Baryon: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
use template for list
Line 1: Line 1:
:''This list is of all known and predicted baryons. See [[list of particles]] for a more detailed list of particles found in [[particle physics]].''
[[Image:Quark structure proton.svg|thumb|120px|Quark structure proton: 2 up quarks and 1 down quark.]]
'''Baryons''' are the family of [[subatomic particle]]s with a [[baryon number]] of 1. Amongst the baryons are the [[proton]]s and [[neutron]]s, which make up [[atomic nucleus|atomic nuclei]], but many other unstable baryons exist as well. The term baryon is usually used to refer to triquarks — particles made of three [[quark]]s. "Exotic" baryons made of four quarks and one antiquark are known as the [[pentaquark]]s, but their existence is not generally accepted.


'''Baryons''', are the family of [[composite particle|composite]] [[subatomic particle|particle]] made of three [[quark]]s, as opposed to the [[mesons]] which are the family of composite particles made of one quark and one [[antiquark]]. Both baryons and mesons are part of the larger [[list of particles|particle family]] comprising all particles made of quarks – the [[hadrons]]. The term ''baryon'' is derived from the [[Greek]] ''βαρύς'' (''barys''), meaning "heavy", because at the time of their naming it was believed that baryons were characterized by having greater masses than other particles.
Baryons are a subset of the [[hadrons]] (which are the particles made of quarks) and participate in the [[strong interaction]].
Each baryon has a corresponding [[antimatter|antiparticle]] (anti-baryon) where quarks are replaced by their corresponding antiquarks and antiquarks replaced by their corresponding quarks.


Until very recently, it was believed that some experiments showed the existence of ''[[pentaquark]]s'' – "exotic" baryons made of four quarks and one antiquark.<ref>H. Muir (2003)</ref><ref>K. Carter (2003)</ref> The particle physics community as a whole did not view their existence as likely in 2006,<ref name=PDGPentaquarks2006>W.-M. Yao ''et al''. (2006): [http://pdg.lbl.gov/2006/reviews/theta_b152.pdf Particle listings – Positive Theta]</ref> and in 2008, considered evidence to be overwhelmingly against the existence of the reported pentaquarks.<ref name=PDGPentaquarks2008>C. Amsler ''et al''. (2008): [http://pdg.lbl.gov/2008/reviews/pentaquarks_b801.pdf Pentaquarks]</ref>
The term "baryon" is derived from the [[Greek language|Greek]] ''{{polytonic|βαρύς}}'' (''barys''), meaning "heavy," because at the time of their naming it was believed that baryons were characterized by having greater mass than other particles.

Since baryons are composed of quarks, they participate in the [[strong interaction]]. [[Lepton]]s on the other hands, are not composed of quarks and as such do not participate in the strong interaction. The most famous baryons are the [[proton]]s and [[neutron]]s which make up most of the mass of the visible [[matter]] in the [[universe]], whereas [[electron]]s (the other major component of [[atom]]s) are leptons. Each baryon has a corresponding [[antiparticle]] (antibaryon) where quarks are replaced by their corresponding antiquarks. For example, a [[proton]] is made of two up quarks and one down quark; and its corresponding antiparticle, the [[antiproton]], is made of two up antiquarks and one down antiquark.


==Background==
==Background==
Line 12: Line 12:
Baryons, along with [[meson]]s, are [[hadron]]s, meaning they are particles composed of [[quark]]s. Quarks have baryon numbers of B&nbsp;=&nbsp;{{frac|1|3}} and antiquarks have baryon number of B&nbsp;=&nbsp;−{{frac|1|3|}}. The term "baryon" usually refers to ''triquarks''&mdash;baryons made of three quarks (B&nbsp;=&nbsp;{{frac|1|3}}&nbsp;+&nbsp;{{frac|1|3}}&nbsp;+&nbsp;{{frac|1|3}}&nbsp;=&nbsp;1), but there are other "exotic" baryons, such as pentaquarks &mdash; baryons made of four quarks and one antiquark (B&nbsp;=&nbsp;{{frac|1|3}}&nbsp;+&nbsp;{{frac|1|3}}&nbsp;+&nbsp;{{frac|1|3}}&nbsp;+&nbsp;{{frac|1|3}}&nbsp;−&nbsp;{{frac|1|3}}&nbsp;=&nbsp;1), but their existence is not generally accepted. Theoretically, heptaquarks (5 quarks, 2 antiquarks), nonaquarks (6 quarks, 3 antiquarks), etc. could also exist.
Baryons, along with [[meson]]s, are [[hadron]]s, meaning they are particles composed of [[quark]]s. Quarks have baryon numbers of B&nbsp;=&nbsp;{{frac|1|3}} and antiquarks have baryon number of B&nbsp;=&nbsp;−{{frac|1|3|}}. The term "baryon" usually refers to ''triquarks''&mdash;baryons made of three quarks (B&nbsp;=&nbsp;{{frac|1|3}}&nbsp;+&nbsp;{{frac|1|3}}&nbsp;+&nbsp;{{frac|1|3}}&nbsp;=&nbsp;1), but there are other "exotic" baryons, such as pentaquarks &mdash; baryons made of four quarks and one antiquark (B&nbsp;=&nbsp;{{frac|1|3}}&nbsp;+&nbsp;{{frac|1|3}}&nbsp;+&nbsp;{{frac|1|3}}&nbsp;+&nbsp;{{frac|1|3}}&nbsp;−&nbsp;{{frac|1|3}}&nbsp;=&nbsp;1), but their existence is not generally accepted. Theoretically, heptaquarks (5 quarks, 2 antiquarks), nonaquarks (6 quarks, 3 antiquarks), etc. could also exist.


==Classification==
==Baryonic matter==
'''Baryonic [[matter]]''' is matter composed mostly of baryons (by mass), which includes [[atom]]s of any sort (and thus includes nearly all matter that we may encounter or [[experience]] in everyday life, including our bodies). '''Non-baryonic matter''', as implied by the name, is any sort of matter that is not primarily composed of baryons. This might include such ordinary matter as [[neutrino]]s or free [[electron]]s; however, it may also include exotic species of non-baryonic [[dark matter]], such as [[supersymmetry|supersymmetric particles]], [[axion]]s or [[black hole]]s. The distinction between baryonic and non-baryonic matter is important in [[physical cosmology|cosmology]], because [[Big Bang nucleosynthesis]] models set tight constraints on the amount of baryonic matter present in the early [[universe]].


The very existence of baryons is also a significant issue in cosmology because we have assumed that the Big Bang produced a state with equal amounts of baryons and anti-baryons. The process by which baryons come to outnumber their antiparticles is called [[baryogenesis]] (in contrast to a process by which [[lepton]]s account for the predominance of matter over antimatter, [[leptogenesis (physics)|leptogenesis]]).
{{main|Isospin}}

==Baryogenesis==
Experiments are consistent with the number of quarks in the universe being a constant and, more specifically, the number of [[baryon]]s being a constant; in technical language, the total [[baryon number]] appears to be ''[[conservation law|conserved]].'' Within the prevailing [[Standard Model]] of particle physics, the number of baryons may change in multiples of three due to the action of [[sphaleron]]s, although this is rare and has not been observed experimentally. Some [[grand unified theory|grand unified theories]] of particle physics also predict that a single [[proton]] can decay, changing the baryon number by one; however, this has not yet been observed experimentally. The [[baryogenesis|excess of baryons over antibaryons]] in the present universe is thought to be due to non-conservation of baryon number in the very early universe, though this is not well understood.

==Overview==
===Isospin and charge===
[[Image:Baryon-decuplet-small.svg|thumb|200px|
[[Image:Baryon-decuplet-small.svg|thumb|200px|
Combinations of three u, d or s quarks forming baryons with spin-{{frac|3|2}} form the ''[[Eightfold way (physics)|uds baryon decuplet]]'']]
Combinations of three u, d or s quarks forming baryons with a spin-{{frac|3|2}} form the ''[[Eightfold way (physics)|uds baryon decuplet]]'']]
[[Image:Baryon-octet-small.svg|thumb|200px|Combinations of three u, d or s quarks forming baryons with spin-{{frac|1|2}} form the ''[[Eightfold way (physics)|uds baryon octet]]'']]
[[Image:Baryon-octet-small.svg|thumb|200px|Combinations of three u, d or s quarks forming baryons with a spin-{{frac|1|2}} form the ''[[Eightfold way (physics)|uds baryon octet]]'']]


{{Main|Isospin}}
Baryons are classified into groups according to their [[isospin]] values and [[quark]] content. There are six groups of triquarks — [[nucleon]] ({{SubatomicParticle|Nucleon}}), [[Delta baryon|Delta]] ({{SubatomicParticle|Delta}}), [[Lambda baryon|Lambda]] ({{SubatomicParticle|Lambda}}), [[Sigma baryon|Sigma]] ({{SubatomicParticle|Sigma}}), [[Xi baryon|Xi]] ({{SubatomicParticle|Xi}}), and [[Omega baryon|Omega]] ({{SubatomicParticle|Omega}}). The rules for classification are defined by the [[Particle Data Group]]. These rules consider the {{SubatomicParticle|link=yes|Up quark}}, {{SubatomicParticle|link=yes|Down quark}} and {{SubatomicParticle|link=yes|Strange quark}} quarks to be ''light'' and the {{SubatomicParticle|link=yes|Charm quark}}, {{SubatomicParticle|link=yes|Bottom quark}}, and {{SubatomicParticle|link=yes|Top quark}} to be ''heavy''. The rules cover all the particles that can be made from three of each of the six quarks ([[up quark|up]], [[down quark|down]], [[strange quark|strange]], [[charm quark|charm]], [[bottom quark|bottom]], [[top quark|top]]) — even though baryons made of top quarks are not expected to exist because of the top quark's short lifetime—but not pentaquarks or other exotic baryons.<ref name=PDGBaryonsymbols>{{cite journal |author=W.-M. Yao et al. |publisher=Particle Data Group |title=Naming scheme for hadrons |journal= Journal of Physics G |volume=33 |issue=1 |year=2006 |url=http://pdg.lbl.gov/2007/reviews/namingrpp.pdf |accessdate= 2008-04-20 |quote= }}</ref>:


The concept of isospin was first proposed by [[Werner Heisenberg]] in 1932 to explain the similarities between protons and neutrons under the [[strong interaction]].<ref>W. Heisengberg (1932)</ref> Although they had different electric charges, their masses were so similar that physicists believed they were actually the same particle. The different electric charges were explained as being the result of some unknown excitation similar to spin. This unknown excitation was later dubbed ''isospin'' by [[Eugene Wigner]] in 1937.<ref>E. Wigner (1937)</ref>
* Baryons with three {{SubatomicParticle|link=yes|Up quark}} and/or {{SubatomicParticle|link=yes|Down quark}} quarks are {{SubatomicParticle|link=yes|Nucleon}}'s ([[isospin]] {{frac|1|2}}) or {{SubatomicParticle|link=yes|Delta}}'s (isospin {{frac|3|2}}).
* Baryons with two {{SubatomicParticle|link=yes|Up quark}} and/or {{SubatomicParticle|link=yes|Down quark}} quarks are {{SubatomicParticle|link=yes|Lambda}}'s (isospin 0) or {{SubatomicParticle|link=yes|Sigma}}'s (isospin 1). If the third quark is heavy, its identity is given by a subscript.
* Baryons with one {{SubatomicParticle|link=yes|Up quark}} or {{SubatomicParticle|link=yes|Down quark}} quark are {{SubatomicParticle|link=yes|Xi}}'s (isospin {{frac|1|2}}). One or two subscripts are used if one or both of the remaining quarks are heavy.
* Baryons with no {{SubatomicParticle|link=yes|Up quark}} or {{SubatomicParticle|link=yes|Down quark}} quarks are {{SubatomicParticle|link=yes|Omega}}'s (isospin 0), and subscripts indicate any heavy quark content.
* Baryons that decay strongly have their masses as part of their names. For example, Sigmas ({{SubatomicParticle|Sigma}}) and Omegas ({{SubatomicParticle|Omega}}) do not decay strongly, but Deltas ({{nowrap|{{SubatomicParticle|Delta}}(1232)}}), and charmed Xis ({{nowrap|{{SubatomicParticle|Charmed Xi+}}(2645)}}) do.


This belief lasted until [[Murray Gell-Mann]] proposed the [[quark model]] in 1964 (containing originally only the u, d, and s quarks).<ref>M. Gell-Mann (1964)</ref> The success of the isospin model is now understood to be the result of the similar masses of the u and d quarks. Since the u and d quarks have similar masses, particles made of the same number then also have similar masses. The exact specific u and d quark composition determines the charge, as u quarks carry charge +{{frac|2|3}} while d quarks carry charge −{{frac|1|3}}. For example the four Deltas all have different charges ({{SubatomicParticle|Delta++}} (uuu), {{SubatomicParticle|Delta+}} (uud), {{SubatomicParticle|Delta0}} (udd), {{SubatomicParticle|Delta-}} (ddd)), but have similar masses (~1,232&nbsp;MeV/c<sup>2</sup>) as they are each made of a total of three u and d quarks. Under the isospin model, they were considered to be a single particle in different charged states.
Quarks carry charge, so knowing the charge of a particle indirectly gives the quark content. For example, the rules above say that the {{SubatomicParticle|Bottom sigma}} contains a bottom and some combination of two up and/or down quarks. A {{SubatomicParticle|Bottom sigma0}} must be one up quark (Q&nbsp;=&nbsp;{{frac|2|3}}), one down quark (Q&nbsp;=&nbsp;&minus;{{frac|1|3}}), and one bottom quark (Q&nbsp;=&nbsp;&minus;{{frac|1|3}}) to have the correct charge (Q&nbsp;=&nbsp;0).


The number of baryons within one group (excluding resonances) is given by the number of isospin projections possible (2&nbsp;&times;&nbsp;isospin&nbsp;+&nbsp;1). For example there are four {{SubatomicParticle|Delta}}'s, corresponding to the four isospin projections of the isospin value I&nbsp;=&nbsp;{{frac|3|2}}: {{SubatomicParticle|Delta++}}&nbsp;(I<sub>z</sub>&nbsp;=&nbsp;{{frac|3|2}}), {{SubatomicParticle|Delta+}}&nbsp;(I<sub>z</sub>&nbsp;=&nbsp;{{frac|1|2}}), {{SubatomicParticle|Delta0}}&nbsp;(I<sub>z</sub>&nbsp;=&nbsp;&minus;{{frac|1|2}}), and {{SubatomicParticle|Delta-}}&nbsp;(I<sub>z</sub>&nbsp;=&nbsp;&minus;{{frac|3|2}}). Another example would be the three {{SubatomicParticle|Bottom sigma}}'s, corresponding to the three isospin projections of the isospin value I&nbsp;=&nbsp;1: {{SubatomicParticle|Bottom sigma+}}&nbsp;(I<sub>z</sub>&nbsp;=&nbsp;1), {{SubatomicParticle|Bottom sigma0}}&nbsp;(I<sub>z</sub>&nbsp;=&nbsp;0), and {{SubatomicParticle|Bottom sigma-}}&nbsp;(I<sub>z</sub>&nbsp;=&nbsp;&minus;1).
The mathematics of isospin was modeled after that of spin. Isospin projections varied in increments of 1 just like those of spin, and to each projection was associated a "[[state (physics)|charged state]]". Since the "Delta particle" had four "charged states", it was said to be of isospin I&nbsp;=&nbsp;{{frac|3|2}}. Its "charged states" {{SubatomicParticle|Delta++}}, {{SubatomicParticle|Delta+}}, {{SubatomicParticle|Delta0}}, and {{SubatomicParticle|Delta-}}, corresponded to the isospin projections I<sub>z</sub>&nbsp;=&nbsp;+{{frac|3|2}}, I<sub>z</sub>&nbsp;=&nbsp;+{{frac|1|2}}, I<sub>z</sub>&nbsp;=&nbsp;{{frac|1|2}}, and I<sub>z</sub>&nbsp;=&nbsp;{{frac|3|2}} respectively. Another example is the "nucleon particle". As there were two nucleon "charged states", it was said to be of isospin {{frac|1|2}}. The positive nucleon {{SubatomicParticle|Nucleon+}} (proton) was identified with I<sub>z</sub>&nbsp;=&nbsp;+{{frac|1|2}} and the neutral nucleon {{SubatomicParticle|Nucleon0}} (neutron) with I<sub>z</sub>&nbsp;=&nbsp;{{frac|1|2}}.<ref name=WongB>S.S.M. Wong (1998b)</ref> It was later noted that the isospin projections were related to the up and down quark content of particles by the relation:<br>
:<math>I_z=\frac{1}{2}[(n_u-n_\bar{u})-(n_d-n_\bar{d})],</math>
where the n's are the number of up and down quarks and antiquarks.


In the "isospin picture", the four Deltas and the two nucleons were thought to be the different states of two particles. However in the quark model, Deltas are different states of nucleons (the N<sup>++</sup> or N<sup>−</sup> are forbidden by [[Pauli's exclusion principle]]). Isospin, although conveying an inaccurate picture of things, is still used to classify baryons, leading to unnatural and often confusing nomenclature.
==Baryonic matter==
'''Baryonic [[matter]]''' is matter composed mostly of baryons (by mass), which includes [[atom]]s of any sort (and thus includes nearly all matter that we may encounter or [[experience]] in everyday life, including our bodies). '''Non-baryonic matter''', as implied by the name, is any sort of matter that is not primarily composed of baryons. This might include such ordinary matter as [[neutrino]]s or free [[electron]]s; however, it may also include exotic species of non-baryonic [[dark matter]], such as [[supersymmetry|supersymmetric particles]], [[axion]]s or [[black hole]]s. The distinction between baryonic and non-baryonic matter is important in [[physical cosmology|cosmology]], because [[Big Bang nucleosynthesis]] models set tight constraints on the amount of baryonic matter present in the early [[universe]].


===Flavour quantum numbers===
The very existence of baryons is also a significant issue in cosmology because we have assumed that the Big Bang produced a state with equal amounts of baryons and anti-baryons. The process by which baryons come to outnumber their antiparticles is called [[baryogenesis]] (in contrast to a process by which [[lepton]]s account for the predominance of matter over antimatter, [[leptogenesis (physics)|leptogenesis]]).
{{Main|Flavour (particle physics)#Flavour quantum numbers}}


The [[strangeness (particle physics)|strangeness]] [[flavour (particle physics)#flavour quantum numbers|flavour quantum number]] S (not to be confused with spin) was noticed to go up and down along with particle mass. The higher the mass, the lower the strangeness (the more s quarks). Particles could be described with isospin projections (related to charge) and strangeness (mass) (see the uds octet and decuplet figures on the right). As other quarks where discovered, new quantum numbers were made to have similar description of udc and udb octets and decuplets. Since only the u and d mass are similar, this description of particle mass and charge in terms of isospin and flavour quantum numbers only works well for octet and decuplet made of one u, one d and one other quark and breaks down for the other octets and decuplets (for example ucb octet and decuplet). If the quarks all had the same mass, their behaviour would be called ''symmetric'', as they would all behave in exactly the same way with respect to the strong interaction. Since quarks do not have the same mass, they do not interact in the same way (exactly like an electron placed in an electric field will accelerate more than a proton placed in the same field because of its lighter mass), and the symmetry is said to be [[broken symmetry|broken]].
==Baryogenesis==
Experiments are consistent with the number of quarks in the universe being a constant and, more specifically, the number of [[baryon]]s being a constant; in technical language, the total [[baryon number]] appears to be ''[[conservation law|conserved]].'' Within the prevailing [[Standard Model]] of particle physics, the number of baryons may change in multiples of three due to the action of [[sphaleron]]s, although this is rare and has not been observed experimentally. Some [[grand unified theory|grand unified theories]] of particle physics also predict that a single [[proton]] can decay, changing the baryon number by one; however, this has not yet been observed experimentally. The [[baryogenesis|excess of baryons over antibaryons]] in the present universe is thought to be due to non-conservation of baryon number in the very early universe, though this is not well understood.


It was noted that charge (Q) was related to the isospin projection (I<sub>z</sub>), the [[baryon number]] (B) and flavour quantum numbers (S, C, B&prime;, T) by the [[Gell-Mann–Nishijima formula]]:<ref name=WongB/><br>
==See also==
:<math>Q=I_z+\frac{1}{2}(B+S+C+B^\prime+T),</math>
* [[List of baryons]]

* [[Baryon number]]
where S, C, B&prime;, and T represent the [[strangeness (particle physics)|strangeness]], [[charm (quantum number)|charmness]], [[bottomness]] and [[topness]] flavour quantum numbers respectively. They are related to the number of strange, charm, bottom, and top quarks and antiquark according to the relations:<br>
* [[Particle physics]]
:<math>S=-(n_s-n_\bar{s}),</math>
* [[Pentaquark]]
:<math>C=+(n_c-n_\bar{c}),</math>
:<math>B^\prime=-(n_b-n_\bar{b}),</math>
:<math>T=+(n_t-n_\bar{t}),</math>

meaning that the Gell-Man–Nishijima formula is equivalent to the expression of charge in terms of quark content:
:<math>Q=\frac{2}{3}[(n_u-n_\bar{u})+(n_c-n_\bar{c})+(n_t-n_\bar{t})]-\frac{1}{3}[(n_d-n_\bar{d})+(n_s-n_\bar{s})+(n_b-n_\bar{b})].</math>

===Spin, orbital angular momentum, and total angular momentum===
{{Main|Spin (physics)|Orbital angular momentum|Total angular momentum|Quantum numbers|Clebsch-Gordan coefficients}}
[[Spin]] (quantum number S) is a [[vector]] quantity that represents the "intrinsic" [[angular momentum]] of a particle. It comes in increments of {{frac|1|2}}&nbsp;[[Plank's constant|ħ]] (pronounced "h-bar"). The ħ is often dropped because it is the "fundamental" unit of spin, and it is implied that "spin 1" means "spin 1&nbsp;ħ". In some systems of [[natural units]], ħ is chosen to be 1, therefore does not appear anywhere.

[[Quarks]] are [[fermion]]ic particles of spin {{frac|1|2}} (S&nbsp;=&nbsp;{{frac|1|2}}). Because spin projections varies in increments of 1 (that is 1&nbsp;ħ), a single quark has a spin vector of length {{frac|1|2}}, and has two spin projections (S<sub>z</sub>&nbsp;=&nbsp;+{{frac|1|2}} and
S<sub>z</sub>&nbsp;=&nbsp;−{{frac|1|2}}). Two quarks can have their spins aligned, in which case the two spin vectors add to make a vector of length S&nbsp;=&nbsp;1 and three spin projections (S<sub>z</sub>&nbsp;=&nbsp;+1, S<sub>z</sub>&nbsp;=&nbsp;0, and S<sub>z</sub>&nbsp;=&nbsp;−1). If two quarks have unaligned spins, the spin vectors add up to make a vector of length S&nbsp;=&nbsp;0 and has only one spin projection (S<sub>z</sub>&nbsp;=&nbsp;0), etc. Since baryons are made of three quarks, their spin vectors can add to make a vector of length S&nbsp;=&nbsp;{{frac|3|2}} which has four spin projections (S<sub>z</sub>&nbsp;=&nbsp;+{{frac|3|2}}, S<sub>z</sub>&nbsp;=&nbsp;+{{frac|1|2}}, S<sub>z</sub>&nbsp;=&nbsp;−{{frac|1|2}}, and S<sub>z</sub>&nbsp;=&nbsp;−{{frac|3|2}}), or a vector of length S&nbsp;=&nbsp;{{frac|1|2}} with two spin projections (S<sub>z</sub>&nbsp;=&nbsp;+{{frac|1|2}}, and S<sub>z</sub>&nbsp;=&nbsp;−{{frac|1|2}}).<ref name=Shankar>R. Shankar (1994)</ref>

There is another quantity of angular momentum, called the [[orbital angular momentum]] (quantum number L), that comes in increments of 1&nbsp;ħ, which represent the angular moment of due to quarks orbiting around each other. The total angular momentum (quantum number J) of a particle is therefore the combination of intrinsic angular momentum (spin) and orbital angular momentum. It can take any value from {{nowrap|J {{=}} {{!}}L − S{{!}}}} to {{nowrap|J {{=}} {{!}}L + S{{!}}}}, in increments of 1.
<center>
{|class="wikitable" style="text-align: center;"
|+Baryon angular momentum quantum numbers for L = 0, 1, 2, 3
|-
!width="100"| Spin (S)
!width="100"| Orbital angular momentum (L)
!width="100"| Total angular momentum (J)
!width="100"| Parity (P)<br>([[#Parity|See below]])
!width="100"| Condensed notation (J<sup>P</sup>)
|-
|rowspan="4"| {{frac|1|2}} || 0 || {{frac|1|2}} || + || {{frac|1|2}}<sup>+</sup>
|-
| 1 || {{frac|3|2}}, {{frac|1|2}} || − || {{frac|3|2}}<sup>−</sup>, {{frac|1|2}}<sup>−</sup>
|-
| 2 || {{frac|5|2}}, {{frac|3|2}} || + || {{frac|5|2}}<sup>+</sup>, {{frac|3|2}}<sup>+</sup>
|-
| 3 || {{frac|7|2}}, {{frac|5|2}} || − || {{frac|7|2}}<sup>−</sup>, {{frac|5|2}}<sup>−</sup>
|-
|rowspan="4"| {{frac|3|2}} || 0 || {{frac|3|2}} || + || {{frac|3|2}}<sup>+</sup>
|-
| 1 || {{frac|5|2}}, {{frac|3|2}}, {{frac|1|2}} || − || {{frac|5|2}}<sup>−</sup>, {{frac|3|2}}<sup>−</sup>, {{frac|1|2}}<sup>−</sup>
|-
| 2 || {{frac|7|2}}, {{frac|5|2}}, {{frac|3|2}} || + || {{frac|7|2}}<sup>+</sup>, {{frac|5|2}}<sup>+</sup>, {{frac|3|2}}<sup>+</sup>
|-
| 3 || {{frac|9|2}}, {{frac|7|2}}, {{frac|5|2}} || − || {{frac|9|2}}<sup>−</sup>, {{frac|7|2}}<sup>−</sup>, {{frac|5|2}}<sup>−</sup>
|}
</center>

Particles physicists are most interested in baryons with no orbital angular momentum (L&nbsp;=&nbsp;0), as they correspond to [[ground state]]s – states of minimal energy. Therefore the two groups of baryons most studied are the S&nbsp;=&nbsp;{{frac|1|2}}; L&nbsp;=&nbsp;0 and S&nbsp;=&nbsp;{{frac|3|2}}; L&nbsp;=&nbsp;0, which corresponds to J&nbsp;=&nbsp;{{frac|1|2}}<sup>+</sup> and J&nbsp;=&nbsp;{{frac|3|2}}<sup>+</sup> respectively, although they are not the only ones. It is also possible to obtain J&nbsp;=&nbsp;{{frac|3|2}}<sup>+</sup> particles from S&nbsp;=&nbsp;{{frac|1|2}} and L&nbsp;=&nbsp;2, as well as S&nbsp;=&nbsp;{{frac|3|2}} and L&nbsp;=&nbsp;2. This phenomena of having multiple particles in the same total angular momentum configuration is called ''[[degenerate energy level|degeneracy]]''. How to distinguish between these degenerate baryons is an active area of research in [[baryon spectroscopy]].<ref>H. Garcilazo ''et al''. (2007)</ref><ref>D.M. Manley (2005)</ref>

===Parity===
{{Main|Parity (physics)}}

If the universe were reflected in a mirror, most of the laws of physics would be identical – things would behave the same way regardless of what we call "left" and what we call "right". This concept of mirror reflection is called ''[[parity (physics)|intrinsic parity]]'' or ''parity'' (P). [[Gravity]], the [[electromagnetic force]], and the [[strong interaction]] all behave in the same way regardless of whether or not the universe is reflected in a mirror, and thus are said to [[P-symmetry|conserve parity]] (P-symmetry). However, the weak interaction ''does'' distinguish "left" from "right", a phenomenon called [[parity violation]] (P-violation).

Based on this, one might think that if the [[wavefunction]] for each particle (more precisely, the [[quantum field]] for each particle type) were simultaneously mirror-reversed, then the new set of wavefunctions would perfectly satisfy the laws of physics (apart from the weak interaction). It turns out that this is not quite true: In order for the equations to be satisfied, the wavefunctions of certain types of particles have to be multiplied by −1, in addition to being mirror-reversed. Such particle types are said to have ''negative'' or ''odd'' parity (P&nbsp;=&nbsp;−1, or alternatively P&nbsp;=&nbsp;–), while the other particles are said to have ''positive'' or ''even'' parity (P&nbsp;=&nbsp;+1, or alternatively P&nbsp;=&nbsp;+).

For baryons, the parity is related to the orbital angular momentum by the relation:<ref name=WongA>S.S.M. Wong (1998a)</ref>
:<math>P=(-1)^L.</math>

As a consequence, baryons with no orbital angular momentum (L&nbsp;=&nbsp;0) all have even parity (P&nbsp;=&nbsp;+).

===Particle classification===
Baryons are classified into groups according to their [[isospin]] (I) values and [[quark]] (q) content. There are six groups of baryons – [[nucleon]] ({{SubatomicParticle|Nucleon}}), [[Delta baryon|Delta]] ({{SubatomicParticle|Delta}}), [[Lambda baryon|Lambda]] ({{SubatomicParticle|Lambda}}), [[Sigma baryon|Sigma]] ({{SubatomicParticle|Sigma}}), [[Xi baryon|Xi]] ({{SubatomicParticle|Xi}}), and [[Omega baryon|Omega]] ({{SubatomicParticle|Omega}}). The rules for classification are defined by the [[Particle Data Group]]. These rules consider the [[up quark|up]] ({{SubatomicParticle|Up quark}}), [[down quark|down]] ({{SubatomicParticle|Down quark}}) and [[strange quark|strange]] ({{SubatomicParticle|Strange quark}}) quarks to be ''light'' and the [[charm quark|charm]] ({{SubatomicParticle|Charm quark}}), [[bottom quark|bottom]] ({{SubatomicParticle|Bottom quark}}), and [[top quark|top]] ({{SubatomicParticle|Top quark}}) to be ''heavy''. The rules cover all the particles that can be made from three of each of the six quarks, even though baryons made of t quarks are not expected to exist because of the [[top quark|t quark's short lifetime]]. The rules do not cover pentaquarks.<ref name=PDGBaryonsymbols>C. Amsler ''et al''. (2008): [http://pdg.lbl.gov/2008/reviews/namingrpp.pdf Naming scheme for hadrons]</ref>
* Baryons with three {{SubatomicParticle|link=yes|Up quark}} and/or {{SubatomicParticle|link=yes|Down quark}} quarks are {{SubatomicParticle|link=yes|Nucleon}}'s (I = {{frac|1|2}}) or {{SubatomicParticle|link=yes|Delta}}'s (I = {{frac|3|2}}).
* Baryons with two {{SubatomicParticle|link=yes|Up quark}} and/or {{SubatomicParticle|link=yes|Down quark}} quarks are {{SubatomicParticle|link=yes|Lambda}}'s (I = 0) or {{SubatomicParticle|link=yes|Sigma}}'s (I = 1). If the third quark is heavy, its identity is given by a subscript.
* Baryons with one {{SubatomicParticle|link=yes|Up quark}} or {{SubatomicParticle|link=yes|Down quark}} quark are {{SubatomicParticle|link=yes|Xi}}'s (I = {{frac|1|2}}). One or two subscripts are used if one or both of the remaining quarks are heavy.
* Baryons with no {{SubatomicParticle|link=yes|Up quark}} or {{SubatomicParticle|link=yes|Down quark}} quarks are {{SubatomicParticle|link=yes|Omega}}'s (I = 0), and subscripts indicate any heavy quark content.
* Baryons that decay strongly have their masses as part of their names. For example, Σ<sup>0</sup> does not decay strongly, but Δ<sup>++</sup>(1232) does.

It is also a widespread (but not universal) practice to follow some additional rules when distinguishing between some states which would otherwise have the same symbol.<ref name=WongB/>
* Baryons in [[total angular momentum]] J&nbsp;=&nbsp;{{frac|3|2}} configuration which have the same symbols as their J&nbsp;=&nbsp;{{frac|1|2}} counterparts are denoted by an asterisk (&nbsp;*&nbsp;).
* Two baryons can be made of three different quarks in J&nbsp;=&nbsp;{{frac|1|2}} configuration. In this case, a prime (&nbsp;&prime;&nbsp;) is used to distinguish between them.
:* ''Exception'': When two of the three quarks are one up and one down quark, one baryon is dubbed Λ while the other is dubbed Σ.

Quarks carry charge, so knowing the charge of a particle indirectly gives the quark content. For example, the rules above say that a {{SubatomicParticle|charmed Xi+}} contains a c quark and some combination of two u and/or d quarks. The c quark as a charge of (Q&nbsp;=&nbsp;+{{frac|2|3}}), therefore the other two must be a u quark (Q&nbsp;=&nbsp;+{{frac|2|3}}), and a d quark (Q&nbsp;=&nbsp;−{{frac|1|3}}) to have the correct total charge (Q&nbsp;=&nbsp;1).

{{List of baryons}}

== See also ==
* [[Eightfold way (physics)|Eightfold way]]
* [[Mesons]]
* [[List of particles]]
* [[List of particles]]
* [[Timeline of particle discoveries]]
* [[Proton decay]]
* [[Charmed baryons]]


==Notes==
== References ==
{{Reflist|2}}
<references/>


==References and further reading==
=== References ===
<div class="references-small">
* {{cite journal |author=C. Amsler ''et al''. |publisher=[[Particle Data Group]] |title=Review of Particle Physics |journal= [[Physics Letters B|Physics Letters]] |volume=B667 |issue=1 |pages=1–1340 |year=2008 |doi=}}
* {{cite journal |author=H. Garcilazo, J. Vijande, A. Valcarce |title= Faddeev study of heavy-baryon spectroscopy |journal= [[Journal of Physics G: Nuclear and Particle Physics]] |volume=34 |issue=5 |pages=961–976 |year=2007 | doi=10.1088/0954-3899/34/5/014 }}
* {{cite journal |author=V.M. Abazov ''et al''. (2008) |url=http://www-d0.fnal.gov/Run2Physics/WWW/results/final/B/B08G/B08G.pdf |title= Observation of the doubly strange b baryon Omega(b)}}
* {{cite web |url=http://www.symmetrymagazine.org/cms/?pid=1000377 |title=The rise and fall of the pentaquark |accessdate=2008-05-27 |author=K. Carter |year=2006 |publisher=[[Fermi National Accelerator Laboratory]] and [[Stanford Linear Accelerator Center]]}}
* {{cite journal |author=W.-M. Yao ''et al''. |publisher=[[Particle Data Group]] |title=Review of Particle Physics |journal= [[Journal of Physics G]] |volume=33 |pages=1–1232 |year=2006 | doi=10.1088/0954-3899/33/1/001}}
* {{cite web |url=http://filer.case.edu/sjr16/advanced/extras_particlephys.html |author=S.Robbins |year=2006 |title=Physics Particle Overview – Baryons |publisher=[[Journey Through the Galaxy]]|accessdate= 2008-04-20}}
* {{cite journal |author= D.M. Manley |title= Status of baryon spectroscopy |journal= [[Journal of Physics: Conference Series]] |volume=5 |pages=230–237 |year=2005 |doi=10.1088/1742-6596/9/1/043 }}
* {{cite web |url=http://www.newscientist.com/article/dn3903 |title=Pentaquark discovery confounds sceptics |accessdate=2008-05-27 |author= H. Muir |year=2003 |publisher=[[New Scientist]]}}
* {{cite book |title=Introductory Nuclear Physics |edition=2nd |author=S.S.M. Wong |year=1998a |publisher=[[John Wiley & Sons]] |location=New York (NY) |isbn=0-471-23973-9|chapter=Chapter 3 – The Deuteron |pages=57–104}}
* {{cite book |title=Introductory Nuclear Physics |edition=2nd |author=S.S.M. Wong |year=1998b |publisher=[[John Wiley & Sons]] |location=New York (NY) |isbn=0-471-23973-9|chapter=Chapter 2 – Nucleon Structure |pages=21–56}}
* {{cite book |title=Principles of Quantum Mechanics |edition=2nd |author=R. Shankar |year=1994 |publisher=[[Plenum Press]] |location=New York (NY) |isbn=0-306-44790-8}}
* {{cite journal |author=J.G. Körner, M. Krämer, and D. Pirjol |title=Heavy Baryons |journal=[[Progress in Particle and Nuclear Physics]] |volume=33 |year=1994|pages=787–868 | id={{arxiv|archive=hep-ph|id=9406359}} |doi=10.1016/0146-6410(94)90053-1 }}
* {{cite journal |author=E. Wigner |title=On the Consequences of the Symmetry of the Nuclear Hamiltonian on the Spectroscopy of Nuclei|journal=Physical Review |volume=51 |issue=2 |year=1937|pages=106–119 |doi=10.1103/PhysRev.51.106}}
* {{cite journal|author=M. Gell-Mann |title=A Schematic of Baryons and Mesons|journal=Physics Letters|volume=8|issue=3|pages=214–215|year=1964|doi=10.1016/S0031-9163(64)92001-3}}
* {{cite journal |author=W. Heisenberg |year=1932 |title=Über den Bau der Atomkerne I|journal=Zeitschrift für Physik |volume=77 |pages=1–11 |doi=10.1007/BF01342433}} {{de icon}}
* {{cite journal |author=W. Heisenberg |year=1932 |title=Über den Bau der Atomkerne II|journal=Zeitschrift für Physik |volume=78 |pages=156–164 |doi=10.1007/BF01337585}} {{de icon}}
* {{cite journal |author=W. Heisenberg |year=1932 |title=Über den Bau der Atomkerne III|journal=Zeitschrift für Physik |volume=80 |pages=587–596 |doi=10.1007/BF01335696}} {{de icon}}
</div>

== Further reading ==
* Particle Data Group – [http://pdg.lbl.gov/index.html Review of Particle Physics (2008).]
* Georgia State University – [http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html HyperPhysics]


{{particles}}
{{particles}}


{{featured list}}
[[Category:Baryons]]

[[Category:Nuclear physics]]
[[Category:Baryons| ]]
[[Category:Particle physics]]
[[Category:Physics lists|Baryons]]

[[de:Liste der Baryonen]]
[[fr:Baryon#Liste]]
[[hu:Barionok listája]]
[[ru:Список барионов]]



[[ar:باريون]]
[[ar:باريون]]

Revision as of 07:23, 21 December 2008

This list is of all known and predicted baryons. See list of particles for a more detailed list of particles found in particle physics.

Baryons, are the family of composite particle made of three quarks, as opposed to the mesons which are the family of composite particles made of one quark and one antiquark. Both baryons and mesons are part of the larger particle family comprising all particles made of quarks – the hadrons. The term baryon is derived from the Greek βαρύς (barys), meaning "heavy", because at the time of their naming it was believed that baryons were characterized by having greater masses than other particles.

Until very recently, it was believed that some experiments showed the existence of pentaquarks – "exotic" baryons made of four quarks and one antiquark.[1][2] The particle physics community as a whole did not view their existence as likely in 2006,[3] and in 2008, considered evidence to be overwhelmingly against the existence of the reported pentaquarks.[4]

Since baryons are composed of quarks, they participate in the strong interaction. Leptons on the other hands, are not composed of quarks and as such do not participate in the strong interaction. The most famous baryons are the protons and neutrons which make up most of the mass of the visible matter in the universe, whereas electrons (the other major component of atoms) are leptons. Each baryon has a corresponding antiparticle (antibaryon) where quarks are replaced by their corresponding antiquarks. For example, a proton is made of two up quarks and one down quark; and its corresponding antiparticle, the antiproton, is made of two up antiquarks and one down antiquark.

Background

Baryons are strongly interacting fermions — that is, they experience the strong nuclear force and are described by Fermi-Dirac statistics, which apply to all particles obeying the Pauli exclusion principle. This is in contrast to the bosons, which do not obey the exclusion principle.

Baryons, along with mesons, are hadrons, meaning they are particles composed of quarks. Quarks have baryon numbers of B = 13 and antiquarks have baryon number of B = −13. The term "baryon" usually refers to triquarks—baryons made of three quarks (B = 13 + 13 + 13 = 1), but there are other "exotic" baryons, such as pentaquarks — baryons made of four quarks and one antiquark (B = 13 + 13 + 13 + 13 − 13 = 1), but their existence is not generally accepted. Theoretically, heptaquarks (5 quarks, 2 antiquarks), nonaquarks (6 quarks, 3 antiquarks), etc. could also exist.

Baryonic matter

Baryonic matter is matter composed mostly of baryons (by mass), which includes atoms of any sort (and thus includes nearly all matter that we may encounter or experience in everyday life, including our bodies). Non-baryonic matter, as implied by the name, is any sort of matter that is not primarily composed of baryons. This might include such ordinary matter as neutrinos or free electrons; however, it may also include exotic species of non-baryonic dark matter, such as supersymmetric particles, axions or black holes. The distinction between baryonic and non-baryonic matter is important in cosmology, because Big Bang nucleosynthesis models set tight constraints on the amount of baryonic matter present in the early universe.

The very existence of baryons is also a significant issue in cosmology because we have assumed that the Big Bang produced a state with equal amounts of baryons and anti-baryons. The process by which baryons come to outnumber their antiparticles is called baryogenesis (in contrast to a process by which leptons account for the predominance of matter over antimatter, leptogenesis).

Baryogenesis

Experiments are consistent with the number of quarks in the universe being a constant and, more specifically, the number of baryons being a constant; in technical language, the total baryon number appears to be conserved. Within the prevailing Standard Model of particle physics, the number of baryons may change in multiples of three due to the action of sphalerons, although this is rare and has not been observed experimentally. Some grand unified theories of particle physics also predict that a single proton can decay, changing the baryon number by one; however, this has not yet been observed experimentally. The excess of baryons over antibaryons in the present universe is thought to be due to non-conservation of baryon number in the very early universe, though this is not well understood.

Overview

Isospin and charge

Combinations of three u, d or s quarks forming baryons with a spin-32 form the uds baryon decuplet
Combinations of three u, d or s quarks forming baryons with a spin-12 form the uds baryon octet

The concept of isospin was first proposed by Werner Heisenberg in 1932 to explain the similarities between protons and neutrons under the strong interaction.[5] Although they had different electric charges, their masses were so similar that physicists believed they were actually the same particle. The different electric charges were explained as being the result of some unknown excitation similar to spin. This unknown excitation was later dubbed isospin by Eugene Wigner in 1937.[6]

This belief lasted until Murray Gell-Mann proposed the quark model in 1964 (containing originally only the u, d, and s quarks).[7] The success of the isospin model is now understood to be the result of the similar masses of the u and d quarks. Since the u and d quarks have similar masses, particles made of the same number then also have similar masses. The exact specific u and d quark composition determines the charge, as u quarks carry charge +23 while d quarks carry charge −13. For example the four Deltas all have different charges (
Δ++
(uuu),
Δ+
(uud),
Δ0
(udd),
Δ
(ddd)), but have similar masses (~1,232 MeV/c2) as they are each made of a total of three u and d quarks. Under the isospin model, they were considered to be a single particle in different charged states.

The mathematics of isospin was modeled after that of spin. Isospin projections varied in increments of 1 just like those of spin, and to each projection was associated a "charged state". Since the "Delta particle" had four "charged states", it was said to be of isospin I = 32. Its "charged states"
Δ++
,
Δ+
,
Δ0
, and
Δ
, corresponded to the isospin projections Iz = +32, Iz = +12, Iz = −12, and Iz = −32 respectively. Another example is the "nucleon particle". As there were two nucleon "charged states", it was said to be of isospin 12. The positive nucleon
N+
(proton) was identified with Iz = +12 and the neutral nucleon
N0
(neutron) with Iz = −12.[8] It was later noted that the isospin projections were related to the up and down quark content of particles by the relation:

where the n's are the number of up and down quarks and antiquarks.

In the "isospin picture", the four Deltas and the two nucleons were thought to be the different states of two particles. However in the quark model, Deltas are different states of nucleons (the N++ or N are forbidden by Pauli's exclusion principle). Isospin, although conveying an inaccurate picture of things, is still used to classify baryons, leading to unnatural and often confusing nomenclature.

Flavour quantum numbers

The strangeness flavour quantum number S (not to be confused with spin) was noticed to go up and down along with particle mass. The higher the mass, the lower the strangeness (the more s quarks). Particles could be described with isospin projections (related to charge) and strangeness (mass) (see the uds octet and decuplet figures on the right). As other quarks where discovered, new quantum numbers were made to have similar description of udc and udb octets and decuplets. Since only the u and d mass are similar, this description of particle mass and charge in terms of isospin and flavour quantum numbers only works well for octet and decuplet made of one u, one d and one other quark and breaks down for the other octets and decuplets (for example ucb octet and decuplet). If the quarks all had the same mass, their behaviour would be called symmetric, as they would all behave in exactly the same way with respect to the strong interaction. Since quarks do not have the same mass, they do not interact in the same way (exactly like an electron placed in an electric field will accelerate more than a proton placed in the same field because of its lighter mass), and the symmetry is said to be broken.

It was noted that charge (Q) was related to the isospin projection (Iz), the baryon number (B) and flavour quantum numbers (S, C, B′, T) by the Gell-Mann–Nishijima formula:[8]

where S, C, B′, and T represent the strangeness, charmness, bottomness and topness flavour quantum numbers respectively. They are related to the number of strange, charm, bottom, and top quarks and antiquark according to the relations:

meaning that the Gell-Man–Nishijima formula is equivalent to the expression of charge in terms of quark content:

Spin, orbital angular momentum, and total angular momentum

Spin (quantum number S) is a vector quantity that represents the "intrinsic" angular momentum of a particle. It comes in increments of 12 ħ (pronounced "h-bar"). The ħ is often dropped because it is the "fundamental" unit of spin, and it is implied that "spin 1" means "spin 1 ħ". In some systems of natural units, ħ is chosen to be 1, therefore does not appear anywhere.

Quarks are fermionic particles of spin 12 (S = 12). Because spin projections varies in increments of 1 (that is 1 ħ), a single quark has a spin vector of length 12, and has two spin projections (Sz = +12 and Sz = −12). Two quarks can have their spins aligned, in which case the two spin vectors add to make a vector of length S = 1 and three spin projections (Sz = +1, Sz = 0, and Sz = −1). If two quarks have unaligned spins, the spin vectors add up to make a vector of length S = 0 and has only one spin projection (Sz = 0), etc. Since baryons are made of three quarks, their spin vectors can add to make a vector of length S = 32 which has four spin projections (Sz = +32, Sz = +12, Sz = −12, and Sz = −32), or a vector of length S = 12 with two spin projections (Sz = +12, and Sz = −12).[9]

There is another quantity of angular momentum, called the orbital angular momentum (quantum number L), that comes in increments of 1 ħ, which represent the angular moment of due to quarks orbiting around each other. The total angular momentum (quantum number J) of a particle is therefore the combination of intrinsic angular momentum (spin) and orbital angular momentum. It can take any value from J = |L − S| to J = |L + S|, in increments of 1.

Baryon angular momentum quantum numbers for L = 0, 1, 2, 3
Spin (S) Orbital angular momentum (L) Total angular momentum (J) Parity (P)
(See below)
Condensed notation (JP)
12 0 12 + 12+
1 32, 12 32, 12
2 52, 32 + 52+, 32+
3 72, 52 72, 52
32 0 32 + 32+
1 52, 32, 12 52, 32, 12
2 72, 52, 32 + 72+, 52+, 32+
3 92, 72, 52 92, 72, 52

Particles physicists are most interested in baryons with no orbital angular momentum (L = 0), as they correspond to ground states – states of minimal energy. Therefore the two groups of baryons most studied are the S = 12; L = 0 and S = 32; L = 0, which corresponds to J = 12+ and J = 32+ respectively, although they are not the only ones. It is also possible to obtain J = 32+ particles from S = 12 and L = 2, as well as S = 32 and L = 2. This phenomena of having multiple particles in the same total angular momentum configuration is called degeneracy. How to distinguish between these degenerate baryons is an active area of research in baryon spectroscopy.[10][11]

Parity

If the universe were reflected in a mirror, most of the laws of physics would be identical – things would behave the same way regardless of what we call "left" and what we call "right". This concept of mirror reflection is called intrinsic parity or parity (P). Gravity, the electromagnetic force, and the strong interaction all behave in the same way regardless of whether or not the universe is reflected in a mirror, and thus are said to conserve parity (P-symmetry). However, the weak interaction does distinguish "left" from "right", a phenomenon called parity violation (P-violation).

Based on this, one might think that if the wavefunction for each particle (more precisely, the quantum field for each particle type) were simultaneously mirror-reversed, then the new set of wavefunctions would perfectly satisfy the laws of physics (apart from the weak interaction). It turns out that this is not quite true: In order for the equations to be satisfied, the wavefunctions of certain types of particles have to be multiplied by −1, in addition to being mirror-reversed. Such particle types are said to have negative or odd parity (P = −1, or alternatively P = –), while the other particles are said to have positive or even parity (P = +1, or alternatively P = +).

For baryons, the parity is related to the orbital angular momentum by the relation:[12]

As a consequence, baryons with no orbital angular momentum (L = 0) all have even parity (P = +).

Particle classification

Baryons are classified into groups according to their isospin (I) values and quark (q) content. There are six groups of baryons – nucleon (
N
), Delta (
Δ
), Lambda (
Λ
), Sigma (
Σ
), Xi (
Ξ
), and Omega (
Ω
). The rules for classification are defined by the Particle Data Group. These rules consider the up (
u
), down (
d
) and strange (
s
) quarks to be light and the charm (
c
), bottom (
b
), and top (
t
) to be heavy. The rules cover all the particles that can be made from three of each of the six quarks, even though baryons made of t quarks are not expected to exist because of the t quark's short lifetime. The rules do not cover pentaquarks.[13]

  • Baryons with three
    u
    and/or
    d
    quarks are
    N
    's (I = 12) or
    Δ
    's (I = 32).
  • Baryons with two
    u
    and/or
    d
    quarks are
    Λ
    's (I = 0) or
    Σ
    's (I = 1). If the third quark is heavy, its identity is given by a subscript.
  • Baryons with one
    u
    or
    d
    quark are
    Ξ
    's (I = 12). One or two subscripts are used if one or both of the remaining quarks are heavy.
  • Baryons with no
    u
    or
    d
    quarks are
    Ω
    's (I = 0), and subscripts indicate any heavy quark content.
  • Baryons that decay strongly have their masses as part of their names. For example, Σ0 does not decay strongly, but Δ++(1232) does.

It is also a widespread (but not universal) practice to follow some additional rules when distinguishing between some states which would otherwise have the same symbol.[8]

  • Baryons in total angular momentum J = 32 configuration which have the same symbols as their J = 12 counterparts are denoted by an asterisk ( * ).
  • Two baryons can be made of three different quarks in J = 12 configuration. In this case, a prime ( ′ ) is used to distinguish between them.
  • Exception: When two of the three quarks are one up and one down quark, one baryon is dubbed Λ while the other is dubbed Σ.

Quarks carry charge, so knowing the charge of a particle indirectly gives the quark content. For example, the rules above say that a
Ξ+
c
contains a c quark and some combination of two u and/or d quarks. The c quark as a charge of (Q = +23), therefore the other two must be a u quark (Q = +23), and a d quark (Q = −13) to have the correct total charge (Q = 1).

Template:List of baryons

See also

References

  1. ^ H. Muir (2003)
  2. ^ K. Carter (2003)
  3. ^ W.-M. Yao et al. (2006): Particle listings – Positive Theta
  4. ^ C. Amsler et al. (2008): Pentaquarks
  5. ^ W. Heisengberg (1932)
  6. ^ E. Wigner (1937)
  7. ^ M. Gell-Mann (1964)
  8. ^ a b c S.S.M. Wong (1998b)
  9. ^ R. Shankar (1994)
  10. ^ H. Garcilazo et al. (2007)
  11. ^ D.M. Manley (2005)
  12. ^ S.S.M. Wong (1998a)
  13. ^ C. Amsler et al. (2008): Naming scheme for hadrons

References

  • C. Amsler; et al. (2008). "Review of Particle Physics". Physics Letters. B667 (1). Particle Data Group: 1–1340. {{cite journal}}: Explicit use of et al. in: |author= (help)
  • H. Garcilazo, J. Vijande, A. Valcarce (2007). "Faddeev study of heavy-baryon spectroscopy". Journal of Physics G: Nuclear and Particle Physics. 34 (5): 961–976. doi:10.1088/0954-3899/34/5/014.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • V.M. Abazov et al. (2008). "Observation of the doubly strange b baryon Omega(b)" (PDF). {{cite journal}}: Cite journal requires |journal= (help)CS1 maint: numeric names: authors list (link)
  • K. Carter (2006). "The rise and fall of the pentaquark". Fermi National Accelerator Laboratory and Stanford Linear Accelerator Center. Retrieved 2008-05-27.
  • W.-M. Yao; et al. (2006). "Review of Particle Physics". Journal of Physics G. 33. Particle Data Group: 1–1232. doi:10.1088/0954-3899/33/1/001. {{cite journal}}: Explicit use of et al. in: |author= (help)
  • S.Robbins (2006). "Physics Particle Overview – Baryons". Journey Through the Galaxy. Retrieved 2008-04-20.
  • D.M. Manley (2005). "Status of baryon spectroscopy". Journal of Physics: Conference Series. 5: 230–237. doi:10.1088/1742-6596/9/1/043.
  • H. Muir (2003). "Pentaquark discovery confounds sceptics". New Scientist. Retrieved 2008-05-27.
  • S.S.M. Wong (1998a). "Chapter 3 – The Deuteron". Introductory Nuclear Physics (2nd ed.). New York (NY): John Wiley & Sons. pp. 57–104. ISBN 0-471-23973-9.
  • S.S.M. Wong (1998b). "Chapter 2 – Nucleon Structure". Introductory Nuclear Physics (2nd ed.). New York (NY): John Wiley & Sons. pp. 21–56. ISBN 0-471-23973-9.
  • R. Shankar (1994). Principles of Quantum Mechanics (2nd ed.). New York (NY): Plenum Press. ISBN 0-306-44790-8.
  • J.G. Körner, M. Krämer, and D. Pirjol (1994). "Heavy Baryons". Progress in Particle and Nuclear Physics. 33: 787–868. doi:10.1016/0146-6410(94)90053-1. arXiv:hep-ph/9406359.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • E. Wigner (1937). "On the Consequences of the Symmetry of the Nuclear Hamiltonian on the Spectroscopy of Nuclei". Physical Review. 51 (2): 106–119. doi:10.1103/PhysRev.51.106.
  • M. Gell-Mann (1964). "A Schematic of Baryons and Mesons". Physics Letters. 8 (3): 214–215. doi:10.1016/S0031-9163(64)92001-3.
  • W. Heisenberg (1932). "Über den Bau der Atomkerne I". Zeitschrift für Physik. 77: 1–11. doi:10.1007/BF01342433. Template:De icon
  • W. Heisenberg (1932). "Über den Bau der Atomkerne II". Zeitschrift für Physik. 78: 156–164. doi:10.1007/BF01337585. Template:De icon
  • W. Heisenberg (1932). "Über den Bau der Atomkerne III". Zeitschrift für Physik. 80: 587–596. doi:10.1007/BF01335696. Template:De icon

Further reading