1-4419-8554-5. 
  65. Stillwell, John (1994). Elements of Algebra: Geometry, Numbers, Equations. ISBN 978-0-387-94290-2. doi:10.1007/978-1-4757-3976-3. 
  66. Anglin, W.S. (1994). Mathematics: A Concise History and Philosophy. ISBN 978-0-387-94280-3. doi:10.1007/978-1-4612-0875-4. 
  67. Simmonds, James G. (1994). A Brief on Tensor Analysis (2nd ed.). ISBN 978-0-387-94088-5. doi:10.1007/978-1-4419-8522-4. 
  68. Anglin, W.S.; Lambek, J. (1995). The Heritage of Thales. ISBN 978-0-387-94544-6. 
  69. Isaac, Richard (1995). The Pleasures of Probability. ISBN 978-0-387-94415-9. 
  70. Exner, George R. (1996). An Accompaniment to Higher Mathematics. ISBN 978-0-387-94617-7. doi:10.1007/978-1-4612-3998-7. 
  71. Troutman, John L. (1996). Variational Calculus and Optimal Control: Optimization with Elementary Convexity (2nd ed.). ISBN 978-0-387-94511-8. doi:10.1007/978-1-4612-0737-5. 
  72. Browder, Andrew (1996). Mathematical Analysis: An Introduction. ISBN 978-0-387-94614-6. doi:10.1007/978-1-4612-0715-3. 
  73. Buskes, Gerard; Rooij, Arnoud Van (1997). Topological Spaces: From Distance to Neighborhood. ISBN 978-0-387-94994-9. doi:10.1007/978-1-4612-0665-1. 
  74. Fine, Benjamin; Rosenberger, Gerhard (1997). The Fundamental Theorem of Algebra. ISBN 978-0-387-94657-3. doi:10.1007/978-1-4612-1928-6. 
  75. Beardon, Alan F. (1997). Limits: A New Approach to Real Analysis. ISBN 978-0-387-98274-8. doi:10.1007/978-1-4612-0697-2. 
  76. Gordon, Hugh (1997). Discrete Probability. ISBN 978-0-387-98227-4. doi:10.1007/978-1-4612-1966-8. 
  77. Roman, Steven (1997). Introduction to Coding and Information Theory. ISBN 978-0-387-94704-4. 
  78. Sethuraman, Bharath (1997). Rings, Fields, and Vector Spaces: An Introduction to Abstract Algebra via Geometric Constructibility. ISBN 978-0-387-94848-5. doi:10.1007/978-1-4757-2700-5. 
  79. Lang, Serge (1997). Undergraduate Analysis (2nd ed.). ISBN 978-0-387-94841-6. doi:10.1007/978-1-4757-2698-5. 
  80. Hilton, Peter; Holton, Derek; Pedersen, Jean (1997). Mathematical Reflections: In a Room with Many Mirrors. ISBN 978-0-387-94770-9. doi:10.1007/978-1-4612-1932-3. 
  81. Martin, George E. (1998). Geometric Constructions. ISBN 978-0-387-98276-2. doi:10.1007/978-1-4612-0629-3. 
  82. Protter, Murray H. (1998). Basic Elements of Real Analysis. ISBN 978-0-387-98479-7. doi:10.1007/b98884. 
  83. Priestley, W. M. (1998). Calculus: A Liberal Art (2nd ed.). ISBN 978-0-387-98379-0. doi:10.1007/978-1-4612-1658-2. 
  84. Singer, David A. (1998). Geometry: Plane and Fancy. ISBN 978-0-387-98306-6. doi:10.1007/978-1-4612-0607-1. 
  85. Smith, Larry (1998). Linear Algebra (3rd ed.). ISBN 978-0-387-98455-1. doi:10.1007/978-1-4612-1670-4. 
  86. Lidl, Rudolf; Pilz, Günter (1998). Applied Abstract Algebra (2nd ed.). ISBN 978-0-387-98290-8. doi:10.1007/978-1-4757-2941-2. 
  87. Stillwell, John (1998). Numbers and Geometry. ISBN 978-0-387-98289-2. doi:10.1007/978-1-4612-0687-3. 
  88. Laubenbacher, Reinhard; Pengelley, David (1999). Mathematical Expeditions: Chronicles by the Explorers. ISBN 978-0-387-98434-6. 
  89. Frazier, Michael W. (1999). An Introduction to Wavelets Through Linear Algebra. ISBN 978-0-387-98639-5. 
  90. Schiff, Joel L. (1999). The Laplace Transform: Theory and Applications. ISBN 978-0-387-98698-2. 
  91. Brunt, B. van; Carter, M. (2000). The Lebesgue-Stieltjes Integral: A Practical Introduction. ISBN 978-0-387-95012-9. doi:10.1007/978-1-4612-1174-7. 
  92. Exner, George R. (2000). Inside Calculus. ISBN 978-0-387-98932-7. doi:10.1007/b97700. 
  93. Hartshorne, Robin (2000). Geometry: Euclid and Beyond. ISBN 978-0-387-98650-0. doi:10.1007/978-0-387-22676-7. 
  94. Callahan, James J. (2000). The Geometry of Spacetime: An Introduction to Special and General Relativity. ISBN 978-0-387-98641-8. doi:10.1007/978-1-4757-6736-0. 
  95. Cederberg, Judith N. (2001). A Course in Modern Geometries (2nd ed.). ISBN 978-0-387-98972-3. doi:10.1007/978-1-4757-3490-4. 
  96. Gamelin, Theodore W. (2001). Complex Analysis. ISBN 978-0-387-95093-8. doi:10.1007/978-0-387-21607-2. 
  97. Jänich, Klaus (2001). Vector Analysis. ISBN 978-0-387-98649-4. doi:10.1007/978-1-4757-3478-2. 
  98. Martin, George E. (2001). Counting: The Art of Enumerative Combinatorics. ISBN 978-0-387-95225-3. doi:10.1007/978-1-4757-4878-9. 
  99. Hilton, Peter; Holton, Derek; Pedersen, Jean (2002). Mathematical Vistas: From a Room with Many Windows. ISBN 978-0-387-95064-8. doi:10.1007/978-1-4757-3681-6. 
  100. Saxe, Karen (2002). Beginning Functional Analysis. ISBN 978-0-387-95224-6. doi:10.1007/978-1-4757-3687-8. 
  101. Lang, Serge (2002). Short Calculus: The Original Edition of “A First Course in Calculus”. ISBN 978-0-387-95327-4. doi:10.1007/978-1-4613-0077-9. 
  102. Estep, Donald (2002). Practical Analysis in One Variable. ISBN 978-0-387-95484-4. doi:10.1007/b97698. 
  103. Toth, Gabor (2002). Glimpses of Algebra and Geometry (2nd ed.). ISBN 978-0-387-95345-8. doi:10.1007/b98964. 
  104. Aitsahlia, Farid; Chung, Kai Lai (2003). Elementary Probability Theory: With Stochastic Processes and an Introduction to Mathematical Finance (4th ed.). ISBN 978-0-387-95578-0. doi:10.1007/978-0-387-21548-8. 
  105. Erdös, Paul; Suranyi, Janos (2003). Topics in the Theory of Numbers. ISBN 978-0-387-95320-5. doi:10.1007/978-1-4613-0015-1. 
  106. Lovász, L.; Pelikán, J.; Vesztergombi, K. (2003). Discrete Mathematics: Elementary and Beyond. ISBN 978-0-387-95584-1. doi:10.1007/b97469. 
  107. Stillwell, John (2003). Elements of Number Theory. ISBN 978-0-387-95587-2. doi:10.1007/978-0-387-21735-2. 
  108. Buchmann, Johannes (2004). Introduction to Cryptography (2nd ed.). ISBN 978-0-387-21156-5. doi:10.1007/978-1-4419-9003-7. 
  109. Irving, Ronald S. (2004). Integers, Polynomials, and Rings: A Course in Algebra. ISBN 978-0-387-40397-7. doi:10.1007/b97633. 
  110. Ross, Clay C. (2004). Differential Equations: An Introduction with Mathematica (2nd ed.). ISBN 978-0-387-21284-5. doi:10.1007/978-1-4757-3949-7. 
  111. Cull, Paul; Flahive, Mary; Robson, Robby (2005). Difference Equations: From Rabbits to Chaos. ISBN 978-0-387-23233-1. doi:10.1007/0-387-27645-9. 
  112. Chambert-Loir, Antoine (2005). A Field Guide to Algebra. ISBN 978-0-387-21428-3. doi:10.1007/b138364. 
  113. Elaydi, Saber (2005). An Introduction to Difference Equations (3rd ed.). ISBN 978-0-387-23059-7. doi:10.1007/0-387-27602-5. 
  114. Lang, Serge (2005). Undergraduate Algebra (3rd ed.). ISBN 978-0-387-22025-3. doi:10.1007/0-387-27475-8. 
  115. Singer, Stephanie Frank (2005). Linearity, Symmetry, and Prediction in the Hydrogen Atom. ISBN 978-0-387-24637-6. doi:10.1007/b136359. 
  116. Stillwell, John (2005). The Four Pillars of Geometry. ISBN 978-0-387-25530-9. doi:10.1007/0-387-29052-4. 
  117. Ghorpade, Sudhir R.; Limaye, Balmohan V. (2006). A Course in Calculus and Real Analysis. ISBN 978-0-387-30530-1. doi:10.1007/0-387-36425-0. 
  118. Bix, Robert (2006). Conics and Cubics: A Concrete Introduction to Algebraic Curves (2nd ed.). ISBN 978-0-387-31802-8. doi:10.1007/0-387-39273-4. 
  119. Moschovakis, Yiannis (2006). Notes on Set Theory (2nd ed.). ISBN 978-0387287225. doi:10.1007/0-387-31609-4. 
  120. Knoebel, Art; Laubenbacher, Reinhard; Lodder, Jerry; Pengelley, David (2007). Mathematical Masterpieces: Further Chronicles by the Explorers. ISBN 978-0-387-33060-0. doi:10.1007/978-0-387-33062-4. 
  121. Shores, Thomas S. (2007). Applied Linear Algebra and Matrix Analysis. ISBN 978-0-387-33194-2. doi:10.1007/978-0-387-48947-6. 
  122. Harris, John M.; Hirst, Jeffry L.; Mossinghoff, Michael (2008). Combinatorics and Graph Theory (2nd ed.). ISBN 978-0-387-79710-6. doi:10.1007/978-0-387-79711-3. 
  123. Stillwell, John (2008). Naive Lie Theory. ISBN 978-0-387-78214-0. doi:10.1007/978-0-387-78214-0. 
  124. Hairer, Ernst; Wanner, Gerhard (2008) [1996]. Analysis by its History. ISBN 978-0-387-94551-4. doi:10.1007/978-0-387-77036-9. 
  125. Edgar, Gerald (2008). Measure, Topology, and Fractal Geometry (2nd ed.). ISBN 978-0-387-74748-4. doi:10.1007/978-0-387-74749-1. 
  126. Herod, James; Shonkwiler, Ronald W. (2009). Mathematical Biology: An Introduction with Maple and Matlab (2nd ed.). ISBN 978-0-387-70983-3. doi:10.1007/978-0-387-70984-0. 
  127. Mendivil, Frank; Shonkwiler, Ronald W. (2009). Explorations in Monte Carlo Methods. ISBN 978-0-387-87836-2. doi:10.1007/978-0-387-87837-9. 
  128. Stein, William (2009). Elementary Number Theory: Primes, Congruences, and Secrets: A Computational Approach. ISBN 978-0-387-85524-0. doi:10.1007/b13279. 
  129. Childs, Lindsay N. (2009). A Concrete Introduction to Higher Algebra (3rd ed.). ISBN 978-0-387-74527-5. doi:10.1007/978-0-387-74725-5. 
  130. Halmos, Paul R.; Givant, Steven (2009). Introduction to Boolean Algebras. ISBN 978-0-387-40293-2. doi:10.1007/978-0-387-68436-9. 
  131. Bak, Joseph; Newman, Donald J. (2010). Complex Analysis (3rd ed.). ISBN 978-1-4419-7287-3. doi:10.1007/978-1-4419-7288-0. 
  132. Beck, Matthias; Geoghegan, Ross (2010). The Art of Proof: Basic Training for Deeper Mathematics. ISBN 978-1-4419-7022-0. doi:10.1007/978-1-4419-7023-7. 
  133. Callahan, James J. (2010). Advanced Calculus: A Geometric View. ISBN 978-1-4419-7331-3. 
  134. Hurlbert, Glenn (2010). Linear Optimization: The Simplex Workbook. ISBN 978-0-387-79147-0. 
  135. Stillwell, John (2010). Mathematics and Its History (3rd ed.). ISBN 978-1-441-96052-8. doi:10.1007/978-1-4419-6053-5. 
  136. Ghorpade, Sudhir R.; Limaye, Balmohan V. (2010). A Course in Multivariable Calculus and Analysis. ISBN 978-1-4419-1620-4. doi:10.1007/978-1-4419-1621-1. 
  137. Davidson, Kenneth R.; Donsig, Allan P. (2010). Real Analysis and Applications: Theory in Practice. ISBN 978-0-387-98097-3. doi:10.1007/978-0-387-98098-0. 
  138. Daepp, Ulrich; Pamela, Gorkin (2011). Reading, Writing, and Proving: A Closer Look at Mathematics (2nd ed.). ISBN 978-1-4419-9478-3. doi:10.1007/978-1-4419-9479-0. 
  139. Bloch, Ethan D. (2011). Proofs and Fundamentals: A First Course in Abstract Mathematics (2nd ed.). ISBN 978-1-4419-7126-5. doi:10.1007/978-1-4419-7127-2. 
  140. Adkins, William A.; Davidson, Mark G. (2012). Ordinary Differential Equations. ISBN 978-1-461-43617-1. 
  141. Ostermann, Alexander; Wanner, Gerhard (2012). Geometry by Its History. ISBN 978-3-642-29163-0. 
  142. Petersen, Peter (2012). Linear Algebra. ISBN 978-1-4614-3612-6. 
  143. Roman, Steven (2012). Introduction to the Mathematics of Finance: Arbitrage and Option Pricing. ISBN 978-1-4614-3582-2. 
  144. Gerstein, Larry J. (2012). Introduction to Mathematical Structures and Proofs (2nd ed.). ISBN 978-1-4614-4264-6. doi:10.1007/978-1-4614-4265-3. 
  145. Vanderbei, Robert J.; Çinlar, Erhan (2013). Real and Convex Analysis. ISBN 978-1-4614-5256-0. 
  146. Bajnok, Bela (2013). An Invitation to Abstract Mathematics. ISBN 978-1-461-46635-2. 
  147. McInerney, Andrew (2013). First Steps in Differential Geometry. ISBN 978-1-4614-7731-0. 
  148. Ross, Kenneth A. (2013). Elementary Analysis: The Theory of Calculus. ISBN 978-1-4614-6270-5. 
  149. Stanley, Richard P. (2013). Algebraic Combinatorics. ISBN 978-1-4614-6997-1. 
  150. Stillwell, John (2013). The Real Numbers: An Introduction to Set Theory and Analysis. ISBN 978-3-319-01576-7. doi:10.1007/978-3-319-01577-4. 
  151. Conway, John B. (2014). A Course in Point Set Topology. ISBN 978-3-319-02367-0. 
  152. Olver, Peter J. (2014). Introduction to Partial Differential Equations. ISBN 978-3-319-02098-3. 
  153. Mercer, Peter R. (2014). More Calculus of a Single Variable. ISBN 978-1-4939-1925-3. doi:10.1007/978-1-4939-1926-0. 
  154. Hoffstein, Jeffrey; Pipher, Jill; Silverman, Joseph H. (2014). An Introduction to Mathematical Cryptography (2nd ed.). ISBN 978-1-4939-1710-5. doi:10.1007/978-1-4939-1711-2. 
  155. Rosenthal, Daniel; Rosenthal, David; Rosenthal, Peter (2014). A Readable Introduction to Real Mathematics. ISBN 978-3-319-05653-1. doi:10.1007/978-3-319-05654-8. 
  156. Terrell, Maria Shea; Lax, Peter D. (2014). Calculus with Applications (2nd ed.). ISBN 978-1-4614-7945-1. doi:10.1007/978-1-4614-7946-8. 
  157. Axler, Sheldon (2015). Linear Algebra Done Right (3rd ed.). ISBN 978-3-319-11079-0. doi:10.1007/978-3-319-11080-6. 
  158. Beck, Matthias; Robins, Sinai (2015). Computing the Continuous Discretely: Integer-point Enumeration in Polyhedra (2nd ed.). ISBN 978-1-4939-2968-9. doi:10.1007/978-1-4939-2969-6. 
  159. Laczkovich, Miklós; Sós, Vera T. (2015). Real Analysis: Foundations and Functions of One Variable. ISBN 978-1-4939-2765-4. doi:10.1007/978-1-4939-2766-1. 
  160. Pugh, Charles C. (2015). Real Mathematical Analysis (2nd ed.). ISBN 978-3-319-17770-0. doi:10.1007/978-3-319-17771-7. 
  161. Logan, David J. (2015). A First Course in Differential Equations (3rd ed.). ISBN 978-3-319-17851-6. doi:10.1007/978-3-319-17852-3. 
  162. Silverman, Joseph H.; Tate, John (2015). Rational Points on Elliptic Curves (2nd ed.). ISBN 978-3-319-18587-3. doi:10.1007/978-3-319-18588-0. 
  163. Little, Charles; Kee, Teo; van Brunt, Bruce (2015). Real Analysis via Sequences and Series. ISBN 978-1-4939-2650-3. doi:10.1007/978-1-4939-2651-0. 
  164. Abbott, Stephen (2015). Understanding Analysis (2nd ed.). ISBN 978-1-4939-2711-1. doi:10.1007/978-1-4939-2712-8. 
  165. Cox, David; Little, John; O'Shea, Danal (2015). Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra (4th ed.). ISBN 978-3-319-16720-6. doi:10.1007/978-3-319-16721-3. 
  166. Logan, David J. (2015). Applied Partial Differential Equations (3rd ed.). ISBN 978-3-319-12492-6. doi:10.1007/978-3-319-12493-3. 
  167. Tapp, Kristopher (2016). Differential Geometry of Curves and Surfaces. ISBN 978-3-319-39798-6. doi:10.1007/978-3-319-39799-3. 
  168. Hijab, Omar (2016). Introduction to Calculus and Classical Analysis (4th ed.). ISBN 978-3-319-28399-9. doi:10.1007/978-3-319-28400-2. 
  169. Shurman, Jerry (2016). Calculus and Analysis in Euclidean Space. ISBN 978-3-319-49312-1. doi:10.1007/978-3-319-49314-5. 
  170. Loya, Paul (2016). Amazing and Aesthetic Aspects of Analysis. ISBN 978-1-4939-6793-3. doi:10.1007/978-1-4939-6795-7. 

References[edit]

External links[edit]