Time crystal: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Increasing professional standards and preventing bias
Complete rewrite
Line 1: Line 1:
[[File:Time crystal phase transition.png|thumb|286x286px|Phase diagram of a discrete time crystal as function of [[Ising model|Ising interaction]] strength and [[Spin echo|spin-echo]] pulse imperfections. {{harv|Yao et al.|2017}}]]
A '''space-time crystal''', '''time crystal''', or '''four-dimensional crystal''', is a structure periodic in time and space. The term was founded by the scientist, David Wang. It extends the idea of a [[crystal]] to [[Spacetime|four dimensions]].<ref name="Yirka">{{cite web|last=Yirka|first=Bob|url=http://phys.org/news/2012-07-physics-team-actual-space-time-crystal.html |title=Physics team proposes a way to create an actual space-time crystal | work=Phys.org |date=9 July 2012|accessdate=15 July 2012}}</ref><ref name="Simons-20130425">{{cite web |last=Wolchover |first=Natalie |title=Perpetual Motion Test Could Amend Theory of Time |url=https://simonsfoundation.org/features/science-news/perpetual-motion-test-could-amend-theory-of-time/ |date=25 April 2013 |publisher=The Simons Foundation |accessdate=29 April 2013}}</ref> Analogues of the space-time crystal have been made that are in a non-equilibrium state that needs an external drive to repeat in time.<ref>{{cite web|title=Scientists unveil new form of matter: Time crystals|url=https://www.sciencedaily.com/releases/2017/01/170126120502.htm |website=www.sciencedaily.com|accessdate=28 January 2017}}</ref> They are a newly confirmed form of matter.
{{Condensed matter physics}}
A '''time crystal''' or '''space-time crystal''' is an open system in [[Non-equilibrium thermodynamics|non-equilibrium]] with its environment that exhibits '''time translation symmetry breaking''' (TTSB). It is impossible for a time crystal to be in equilibrium with its environment. The idea of a time crystal was first put forward by [[Nobel laureate]] and professor at [[MIT]] [[Frank Wilczek]] in 2012.{{efn|See {{harvp|Wilczek|2012}}{{sfn|Powell|2013}} and {{harvp|Shapere|Wilczek|2012}}{{sfn|Powell|2013}} }} Time crystals extend the ordinary three-dimensional symmetry seen in crystals to include the fourth dimension of time; a time crystal [[Spontaneous symmetry breaking|spontaneously breaks]] the symmetry of [[T-symmetry|time translation]]. The crystal's pattern repeats not in space, but in time, which remarkably allows for the crystal to be in [[perpetual motion]].{{sfnm|1a1=Cowen|1y=2012|2a1=Powell|2y=2013}} Time crystals are closely related to the concepts of [[zero-point energy]] and the [[Casimir effect|dynamical Casimir effect]]{{efn|See {{harvs|txt|last1=Chernodub|year1=2012|year2=2013a|year3=2013b}},{{sfn|Sacha|2015|p=1}} and {{harvp|Mendonça|Dodonov|2014}}{{sfn|Sacha|2015|p=1}} }}


In 2016 Norman Yao and his colleagues from the [[University of California, Berkeley]] put forward a concrete proposal that would allow time crystals to be created in a laboratory environment.{{efn|See {{harvp|Yao et al.|2017}}}{{sfnm|1a1=Richerme|1y=2017}} }} Yao's blueprint was then used by two teams, a group led by [[Christopher Monroe]] at the [[University of Maryland]]{{efn|name=Zhang}} and a group led by [[Mikhail Lukin]] at [[Harvard university]],{{efn|name=Choi|See {{harvp|Choi et al.|2016}}{{sfnm|1a1=Richerme|1y=2017|2a1=Wood|2y=2017|3a1=Ouellette|3y=2017}} }} who were both able to successfully create a time crystal. Both experiments have been accepted for publication in peer reviewed journals.{{sfn|Ouellette|2017}}
==Overview==
The idea was proposed by [[Frank Wilczek]] in 2012. His speculation was that a construct would have a group of particles that move and periodically return to their original state, perhaps moving in a circle, and form a time crystal. In order for this [[perpetual motion]] to work, the system must not radiate its rotational energy.<ref name="Kentucky">{{cite web|url=http://www.technologyreview.com/view/428334/how-to-build-a-space-time-crystal/|title=How to Build A Space-Time Crystal|last=Kentucky|first=FC|date=26 June 2012|work=Technology Review|publisher=MIT|accessdate=18 July 2012}}</ref> This type of motion is distinct from that of [[persistent current]]s in a [[superconductor]], wherein the rotating [[Cooper pairs]] are not time crystals because their wave functions are homogenous, meaning time translational symmetry isn't broken.<ref name="Li">{{cite journal|last1=Li|first1=Tongcang|last2=Gong|first2=Zhe-Xuan|last3=Yin|first3=Zhang-Qi|last4=Quan|first4=H. T.|last5=Yin|first5=Xiaobo|last6=Zhang|first6=Peng|last7=Duan|first7=L.-M.|last8=Zhang|first8=Xiang|display-authors=1|title=Space-Time Crystals of Trapped Ions|journal=[[Physical Review Letters]]|date=15 October 2012|volume=109|issue=16|page=163001|doi=10.1103/PhysRevLett.109.163001|arxiv=1206.4772|bibcode=2012PhRvL.109p3001L}}</ref> Symmetry would be spontaneously broken in Wilczek's ring system if its [[ground state]] still involves continuous movement.


Time crystals are thought to exhibit [[topological order]], an [[Emergence|emergent]] phenomena, in which nonlocal correlations encoded in the whole [[Quantum wave function|wave-function]] of a system allow for fault tolerance against perturbations, thus allowing quantum states to stabilize against [[Quantum decoherence|decoherence effects]] that usually limit their useful lifetime. Preventing decoherence has a wide range of implications: The efficiency of some [[information theory]] and [[quantum thermodynamic]] tasks can be greatly enhanced when using quantum correlated states. It is also that time crystals could also give deeper understanding of the [[Spacetime|theory of time]].
Tongcang Li and others proposed a system with [[beryllium]] ions circulating in a magnetic ion trap at about 10<sup>−9</sup>&nbsp;K.<ref name="Li"/> Wilczek also suggested that a computing device could be possible with different rotational states representing information, and maybe different kinds of ions. Since this construct is in the lowest energy state it could in principle survive the [[heat death of the universe]] and continue forever.<ref name="Aron">{{cite news |url=http://www.newscientist.com/article/dn22028-computer-that-could-outlive-the-universe-a-step-closer.html |title=Computer that could outlive the universe a step closer |last=Aron |first=Jacob |date=6 July 2012| work=New Scientist|accessdate=17 July 2012}}</ref>


==History==
In May 2013 researchers announced they will attempt to build a component of a space-time crystal by making a rotating ring of calcium ions. The positions of the atoms will be confined by electric field, and rotation in the ground state will be forced by a magnetic field. Unwanted disturbances will be minimized by reducing the temperature to 1&nbsp;μK by way of [[laser cooling]]. The ion trap will be 100&nbsp;μm wide. Possible rotation of the ion ring will be demonstrated by using a laser to electronically excite one of the trapped ions.<ref name="Hewitt">{{cite web|url=http://phys.org/news/2013-05-crystals-rotating-ion.html|title=Creating time crystals with a rotating ion ring|last=Hewitt|first=John|date=4 May 2013|accessdate=4 May 2013|website=phys.org}}</ref>
[[File:Frank Wilczek.jpg|thumb|[[Nobel laureate]] [[Frank Wilczek]] at [[University of Paris-Saclay]]]]
The idea of a time crystal was first put forward by [[Frank Wilczek]], a professor at [[MIT]] and [[Nobel laureate]], in 2012.{{efn|See {{harvp|Wilczek|2012}} and {{harvp|Shapere|Wilczek|2012}} }}


[https://de.wikipedia.org/wiki/Xiang_Zhang Xiang Zhang] a nanoengineer at [[University of California, Berkeley]] and his team proposed creating a time crystal in the form of a constantly rotating ring of charged ions.{{efn|See {{harvs|txt|last1=Li et al.|year1=2012a|year2=2012b}}{{sfn|Wolchover|2013}} }}
Patrick Bruno has criticized this concept, arguing that Wilczek's rotating state is not the ground state of the system. He derives the supposed true, non-rotating ground state.<ref>{{cite journal|last=Bruno|first=Patrick|title=Comment on ‘‘Quantum Time Crystals’’|journal=Physical Review Letters|date=March 2013|volume=110|issue=11|page=118901|doi=10.1103/PhysRevLett.110.118901|url=http://prl.aps.org/abstract/PRL/v110/i11/e118901|accessdate=28 April 2013|bibcode = 2013PhRvL.110k8901B|pmid=25166585}}</ref> In August 2013 Bruno presented arguments that indicated rotating ground-state systems are impossible.<ref>{{cite journal|last=Bruno|first=Patrick|title=Impossibility of Spontaneously Rotating Time Crystals: A No-Go Theorem|journal=Phys. Rev. Lett.|date=August 2013|volume=111|issue=7|page=070402|doi=10.1103/PhysRevLett.111.070402|url=http://prl.aps.org/abstract/PRL/v111/i7/e070402|accessdate=26 November 2013|arxiv = 1306.6275 |bibcode = 2013PhRvL.111g0402B }}</ref>


In response to Wilczek and Zhang, Patrick Bruno, a theorist at the [[European Synchrotron Radiation Facility]] in [[Grenoble, France]], published several papers claiming to show that time crystals were impossible.{{efn|See {{harvp|Bruno|2013a}}{{sfnm|1a1=Else et al.|1y=2016|1p=1|2a1=Watanabe|2a2=Oshikawa|2y=2015|2p=1|3a1=Wilczek|3y=2013a|4a1=Sacha|4y=2015|4p=1}} and {{harvp|Bruno|2013b}}{{sfnm|1a1=Else et al.|1y=2016|1p=1|2a1=Watanabe|2a2=Oshikawa|2y=2015|2p=1|3a1=Wilczek|3y=2013a|4a1=Sacha|4y=2015|4p=1}} }}{{sfn|Thomas|2013}}
Haruki Watanabe and Masaki Oshikawa formalized the definition of space-time crystals, extending it from a ground state-only phenomenon to also include states in thermal equilibrium. The definition used the correlation of the local order parameter at different points in space and time. This correlation in a time crystal shows a periodic oscillation as a function of time difference even as volume is increased to infinity. Next they claimed to show that time translation symmetry cannot be broken, thereby proving that time crystals do not exist. With the extension of the definition to crystals with a finite temperature, the [[Lieb-Robinson bound]] is used to show that for small enough time intervals the correlation over a time difference has an upper bound that tends to 0 as the volume increases.<ref>{{cite web|url=http://phys.org/news/2015-07-physicists-definition-crystalsthen-dont.html|title=Physicists propose new definition of time crystals—then prove such things don't exist|date=9 July 2015|first=Lisa |last=Zyga|website=phys.org}}</ref><ref>{{cite journal|last1=Watanabe|first1=Haruki|last2=Oshikawa|first2=Masaki|title=Absence of Quantum Time Crystals|journal=Physical Review Letters|date=24 June 2015|volume=114|issue=25|pages=251603|doi=10.1103/PhysRevLett.114.251603|pmid=26197119|arxiv = 1410.2143 |bibcode = 2015PhRvL.114y1603W }}</ref>


Subsequent work developed more precise definitions of time translation symmetry breaking (TTSB) {{efn|See {{harvp|Nozières|2013}}{{sfn|Yao et al.|2017|p=1}} and {{harvp|Volovik|2013}}{{sfn|Yao et al.|2017|p=1}} }} which ultimately led to a proof that quantum time crystals in equilibrium are not possible.{{efn|See {{harvp|Watanabe|Oshikawa|2015}}{{sfn|Yao et al.|2017|p=1}} }}
A similar idea called a '''choreographic crystal''' has been proposed .<ref>{{cite journal|last1=Boyle|first1=Latham|last2=Khoo|first2=Jun Yong|last3=Smith|first3=Kendrick|title=Symmetric Satellite Swarms and Choreographic Crystals|journal=Physical Review Letters|date=8 January 2016|volume=116|issue=1|pages=015503|doi=10.1103/PhysRevLett.116.015503|pmid=26799028|arxiv=1407.5876|bibcode = 2016PhRvL.116a5503B }}</ref>


Several realizations of time crystals, which avoid the equilibrium no-go arguments, were proposed.{{efn|See {{harvp|Wilczek|2013b}}{{sfn|Watanabe|Oshikawa|2015|p=1}} and {{harvp|Yoshii et al.|2015}}{{sfn|Watanabe|Oshikawa|2015|p=1}} }}
In March 2016 researchers Else, Bauer and Nayak proposed that a non-equilibrium driven system called a "Floquet-many-body-localized driven system" could have broken time symmetry.<ref>{{cite journal|last1=Else|first1=Dominic V.|last2=Bauer|first2=Bela|last3=Nayak|first3=Chetan|title=Floquet Time Crystals|journal=Physical Review Letters|date=25 August 2016|volume=117|issue=9|pages=090402|doi=10.1103/PhysRevLett.117.090402|pmid=27610834|arxiv=1603.08001|bibcode=2016PhRvL.117i0402E}}</ref>


The no-go theorem leaves the door open to TTSB in an non-equilibrium system, and pioneering work{{efn|See {{harvp|Khemani et al.|2016}}{{sfn|Yao et al.|2017|p=1}} and {{harvp|Else et al.|2016}}{{sfn|Yao et al.|2017|p=1}} }} has demonstrated that quantum systems subject to periodic driving can indeed exhibit discrete TTSB.
== Experimental discrete space-time crystals==
In October 2016, researchers at the [[University of Maryland, College Park]], claimed to have created the world's first '''discrete time crystal'''.<ref>{{Cite journal|url=https://www.technologyreview.com/s/602541/physicists-create-worlds-first-time-crystal/|title= Physicists Create World’s First Time Crystal|journal=MIT Technology Review |date=2016-10-04}}</ref> Using the idea from the March proposal, they trapped a chain of [[Ytterbium-171|<sup>171</sup>Yb<sup>+</sup>]] ([[ytterbium]]) ions in a [[Paul trap]], confined by radio frequency electromagnetic fields. One of the two [[Spin quantum number|spin states]] was selected by a pair of laser beams. The lasers were pulsed, with the shape of the pulse controlled by an [[acousto-optic modulator]] using the [[Tukey window]] to avoid too much energy at the wrong optical frequency. The [[hyperfine]] electron states are called <sup>2</sup>S<sub>1/2</sub> |F=0, m<sub>F</sub> = 0⟩ and |F = 1, m<sub>F</sub> = 0⟩. The different energy levels of these are very close, separated by 12.642831&nbsp;GHz. Ten [[Doppler cooling|Doppler cooled]] ions were used in a line 0.025&nbsp;mm long. The ions were coupled together. The researchers observed a subharmonic oscillation of the drive. The experiment also showed "rigidity" of the time crystal, where the oscillation frequency remained unchanged even when the time crystal was perturbed. However, if the perturbation drive was too great, the time crystal "melted" and lost its oscillation.<ref>{{cite journal|arxiv=1609.08684v1|authors=J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I.-D. Potirniche, A. C. Potter, A. Vishwanath, N. Y. Yao, and C. Monroe|date=27 September 2016|title=Observation of a Discrete Time Crystal|volume=1609|pages=arXiv:1609.08684|bibcode=2016arXiv160908684Z}}</ref>


[https://pl.wikipedia.org/wiki/Jakub_Zakrzewski_(fizyk) Jakub Zakrzewski] and his team at [[Jagiellonian University]] in [[Krakow, Poland]] have attempted to predict the behaviour of time crystals with numerical simulations.{{efn|See {{harvp|Sacha|2015}}{{sfn|Thomas|2013}} }}
Mikhail Lukin led a group at Harvard University who also replicated to creation of a driven time crystal.<ref>{{cite web|last1=Richerme|first1=Phil|title=Viewpoint: How to Create a Time Crystal|url=http://physics.aps.org/articles/v10/5#c9|website=Physics|date=18 January 2017}}</ref><ref>{{cite journal|last1=Yao|first1=N. Y.|last2=Potter|first2=A. C.|last3=Potirniche|first3=I.-D.|last4=Vishwanath|first4=A.|title=Discrete Time Crystals: Rigidity, Criticality, and Realizations|journal=Physical Review Letters|date=18 January 2017|volume=118|issue=3|doi=10.1103/PhysRevLett.118.030401}}{{open access}}</ref> The group used [[black diamond]] dipolar spin impurities and observed [[sub-harmonic]]s of the drive frequency.<ref name=choi>{{cite journal|last1=Soonwon|first1=Choi,|last2=Joonhee|first2=Choi,|last3=Renate|first3=Landig,|last4=Georg|first4=Kucsko,|last5=Hengyun|first5=Zhou,|last6=Junichi|first6=Isoya,|last7=Fedor|first7=Jelezko,|last8=Shinobu|first8=Onoda,|last9=Hitoshi|first9=Sumiya,|last10=Vedika|first10=Khemani,|last11=Curt|first11=von Keyserlingk,|last12=Y.|first12=Yao, Norman|last13=Eugene|first13=Demler,|last14=D.|first14=Lukin, Mikhail|title=Observation of discrete time-crystalline order in a disordered dipolar many-body system|date=25 October 2016|url=https://arxiv.org/abs/1610.08057|language=en}}</ref> Nitrogen vacancies in the diamond exposed to a magnetic field provide sites to store information in the form of spin direction. The diamond is exposed to a green laser and simultaneously to alternating pulses of radiowaves polarized perpendicular to each other. When the spin state is read out it is modulated at a one half frequency of the drive. The oscillations persist for over 100 cycles.<ref name=choi/>

Using Wilczek's idea, Norman Yao and his colleagues from the [[University of California, Berkeley]] studied a different model that would allow the existence of time crystals.{{efn|See {{harvp|Yao et al.|2017}}}{{sfnm|1a1=Richerme|1y=2017}} }}

Yao's blueprint was then used by two teams: a group led by [[Mikhail Lukin]] at [[Harvard university]]{{efn|See {{harvp|Choi et al.|2016}}{{sfnm|1a1=Richerme|1y=2017|2a1=Wood|2y=2017|3a1=Ouellette|3y=2017}} }} and a group led by [[Christopher Monroe]] at [[University of Maryland]]{{efn|name=Zhang|See {{harvp|Zhang et al.|2016}}{{sfnm|1a1=Richerme|1y=2017|2a1=Wood|2y=2017|3a1=Ouellette|3y=2017}} }} both of whom were able to independantly create a time crystal successfully.{{sfn|Ouellette|2017}}

==Time translation symmetry==
===Symmetry===
{{main article|Symmetry (physics)}}
[[Symmetry (physics)|Symmetries]] are of prime importance in physics and are closely related to the hypothesis that certain physical quantities are only relative and [[unobservable]].{{sfn|Feng|Jin|2005|p=18}} Symmetries apply to the equations that govern the physical laws rather then the initial conditions or ts themselves and state that the laws remain unchanged under a ''transformation''.{{sfn|Wilczek|2015|loc=chpt. 3}} If a symmetry is preserved under a transformation it is said to be ''invariant''. Symmetries in nature lead directly to conservation laws, something which is precisely formulated by the [[Noether theorem]].{{sfn|Cao|2004|p=151}}

{| class="wikitable" style="text-align: center;
|+ Symmetries in condensed matter physics{{sfn|Feng|Jin|2005|p=18}}
! Symmetry
! Transformation
! Unobservable
! Conservation law
|-
! Space-translation
|| <math>\mathbf{r} \rightarrow \mathbf{r} + \Delta</math> || absolute position in space|| momentum
|-
! Time-translation
|| <math>t \rightarrow t + \tau</math> || absolute time || energy
|-
! Rotation
|| <math>\mathbf{r} \rightarrow \mathbf{r}'</math> || absolute direction in space || angular momentum
|-
! Space inversion
|| <math>\mathbf{r} \rightarrow - \mathbf{r}</math> || absolute left or right || parity
|-
! Time-reversal
|| <math>t \rightarrow - t </math> || absolute sign of time || Krammers degeneracy
|-
! Sign reversion of charge
|| <math>e \rightarrow - e</math>|| absolute sign of electric charge || charge conjugation
|-
! Particle substitution
|| || distinguishability of identical particles || Bose or Fermi statistics
|-
! Gauge transformation
|| <math>\psi \rightarrow e^{iN\theta}\psi</math> || relative phase between different normal states || particle number
|}

The basic idea of ''time-translation symmetry'' is that a translation in time has no effect on physical laws, that the laws of nature that apply today were the same in the past and will be the same in the future.{{sfn|Wilczek|2015|loc=chpt. 3}} For example if we measure the energy levels of hydrogen today, tomorrow or in ten years it makes no difference - we will always observe the same energy. Moreover, when we look at distant stars we are really looking back in time, so the fact that the energy levels of hydrogen are the same in all stars we ever looked at tells us something about the symmetry of both space and time. Invariance of time-translation implies absolute time is unobservable and a direct consequence is the [[conservation of energy]].{{sfn|Feng|Jin|2005|p=18}} A violation in time-translation symmetry means that under certain conditions or select cases energy is not a conserved quantity and that laws of nature themselves are variable with time.

===Broken symmetry===
{{main article|Symmetry breaking}}
For a long time physicists believed that symmetries in the laws nature were absolute, but deviations do occur. In 1957 scientists confirmed experimentally{{efn|See [[Wu experiment]]}} a broken symmetry in space inversion (a right-left asymmetry) in [[weak interactions]] and that therefore parity was not a conserved quantity (known as a P violation). This lead to the 1957 [[Nobel Prize in physics]] being awarded to [[Tsung-Dao Lee]] and [[Chen-Ning Yang]] who had put forward the original idea in 1956. It was also established in 1957 that there was not only a right-left asymmetries but also asymmetries between the positive and negative signs of electric charge (a charge conjugation or C violation). At around the same time questions of possible asymmetries under time-reversal T and CP violations (the product of C and P transformations) were also raised, though actual experimental confirmation did not come until quite a few years later.{{sfn|Lee|1981|pp=183-184}}

A consequence of these asymmetries in nature is that it is therefore possible to determine an absolute left or right, absolute charge or absolute direction of time in the universe; such terms are not merely ''relative'' or a subjective naming convention.{{sfn|Aitchison|1981|p=540}} If two advanced civilisations were separated on different sides of the universe with no possiblity of physical contact but could somehow send signals to communicate with each other, they would be able to convey the results of experiments that will lead them to agree on the definitions of what direction is left and right, whether they are made of particle or antiparticles and whether time was flowing in the same direction.{{sfn|Lee|1981|pp=184-187}}{{efn|While violations of C, P, T, CP, PT, TC exist it is thought that the product of these transformations CPT is always invariant.{{sfn|Lee|1981|pp=188}} The [[CPT theorem]] says that CPT symmetry holds for all physical phenomena. Thus an experiment that measures a violation of CP might infer a corresponding violation under time-reversal T in order to maintain CPT invariance. Only recently was a violation of time-reversal T symmetry directly observed {{harv|Lees et al.|2012}}.{{sfnm|1a1=Rao|1y=2012|2a1=Zeller|2y=2012}} Even with time-reversal asymmetry, CPT invariance still remain valid however.{{sfn|Zeller|2012}} }}

===Broken symmetry in normal crystals===
{{main article|Crystal symmetry|Spontaneous symmetry breaking}}
[[Image:Phonon nu process.png|thumb|right|250px|Figure 2. Normal process (N-process) and Umklapp process (U-process). While the N-process conserves total phonon momentum, the U-process changes phonon momentum.]] Different states of matter can be classified by the symmetries they spontaneously break. In a magnet, for example, spins are limited to a few possible orientations along a common direction chosen spontaneously from ones of less orientation but greater freedom and symmetry; thus a ferromagnet breaks symmetry as this process occurs. Normal crystals exhibit ''broken translation symmetry''. For example, a gas is said to have ''translational symmetry'' as its atoms can move freely to occupy any point in a given area. A crystal by contrast does not have the same degree of symmetry; only certain spacial points are permitted and there is a requirement that the atoms have a particular structure or order. If a gas cools to form a crystal the symmetry is said to be ''continuously broken'' as the crystal gains order.

Since crystals are not invariant under arbitrary translations, strictly speaking, momentum is not conserved. No strict conservation law can be applied but a discrete translation symmetry may sometimes be achieved. The crystal momentum is called [[quasimomentum]]{{sfn|Sólyom|2007|p=191}} which determines the crystals [[Bloch state]] and is the cause of [[Umklapp process|Umklapp processes]].{{sfn|Sólyom|2007|p=193}} This technical violation of the conservation of momentum is important in establishing some of the properties of crystals, for example thermal conductivity of crystals cannot be understood without taking into consideration Umklapp proccesses.{{sfn|Sólyom|2007|p=194}} The violation in the conservation of momentum can be accounted for as a transfer to the vacuum state (i.e the [[zero-point field]]).{{sfn|Wilczek|2012|p=4}}

===Quasienergy===
Ordinary crystals break spatial translational symmetries leading to repeated spacial patterns, time crystals spontaneously break ''time-translation symmetry'' (TTS) and have repeated patterns in time. Fields or particles in the presence of a time crystal background will appear to violate the conservation of energy, analogous to the apparent violation of the conservation of momentum in crystalline Umklapp processes. In either case the apparent non-conservation is in reality a transfer to the vacuum field (i.e. [[Zero-point energy|zero-point field]]).{{sfn|Wilczek|2012|p=4}} The term ''quasienergy'' has been coined to explain some of the predicted properties of time crystals.

==Topological order==
Time crystals are thought to exhibit [[topological order]], an [[Emergence|emergent]] phenomena, in which nonlocal correlations encoded in the whole [[Quantum wave function|wave-function]] of the system allow for fault tolerance against perturbations, thus allowing quantum states to stabilize against [[Quantum decoherence|decoherence effects]] that usually limit their useful lifetime.

===Topological states===
Albert Einstein insisted that all fundamental laws of nature could be understood in terms of geometry and symmetry.{{sfn|Qi|Zhang|2010|p=38}} Before 1980 all states of matter could be classified by the principle of broken symmetry. The [[Quantum Hall effect|quantum Hall state]] provided the first example of a quantum state that had no spontaneously broken symmetry. Its behaviour depends only on its [[topology]] and not its specific [[geometry]]. The quantum Hall effect earned von Klitzing the Nobel Prize in Physics for 1985 and though it was not understood at the time, the quantum Hall effect is an example of [[Topological order]].{{efn|See {{harvp|von Klitzing et al.|1980}}{{sfn|Qi|Zhang|2010|p=33}} }}. Topological order violates the long-held belief that ordering requires symmetry breaking. Fundamental laws can be studied under the context of [[topological field theory]].

Recently a new class of topological states has emerged called [[Quantum spin Hall effect|quantum spin Hall (QSH) states]] or [[topological insulators]]. Inside a topological insulator Maxwell's [[Maxwell's equations|equations of electromagnetism]] are dramatically altered to include an extra topological terms which gives rise to novel new physics.{{sfn|Qi|Zhang|2010|p=33}} A [[dipole]] such as an [[electron]] above the surface of a topological insulator induces an emergent [[quasi-particle]] image [[magnetic monopole]], known as a [[dyon]], which is a composite of electric and magnetic charges.{{efn|See {{harvp|Ray et al.|2014}}{{sfnm|1a1=Amherst College|1y=2014|2a1=Morgan|2y=2014}} and {{harvp|Ray et al.|2015}}{{sfn|Aalto University|2015}} }} This new particle obeys neither [[Bose statistics|Bose]] nor [[Fermi statistics]] but behave like a so called [[anyon]] named as such because it is governed by with "any possible" statistics. When a superconducter is close to the surface of a topological insulator, [[Majorana fermion|Majorana fermions]] occur inside vortices.{{efn|See {{harvp|Nadi-Perge et al.|2014}}{{sfn|Moskowitz|2014}} }} These particles are governed by [[Anyon#Non-abelian anyons|non-abelian statistics]]{{efn|See {{harvp|Willett et al.|2013}}{{sfn|Wolchover|2014}} }} and could have radical applications in a new form of electronics called [[spintronics]] and [[topological quantum computer|topological quantum computers]].{{sfn|Qi|Zhang|2010|p=38}} Non-local effects analogous to the [[Aharonov Bohm effect]] have been observed in topological insulators, and certain conditions are expected to give rise to the ability of Majorana fermions to [[Teleportation|teleport]], a test of which has been proposed.{{efn|See {{harvp|Peng et al.|2009}}{{sfn|Hasan|Kane|2010|p=19}} and {{harvp|Fu|2010}}{{sfn|Hasan|Kane|2010|p=19}} }}

===Floquent topological states===
Floquent topological states combine ideas from [[photonics]] and [[condensed matter physics]]. A system that is driven by a periodic external field shows a discrete time-translation symmetry. In the framework of the [[Floquet theory]] the concepts of ''quasienergy'' and ''Floquet states''{{efn|See {{harvp|Shirley|1965}}{{sfn|Grifoni|Hänggi|1998|pp=233-234, 241}} and {{harvp|Zel'Dovich|1967}}{{sfn|Grifoni|Hänggi|1998|p=237}} }} were introduced to account for this time periodicity: the term quasienergy reflects the formal analogy with the quasimomentum characterizing the [[Bloch wave|Bloch eigenstates]] in a periodic solid.{{efn|See {{harvp|Grifoni|Hänggi|1998}}{{sfn|Guo et al.|2013|p=1}} for a review of Floquet theory}} Recently it has been shown that the topological properties can be "tuned" by applying a time-dependant electromagnetic field.{{efn|See {{harvp|Wang et al.|2013}}{{sfn|Chandler|2014}} }} For example when microwaves periodically drive a crystalline material (i.e. a combined spacial and time periodicity) it may become a Floquet topological insulator. The crystal's quasienergy spectrum causes the emergence of new forms of topological order. It is hoped that many topological properties may be transmuted into the material at will simply by using low energy electromagnetic fields, acting like a topological switch.{{efn|See {{harvp|Lindner et al.|2011}},{{sfn|Joint Quantum Institute|2011}} }}{{sfn|Joint Quantum Institute|2011}}

===Floquent time crystals===
Time crystals can extend the idea of Floquet topological insulators still further, by enabling entirely new non-equilibrium dynamical phases. These dynamical phases are characterised by properties forbidden in the thermal equilibrium, such as spontaneous time-translation symmetry breaking or dynamical topological order. The latter opens the door to a new realm of quantum topological phenomena, which has only barely begun to be explored.

===Fault-tolerance against decoherence===
Preventing decoherence via topological order has a wide range of implications: The efficiency of some computing and [[Quantum information theory|information theory]] tasks can be greatly enhanced when using [[Quantum correlation|quantum correlated]] states; quantum correlations are an equally valuable resource in the realm of [[quantum thermodynamics]]{{sfn|Dillenschneider|Lutz|2009|p=6}} New types of quantum devices in non-equilibrium states function very differently to their classical counterparts: For example, it has been theoretically shown that non-equilibrium quantum ratchet systems function far more efficiently then that predicted by classical thermodynamics.{{efn|See for example {{harvp|Yukawa et al.|1997}}, {{harvp|Reimann et al.|1997}}, {{harvp|Tatara et al.|1998}}{{sfn|Yukawa|2000|p=1}} }} It has also been shown that [[quantum coherence]] can be used to enhance the efficiency of systems beyond the classical [[Carnot's theorem (thermodynamics)|Carnot limit]]. This is because it could be possible to extract work, in the form of photons, from a single heat bath. Quantum coherence can be used in effect to play the role of [[Maxwell's demon]]{{sfn|Maruyama et al.|2009|p=20}} allowing a hypothetical bypassing of the second law of thermodynamics{{efn|See for example {{harvp|Scully|2001}},{{sfnm|1a1=Horodecki et al.|1y=2009|1p=80|2a1=Maruyama et al.|2y=2009|2p=20}} {{harvp|Scully et al.|2003}},{{sfn|Maruyama et al.|2009|p=20}} {{harvp|Dillenschneider|Lutz|2009}},{{sfn|Modi et al.|2012|p=43}} {{harvp|Roßnagel et al.|2014}},{{Sfnm|1a1=Johannes Gutenberg Universitaet Mainz|1y=2014|2a1=Zyga|2y=2014}} and {{harvp|Roßnagel et al.|2016}}{{sfn|Cartlidge|2015}} }}{{sfn|Dillenschneider|Lutz|2009|pp=5-6}}

==Thermodynamics==
===Compatibility with the laws of thermodynamics===
[[File:Qualitative explanation of time translation symmetry breaking.png|thumb|286x286px|Figure 1: We can imagine a situation where a permanently rotating object can be either (a) spontaneous or (b) explicit. In normal situations we must do work to cause an object to rotate; in (a) we must do work to cause the object to stop rotating. {{harv|Chernodub|2012}}]]

A time crystal is a driven (i.e. open) [[Open quantum system|quantum system]] that is in perpetual motion, it does not violate the laws of thermodynamics:{{sfn|Chernodub|2013b|p=2, 13}}

*A time crystal does not produce work as it rotates in its ground state, energy is conserved so that the first law of thermodynamics is not violated. (otherwise such a device would be a perpetuum mobile of the first kind).

*A time crystal does not spontaneously convert thermal energy into mechanical work so that the second law of thermodynamics is not violated. (otherwise such a device would be a perpetuum mobile of the second kind).

*A time crystal cannot serve as a perpetual store of work, so that the third law of thermodynamics is not violated (otherwise the device would be a perpetuum mobile of the third kind).

A time crystal has been said to be a perpetuum mobile of the fourth kind: it does not produce work and it cannot serve as a perpetual energy storage. But it rotates perpetually.{{sfn|Chernodub|2013a|p=10}}

===Zero point energy===
{{main article|zero-point energy}}
[[File:Zero-point energy of harmonic oscillator.svg|thumb|286x286px|left|Zero-point [[radiation]] continually imparts random impulses on an [[electron]], so that it never comes to a complete stop. Zero-point radiation gives the [[Harmonic oscillator|oscillator]] an average energy equal to the [[Frequency|frequency of oscillation]] multiplied by one-half of [[Planck constant|Planck's constant]] <math>\tfrac{1}{2}\hbar \omega</math>]]
Time crystals are closely related to concepts of [[zero-point energy]] and the [[Casimir effect|dynamical Casimir effect]]{{efn|See {{harvs|txt|last1=Chernodub|year1=2012|year2=2013a|year3=2013b}},{{sfn|Sacha|2015|p=1}} and {{harvp|Mendonça|Dodonov|2014}}{{sfn|Sacha|2015|p=1}} }} As temperature is reduced to [[absolute zero]], it might be thought that all motion ceases and particles come completely to rest. In fact, however, kinetic energy is retained by particles even at the lowest possible temperature. The random fluctuation corresponding to this [[zero-point energy]] never vanishes as a consequence of the [[uncertainty principle]] of [[quantum mechanics]].{{sfn|Milonni|1994|pp=36-38}} According to modern physics (i.e. [[quantum field theory]]) the universe is made up of matter fields whose [[Quantum|quanta]] are [[fermions]] (i.e. [[lepton]]s and [[quark]]s) and force fields, whose quanta are [[boson]]s (e.g. [[photon]]s and [[gluon]]s). All these fields have [[zero-point energy]].{{sfn|Milonni|1994|p=35}} The predicted zero-point energy contained in the vacuum is very large: physicists [[John Archibald Wheeler|John Wheeler]] and [[Richard Feynman]] calculated that there is enough energy in the vacuum inside a single light bulb to boil all the world's oceans.{{sfn|Pilkington|2003}}

Zero-point energy has many observed physical consequences such as [[spontaneous emission]], [[Casimir force]], [[Lamb shift]] and the [[Electron magnetic moment|magnetic moment of the electron]].{{sfn|Milonni|1994|p=111}}{{efn|There is a long debate{{efn|See for example {{harvp|Enz|1974}} }} over the question of whether zero-point fluctuations of quantized vacuum fields are “real” i.e. do they have physical effects that cannot be interpreted by an equally valid alternative theory? In [[quantum electrodynamics]] (QED) zero-point energy is frequently assumed to be a constant (c-number) of no physical significance as the field is in ''equilibrium''.{{efn|In QED it is argued the entire universe is completed bathed in the zero-point electromagnetic field, and as such it can only add some constant amount to measurement values. Physical measurements will therefore reveal only deviations from this constant vacuum state. It is argued that the zero-point energy is a c-number (i.e. constant) and therefore has no physical effect.{{sfn|Milonni|1994|pp=42-43}} It is declared by fiat that the ground state has zero energy. The zero-point energy can be dropped from the Hamiltonian by redefining the zero of energy and by stating that it has no effect on the Heisenberg equations of motion:{{sfn|Itzykson|Zuber|1980|p=111}}

:<math>
: H_F - \langle 0|H_F|0\rangle =\frac{1}{2} \hbar \omega \big(a a^\dagger + a^\dagger a\big)-\frac{1}{2}\hbar \omega = \hbar \omega a a^\dagger
</math>

The new Hamiltonian is said to be [[Normal order|normally ordered]] (or Wick ordered) and is denoted by a double-dot symbol. The normally ordered Hamiltonian is denoted :<math>H_F</math>:, i.e.:

:<math>
:H_F : \equiv \hbar \omega \big(a a^\dagger + a^\dagger a\big) : \equiv \hbar \omega a a^\dagger
</math>

However, when we do this and solve the Heisenberg equation for a field operator, we must include the vacuum field, which is the homogeneous part of the solution for the field operator. It can be shown that the vacuum field is essential for the preservation of the commutators and the formal consistency of the theory {{harv|Milonni|1994}}. When the field energy is calculated a contribution from from the vacuum field is always present (i.e. the zero-point field energy). In other words, the zero-point field energy "reappears" even though it may have deleted it from the Hamiltonian via Wick ordering.{{sfn|Milonni|1994|p=73}}}} [[Julian Schwinger]], in particular, attempted to formulate QED without reference to zero-point fluctuations via his "source theory".{{efn|See {{harvs|txt|last1=Schwinger|year1=1998a|year2=1998b|year3=1998c}} }} From such an approach it is possible to derive the Casimir effect without reference to a fluctuating zero-point field.{{efn|Such a derivation was first given by {{harvp|Schwinger|1975}} for a scalar field, and then generalised to the electromagnetic case by {{harvp|Schwinger et al.|1978}} in which they state "the vacuum is regarded as truly a state with all physical properties equal to zero". More recently {{harvp|Jaffe|2005}} has highlighted a similar approach in deriving the Casimir effect stating "the concept of zero-point fluctuations is a heuristic and calculational aid in the description of the Casimir effect, but not a necessity in QED."}} While the efforts of Schwinger and others have identified the difficultly in judging the physical reality of infinite zero-point energies that are inherent in field theories, no one has shown that source theory or another [[S-matrix]] based approach can provide a complete description of QED to all orders{{sfn|Jaffe|2005|p=7}} and the zero-point field can be shown to be an essential requirement to preserve the formal consistency of QED.{{Sfn|Milonni|1994|p=48}} zero-point energies and all they entail would seem to be a necessity for any attempt at any [[grand unified theory]] of physics: They give an explanation as to how [[spontaneous symmetry breaking]] occurs at all levels of the [[standard model]]{{sfn|Jaffe|2005|p=7}} and modern physics does not know any way to construct gauge-invariant, renormalizable theories without zero-point energy.{{sfn|Greiner et al.|2012|p=20}} }} According to the [[fluctuation-dissipation theorem]], fluctuations and dissipation go hand in hand; we cannot have one without the other, and the vacuum therefore dissipates energy. It is relatively easy to show that zero-point motion of a particle is in fact sustained by the driving zero-point field, or [[vacuum state]].{{efn|See {{harvp|Senitzky|1960}}{{sfn|Milonni|1994|p=54}} }}{{sfn|Milonni|1994|p=54}} [[Zero-point energy]] may even be the cause of [[dark energy]] and the current acceleration of the universe, though this idea has been disputed.{{efn|See for example {{harvp|Beck|Mackey|2005}}{{sfnm|1a1=Ball|1y=2004|2a1=Copeland et al.|2y=2006|2p=20}} arguing for and {{harvp|Jetzer|Straumann|2006}}{{sfn|Copeland et al.|2006|p=20}} arguing against. }}

The zero-point field is reminiscent of the discredited [[aether theory]] prevalent before the advent of [[Einstein|Einstein's]] [[Theory of relativity|relativity]], all broken symmetries can be attributed to the influence of this all pervading vacuum state.{{sfn|Lee|1981|pp=378-381}} If we imagine the entire universe was immersed in a vast magnet, the presence of this magnet might cause the background to be (In the words of [[Wolfgang Pauli]]) "weakly left handed" i.e. it might cause a preference of left over right and account for the broken symmetry we observe; the idea of a complex vacuum state that has a rich structure to account for all broken symmetries in nature is in the same spirit of this idea.{{sfn|Aitchison|1981|p=541}}

===No-go theorem in equilibrium===
There is a proof that quantum time crystals in thermal equilibrium are not possible.{{efn|See {{harvp|Watanabe|Oshikawa|2015}}{{sfn|Yao et al.|2017|p=1}} }}

===Non-equilibrium systems===
Non-equilibrium quantum fluctuations have been studied for some time{{efn|See for example {{harvp|Yukawa|2000}}{{sfnm|1a1=Esposito et al.|1y=2009|1p=2|2a1=Jarzynski|2y=2011|2p=348|3a1=Campisi et al.|3y=2011|3p=8}} and {{harvp|Mukamel|2003}}{{sfnm|1a1=Esposito et al.|1y=2009|1p=2, 8|2a1=Jarzynski|2y=2011|2p=348|3a1=Campisi et al.|3y=2011|3p=13}} }} and the past few years have seen a surge of interest in this topic. A comprehensive definition of energy and work in these contexts is yet to be formulated and an open area of research.{{efn|name=quantum|See {{harvp|Esposito et al.|2009}} and {{harvp|Campisi et al.|2011}} for academic review articles on non-equilibrium quantum fluctuations{{sfn|Seifert|2012|p=9}} }}

==Experiments==

===University of Maryland===
In October 2016, researchers at the [[University of Maryland, College Park]], claimed to have created the world's first discrete time crystal. Using the idea from the March proposal, they trapped a chain of [[Ytterbium-171|<sup>171</sup>Yb<sup>+</sup>]] ([[ytterbium]]) ions in a [[Paul trap]], confined by radio frequency electromagnetic fields. One of the two [[Spin quantum number|spin states]] was selected by a pair of laser beams. The lasers were pulsed, with the shape of the pulse controlled by an [[acousto-optic modulator]] using the [[Tukey window]] to avoid too much energy at the wrong optical frequency. The [[hyperfine]] electron states are called <sup>2</sup>S<sub>1/2</sub> |F=0, m<sub>F</sub> = 0⟩ and |F = 1, m<sub>F</sub> = 0⟩. The different energy levels of these are very close, separated by 12.642831&nbsp;GHz. Ten [[Doppler cooling|Doppler cooled]] ions were used in a line 0.025&nbsp;mm long. The ions were coupled together. The researchers observed a subharmonic oscillation of the drive. The experiment also showed "rigidity" of the time crystal, where the oscillation frequency remained unchanged even when the time crystal was perturbed. However, if the perturbation drive was too great, the time crystal "melted" and lost its oscillation.{{efn|name=Zhang}}

===Harvard University===
Mikhail Lukin led a group at Harvard University who also replicated to creation of a driven time crystal. The group used [[black diamond]] dipolar spin impurities and observed [[sub-harmonic]]s of the drive frequency. Nitrogen vacancies in the diamond exposed to a magnetic field provide sites to store information in the form of spin direction. The diamond is exposed to a green laser and simultaneously to alternating pulses of radiowaves polarized perpendicular to each other. When the spin state is read out it is modulated at a one half frequency of the drive. The oscillations persist for over 100 cycles.{{efn|name=Choi}}

==Related Concepts==

===Choreographic Crystals===
A similar idea called a choreographic crystal has been proposed.{{efn|See {{harvp|Boyle et al.|2016}}{{sfnm|1a1=Ball|1y=2016|2a1=Johnston|2y=2016|3a1=Hackett|3y=2016}} }}

===Dynamical Casimir effect===
Time Crystals are closely related to the dynamical [[Casimir effect]] or [[Unruh effect]]. These effects are basically an instability of the quantum vacuum, which leads to an exponential growth of emitted boson pairs (known as [[Superradiance]] in the form of photons or phonons) when the oscillating frequency of the medium is equal to twice the boson frequency.

== See also ==
{{colbegin|4}}
* [[Anisotropy]]
* [[Casimir effect]]
* [[Chaos theory]]
* [[Condensed matter physics]]
* [[Constructal theory]]
* [[Correlation does not imply causation]]
* [[Crystallography]]
* [[Dissipative system]]
* [[Casimir effect#Dynamical Casimir effect|Dynamical Casimir effect]]
* [[Electron magnetic moment]]
* [[Emergence]]
* [[Entropy production]]
* [[Entropic gravity]]
* [[Error detection and correction]]
* [[ER=EPR]]
* [[Extremal principles in non-equilibrium thermodynamics]]
* [[Free energy principle]]
* [[Gauge theory]]
* [[Information theory]]
* [[Lamb shift]]
* [[Laws of thermodynamics]]
* [[Green–Kubo relations]]
* [[Green's function (many-body theory)]]
* [[Hawking radiation]]
* [[Information entropy]]
* [[Materials science]]
* [[Maxwell's demon]]
* [[Noether's theorem]]
* [[Non-equilibrium thermodynamics]]
* [[Nonlinear Schrödinger equation]]
* [[Nonlinear system]]
* [[Pair production]]
* [[Perpetual motion]]
* [[Photonics]]
* [[Philosophy of information]]
* [[Philosophy of physics]]
* [[Quantum decoherence]]
* [[Quantum entanglement]]
* [[Quantum gravity]]
* [[Quantum information]]
* [[Quantum teleportation]]
* [[Self-organization]]
* [[Spontaneous symmetry breaking]]
* [[Stochastic electrodynamics]]
* [[Symmetry breaking]]
* [[Symmetry in quantum mechanics]]
* [[Topological order]]
* [[Unruh effect]]
* [[Virtual particle]]
* [[Zero-point energy]]
* [[Zero-point field]]





{{colend}}
{{Portal bar|Physics|Science|Mathematics}}


==References==
==References==
===Notes===
{{reflist|colwidth=30em}}
{{notelist|3}}

===Citations===
{{reflist|4}}

===Academic papers===
{{Refbegin|3|indent=yes}}
: {{cite journal|last1=Beck|first1=Christian|last2=Mackey|first2=Michael C.|title=Could dark energy be measured in the lab?|journal=Physics Letters B|volume=605|issue=3-4|year=2005|pages=295–300|issn=03702693|doi=10.1016/j.physletb.2004.11.060|url=https://arxiv.org/pdf/astro-ph/0406504v2.pdf|arxiv=astro-ph/0406504v2|bibcode=2005PhLB..605..295B|ref=harv}}
: {{cite journal|last1=Boyle|first1=Latham|last2=Khoo|first2=Jun Yong|last3=Smith|first3=Kendrick|title=Symmetric Satellite Swarms and Choreographic Crystals|journal=Physical Review Letters|volume=116|issue=1|year=2016|issn=0031-9007|doi=10.1103/PhysRevLett.116.015503|url=https://arxiv.org/pdf/1407.5876v2.pdf|arxiv=1407.5876v2|bibcode=2016PhRvL.116a5503B|ref={{harvid|Boyle et al.|2016}} }}
: {{cite journal|last1=Bruno|first1=Patrick|title=Comment on “Quantum Time Crystals”|journal=Physical Review Letters|volume=110|issue=11|year=2013a|issn=0031-9007|doi=10.1103/PhysRevLett.110.118901|arxiv=1210.4128v1 |bibcode=2013PhRvL.110k8901B|url=https://arxiv.org/pdf/1210.4128v1.pdf|ref=harv}}
: {{cite journal|last1=Bruno|first1=Patrick|title=Comment on “Space-Time Crystals of Trapped Ions”|journal=Physical Review Letters|volume=111|issue=2|year=2013b|issn=0031-9007|doi=10.1103/PhysRevLett.111.029301|arxiv=1211.4792v1 |url=https://arxiv.org/pdf/1211.4792v1.pdf|bibcode=2013PhRvL.111b9301B|ref=harv}}
: {{cite journal|last1=Campisi|first1=Michele|last2=Hänggi|first2=Peter|last3=Talkner|first3=Peter|title=Colloquium: Quantum fluctuation relations: Foundations and applications|journal=Reviews of Modern Physics|volume=83|issue=3|year=2011|pages=771–791|issn=0034-6861|doi=10.1103/RevModPhys.83.771|url=https://arxiv.org/pdf/1012.2268v5.pdf|arxiv=1012.2268v5|bibcode=2011RvMP...83..771C|ref={{harvid|Campisi et al.|2011}} }}
: {{cite journal|last1=Choi|first1=Soonwon|last2=Choi|first2=Joonhee|last3=Landig|first3=Renate|last4=Kucsko|first4=Georg|last5=Zhou|first5=Hengyun|last6=Isoya|first6=Junichi|last7=Jelezko|first7=Fedor|last8=Onoda|first8=Shinobu|last9=Sumiya|first9=Hitoshi|last10=Khemani|first10=Vedika|last11=von Keyserlingk|first11=Curt|last12=Yao|first12=Norman Y.|last13=Demler|first13=Eugene|last14=Lukin|first14=Mikhail D.|title=Observation of discrete time-crystalline order in a disordered dipolar many-body system|date=2016|url=https://arxiv.org/pdf/1610.08057v1.pdf|arxiv=1610.08057v1|bibcode=2016arXiv161008057C|ref={{harvid|Choi et al.|2016}} }}
: {{cite journal|last1=Chernodub|first1=M. N.|title=Permanently rotating devices: extracting rotation from quantum vacuum fluctuations?|date=2012|url=https://arxiv.org/pdf/1203.6588v1.pdf|bibcode=2012arXiv1203.6588C|arxiv=1203.6588v1|ref=harv}}
: {{cite journal|last1=Chernodub|first1=M. N.|title=Zero-point fluctuations in rotation: Perpetuum mobile of the fourth kind without energy transfer|journal=Nuovo Cimento C|date=2013a|volume=5|issue=36|pages=53-63|doi=10.1393/ncc/i2013-11523-5|url=https://arxiv.org/pdf/1302.0462v1.pdf|arxiv=1302.0462v1|bibcode=2013arXiv1302.0462C|ref=harv}}
: {{cite journal|last1=Chernodub|first1=M. N.|title=Rotating Casimir systems: Magnetic-field-enhanced perpetual motion, possible realization in doped nanotubes, and laws of thermodynamics|journal=Physical Review D|volume=87|issue=2|year=2013b|issn=1550-7998|doi=10.1103/PhysRevD.87.025021|url=https://arxiv.org/pdf/1207.3052v2.pdf|arxiv=1207.3052v2|bibcode=2013PhRvD..87b5021C|ref=harv}}
: {{cite journal|last1=Copeland|first1=Edmund J.|last2=Sami|first2=M.|last3=Tsujikawa|first3=Shinji|title=Dynamics of dark energy|journal=International Journal of Modern Physics D|volume=15|issue=11|year=2006|pages=1753–1935|issn=0218-2718|doi=10.1142/S021827180600942X|arxiv=hep-th/0603057|bibcode=2006IJMPD..15.1753C|url=https://arxiv.org/pdf/hep-th/0603057v3.pdf|ref={{harvid|Copeland et al.|2006}} }}
: {{cite journal|last1=Dillenschneider|first1=R.|last2=Lutz|first2=E.|title=Energetics of quantum correlations|journal=EPL (Europhysics Letters)|volume=88|issue=5|year=2009|pages=50003|issn=0295-5075|doi=10.1209/0295-5075/88/50003|url=https://arxiv.org/pdf/0803.4067.pdf|arxiv=0803.4067|bibcode=2009EL.....8850003D|ref=harv}}
: {{cite journal|last1=Else|first1=Dominic V.|last2=Bauer|first2=Bela|last3=Nayak|first3=Chetan|title=Floquet Time Crystals|journal=Physical Review Letters|volume=117|issue=9|year=2016|issn=0031-9007|doi=10.1103/PhysRevLett.117.090402|arxiv=1603.08001v4|bibcode=2016PhRvL.117i0402E|url=https://arxiv.org/pdf/1603.08001v4.pdf|ref={{harvid|Else et al.|2016}} }}
: {{cite journal|last1=Esposito|first1=Massimiliano|last2=Harbola|first2=Upendra|last3=Mukamel|first3=Shaul|title=Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems|journal=Reviews of Modern Physics|volume=81|issue=4|year=2009|pages=1665–1702|issn=0034-6861|doi=10.1103/RevModPhys.81.1665|url=https://arxiv.org/pdf/0811.3717v2.pdf|arxiv=0811.3717v2|bibcode=2009RvMP...81.1665E|ref={{harvid|Esposito et al.|2009}} }}
: {{cite journal|last1=Grifoni|first1=Milena|last2=Hänggi|first2=Peter|title=Driven quantum tunneling|journal=Physics Reports|volume=304|issue=5-6|year=1998|pages=229–354|issn=03701573|doi=10.1016/S0370-1573(98)00022-2|url=https://pdfs.semanticscholar.org/9477/590bf9c4bc44f0aadf036bd6ab45ce76ebc8.pdf|bibcode=1998PhR...304..229G|ref=harv}}
: {{cite journal|last1=Guo|first1=Lingzhen|last2=Marthaler|first2=Michael|last3=Schön|first3=Gerd|title=Phase Space Crystals: A New Way to Create a Quasienergy Band Structure|journal=Physical Review Letters|volume=111|issue=20|year=2013|issn=0031-9007|doi=10.1103/PhysRevLett.111.205303|arxiv=1305.1800v3|url=https://arxiv.org/pdf/1305.1800v3.pdf|bibcode=2013PhRvL.111t5303G|ref={{harvid|Guo et al.|2013}} }}
: {{cite journal|last1=Hasan|first1=M. Z.|last2=Kane|first2=C. L.|title=Colloquium: Topological insulators|journal=Reviews of Modern Physics|volume=82|issue=4|year=2010|pages=3045–3067|issn=0034-6861|doi=10.1103/RevModPhys.82.3045|url=https://arxiv.org/pdf/1002.3895v2.pdf|arxiv=1002.3895v2|bibcode=2010RvMP...82.3045H|ref=harv}}
: {{cite journal|last1=Horodecki|first1=Ryszard|last2=Horodecki|first2=Paweł|last3=Horodecki|first3=Michał|last4=Horodecki|first4=Karol|title=Quantum entanglement|journal=Reviews of Modern Physics|volume=81|issue=2|year=2009|pages=865–942|issn=0034-6861|doi=10.1103/RevModPhys.81.865|url=https://arxiv.org/pdf/quant-ph/0702225v2.pdf|arxiv=quant-ph/0702225v2|bibcode=2009RvMP...81..865H|ref={{harvid|Horodecki et al.|2009}} }}
: {{cite journal|last=Jaffe |first=R. L.|year=2005|title=Casimir effect and the quantum vacuum|journal=[[Physical Review D]]|volume=72 |issue=2 |page=021301|arxiv= hep-th/0503158|bibcode= 2005PhRvD..72b1301J|doi=10.1103/PhysRevD.72.021301|url=https://arxiv.org/pdf/hep-th/0503158v1.pdf|ref=harv}}
: {{cite journal|last1=Jarzynski|first1=Christopher|title=Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale|journal=Annual Review of Condensed Matter Physics|volume=2|issue=1|year=2011|pages=329–351|issn=1947-5454|doi=10.1146/annurev-conmatphys-062910-140506|url=http://newton.kias.re.kr/~brane/wc2012/download/Jarzynski_annurev-conmatphys-062910-140506.pdf|bibcode=2011ARCMP...2..329J|ref=harv}}
: {{cite journal|last1=Jetzer|first1=Philippe|last2=Straumann|first2=Norbert|title=Josephson junctions and dark energy|journal=Physics Letters B|volume=639|issue=2|year=2006|pages=57–58|issn=03702693|doi=10.1016/j.physletb.2006.06.020|arxiv=astro-ph/0604522|url=https://arxiv.org/pdf/astro-ph/0604522v1.pdf|bibcode=2006PhLB..639...57J|ref=harv}}
: {{cite journal|last1=Khemani|first1=Vedika|last2=Lazarides|first2=Achilleas|last3=Moessner|first3=Roderich|last4=Sondhi|first4=S. L.|title=Phase Structure of Driven Quantum Systems|journal=Physical Review Letters|volume=116|issue=25|year=2016|issn=0031-9007|doi=10.1103/PhysRevLett.116.250401|bibcode=2016PhRvL.116y0401K|arxiv=1508.03344v3|url=https://arxiv.org/pdf/1508.03344v3.pdf|ref={{harvid|Khemani et al.|2016}} }}
: {{cite journal|last1=Lees|first1=J. P.|title=Observation of Time-Reversal Violation in the ''B''<sup>0</sup> Meson System|journal=Physical Review Letters|volume=109|issue=21|year=2012|issn=0031-9007|doi=10.1103/PhysRevLett.109.211801|arxiv=1207.5832v4|url=https://arxiv.org/pdf/1207.5832v4.pdf|bibcode=2012PhRvL.109u1801L|ref={{harvid|Lees et al.|2012}} }}
: {{cite journal|last1=Li|first1=Tongcang|last2=Gong|first2=Zhe-Xuan|last3=Yin|first3=Zhang-Qi|last4=Quan|first4=H. T.|last5=Yin|first5=Xiaobo|last6=Zhang|first6=Peng|last7=Duan|first7=L.-M.|last8=Zhang|first8=Xiang|title=Space-Time Crystals of Trapped Ions|journal=Physical Review Letters|volume=109|issue=16|year=2012a|issn=0031-9007|doi=10.1103/PhysRevLett.109.163001|url=https://arxiv.org/pdf/1206.4772v2.pdf|arxiv=1206.4772v2|bibcode=2012PhRvL.109p3001L|ref={{harvid|Li et al.|2012a}} }}
: {{cite journal|last1=Li|first1=Tongcang|last2=Gong|first2=Zhe-Xuan|last3=Yin|first3=Zhang-Qi|last4=Quan|first4=H. T.|last5=Yin|first5=Xiaobo|last6=Zhang|first6=Peng|last7=Duan|first7=L.-M.|last8=Zhang|first8=Xiang|title=Reply to Comment on "Space-Time Crystals of Trapped Ions"|date=2012b|url=https://arxiv.org/pdf/1212.6959v2.pdf|arxiv=1212.6959v2|bibcode= 2012arXiv1212.6959L
|ref={{harvid|Li et al.|2012b}} }}
: {{cite journal|last1=Lindner|first1=Netanel H.|last2=Refael|first2=Gil|last3=Galitski|first3=Victor|title=Floquet topological insulator in semiconductor quantum wells|journal=Nature Physics|volume=7|issue=6|year=2011|pages=490–495|issn=1745-2473|doi=10.1038/nphys1926|arxiv=1008.1792v2|url=https://arxiv.org/pdf/1008.1792v2.pdf|bibcode=2011NatPh...7..490L|ref={{harvid|Lindner et al.|2011}} }}
: {{cite journal|last1=Nadj-Perge|first1=S.|last2=Drozdov|first2=I. K.|last3=Li|first3=J.|last4=Chen|first4=H.|last5=Jeon|first5=S.|last6=Seo|first6=J.|last7=MacDonald|first7=A. H.|last8=Bernevig|first8=B. A.|last9=Yazdani|first9=A.|title=Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor|journal=Science|volume=346|issue=6209|year=2014|pages=602–607|issn=0036-8075|doi=10.1126/science.1259327|arxiv=1410.0682v1|url=https://arxiv.org/pdf/1410.0682v1.pdf|bibcode=2014Sci...346..602N|ref={{harvid|Nadi-Perge et al.|2014}} }}
: {{cite journal|last1=Nozières|first1=Philippe|title=Time crystals: Can diamagnetic currents drive a charge density wave into rotation?|journal=EPL (Europhysics Letters)|volume=103|issue=5|year=2013|pages=57008|issn=0295-5075|doi=10.1209/0295-5075/103/57008|arxiv=1306.6229v1|url=https://arxiv.org/pdf/1306.6229v1.pdf|bibcode=2013EL....10357008N|ref=harv}}
: {{cite journal|last1=Sacha|first1=Krzysztof|title=Modeling spontaneous breaking of time-translation symmetry|journal=Physical Review A|volume=91|issue=3|year=2015|issn=1050-2947|doi=10.1103/PhysRevA.91.033617|bibcode=2015PhRvA..91c3617S|arxiv=1410.3638v3|url=https://arxiv.org/pdf/1410.3638v3.pdf|ref=harv}}
: {{cite journal|last1=Schwinger|first1=Julian|title=Casimir effect in source theory|journal=Letters in Mathematical Physics|date=1975|volume=1|issue=1|pages=43–47|doi=10.1007/BF00405585|bibcode=1975LMaPh...1...43S|ref=harv}}
: {{cite journal|last1=Schwinger|first1=Julian|last2=DeRaad|first2=Lester L.|last3=Milton|first3=Kimball A.|title=Casimir effect in dielectrics|journal=Annals of Physics|date=1978|volume=115|issue=1|pages=1–23|doi=10.1016/0003-4916(78)90172-0|bibcode=1978AnPhy.115....1S|ref={{harvid|Schwinger et al.|1978}} }}
: {{cite journal|last1=Scully|first1=Marlan O.|title=Extracting Work from a Single Thermal Bath via Quantum Negentropy|journal=Physical Review Letters|volume=87|issue=22|year=2001|issn=0031-9007|doi=10.1103/PhysRevLett.87.220601|bibcode=2001PhRvL..87v0601S|ref=harv}}
: {{cite journal|last1=Scully|first1=Marlan O.|last2=Zubairy|first2=M. Suhail|last3=Agarwal|first3=Girish S.|last4=Walther|first4=Herbert.|title=Extracting Work from a Single Heat Bath via Vanishing Quantum Coherence|journal=Science|volume=299|issue=5608|year=2003|pages=862–864|issn=00368075|doi=10.1126/science.1078955|bibcode=2003Sci...299..862S|PMID=12511655|ref={{harvid|Scully et al.|2003}} }}
: {{cite journal|last1=Seifert|first1=Udo|title=Stochastic thermodynamics, fluctuation theorems and molecular machines|journal=Reports on Progress in Physics|volume=75|issue=12|year=2012|pages=126001|issn=0034-4885|doi=10.1088/0034-4885/75/12/126001|url=https://arxiv.org/pdf/1205.4176.pdf|arxiv=1205.4176v1|bibcode=2012RPPh...75l6001S|ref=harv}}
: {{cite journal|last1=Senitzky|first1=I. R.|title=Dissipation in Quantum Mechanics. The Harmonic Oscillator|journal=Physical Review|volume=119|issue=2|year=1960|pages=670–679|issn=0031-899X|doi=10.1103/PhysRev.119.670|bibcode=1960PhRv..119..670S|ref=harv}}
: {{cite journal|last1=Shapere|first1=Alfred|last2=Wilczek|first2=Frank|title=Classical Time Crystals|journal=Physical Review Letters|volume=109|issue=16|year=2012|issn=0031-9007|doi=10.1103/PhysRevLett.109.160402|bibcode=2012PhRvL.109p0402S|arxiv=1202.2537v2|url=https://arxiv.org/pdf/1202.2537v2.pdf|ref=harv}}
: {{cite journal|last1=Shirley|first1=Jon H.|title=Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time|journal=Physical Review|volume=138|issue=4B|year=1965|pages=B979–B987|issn=0031-899X|doi=10.1103/PhysRev.138.B979|bibcode=1965PhRv..138..979S|ref=harv}}
: {{cite journal|last1=Smith|first1=J.|last2=Lee|first2=A.|last3=Richerme|first3=P.|last4=Neyenhuis|first4=B.|last5=Hess|first5=P. W.|last6=Hauke|first6=P.|last7=Heyl|first7=M.|last8=Huse|first8=D. A.|last9=Monroe|first9=C.|title=Many-body localization in a quantum simulator with programmable random disorder|journal=Nature Physics|volume=12|issue=10|year=2016|pages=907–911|issn=1745-2473|doi=10.1038/nphys3783|arxiv=1508.07026v1|url=https://arxiv.org/pdf/1508.07026v1.pdf|bibcode=2016NatPh..12..907S|ref={{harvid|Smith et al.|2016}} }}
: {{cite journal|last1=Maruyama|first1=Koji|last2=Nori|first2=Franco|last3=Vedral|first3=Vlatko|title=Colloquium: The physics of Maxwell’s demon and information|journal=Reviews of Modern Physics|volume=81|issue=1|year=2009|pages=1–23|issn=0034-6861|doi=10.1103/RevModPhys.81.1|url=https://arxiv.org/pdf/0707.3400.pdf|arxiv=0707.3400|bibcode=2009RvMP...81....1M|ref={{harvid|Maruyama et al.|2009}} }}
: {{cite journal|last1=Mendonça|first1=J. T.|last2=Dodonov|first2=V. V.|title=Time Crystals in Ultracold Matter|journal=Journal of Russian Laser Research|volume=35|issue=1|year=2014|pages=93–100|issn=1071-2836|doi=10.1007/s10946-014-9404-9|url=https://www.researchgate.net/profile/J_Mendonca/publication/272040551_Time_Crystals_in_Ultracold_Matter/links/54f6ea340cf2ca5eff007953.pdf|ref=harv}}
: {{cite journal|last1=Modi|first1=Kavan|last2=Brodutch|first2=Aharon|last3=Cable|first3=Hugo|last4=Paterek|first4=Tomasz|last5=Vedral|first5=Vlatko|title=The classical-quantum boundary for correlations: Discord and related measures|journal=Reviews of Modern Physics|volume=84|issue=4|year=2012|pages=1655–1707|issn=0034-6861|doi=10.1103/RevModPhys.84.1655|url=https://arxiv.org/pdf/1112.6238.pdf|arxiv=1112.6238|bibcode=2012RvMP...84.1655M|ref={{harvid|Modi et al.|2012}} }}
: {{cite journal|last1=Ray|first1=M. W.|last2=Ruokokoski|first2=E.|last3=Kandel|first3=S.|last4=Möttönen|first4=M.|last5=Hall|first5=D. S.|title=Observation of Dirac monopoles in a synthetic magnetic field|journal=Nature|volume=505|issue=7485|year=2014|pages=657–660|issn=0028-0836|doi=10.1038/nature12954|bibcode=2014Natur.505..657R|arxiv=1408.3133v1|url=https://arxiv.org/pdf/1408.3133v1.pdf|ref={{harvid|Ray et al.|2014}} }}
: {{cite journal|last1=Ray|first1=M. W.|last2=Ruokokoski|first2=E.|last3=Tiurev|first3=K.|last4=Mottonen|first4=M.|last5=Hall|first5=D. S.|title=Observation of isolated monopoles in a quantum field|journal=Science|volume=348|issue=6234|year=2015|pages=544–547|issn=0036-8075|doi=10.1126/science.1258289|bibcode=2015Sci...348..544R|url=https://aaltodoc.aalto.fi/bitstream/handle/123456789/16541/article5.pdf?sequence=8|ref={{harvid|Ray et al.|2015}} }}
: {{cite journal|last1=Reimann|first1=Peter|last2=Grifoni|first2=Milena|last3=Hänggi|first3=Peter|title=Quantum Ratchets|journal=Physical Review Letters|volume=79|issue=1|year=1997|pages=10–13|issn=0031-9007|doi=10.1103/PhysRevLett.79.10|url=https://pdfs.semanticscholar.org/eb04/b17564b443e5bcb7d9b8f579bbfb501db507.pdf|bibcode=1997PhRvL..79...10R|ref={{harvid|Reimann et al.|1997}} }}
: {{cite journal|last1=Roßnagel|first1=J.|last2=Abah|first2=O.|last3=Schmidt-Kaler|first3=F.|last4=Singer|first4=K.|last5=Lutz|first5=E.|title=Nanoscale Heat Engine Beyond the Carnot Limit|journal=Physical Review Letters|volume=112|issue=3|year=2014|issn=0031-9007|doi=10.1103/PhysRevLett.112.030602|url=https://arxiv.org/pdf/1308.5935.pdf|arxiv=1308.5935|bibcode=2014PhRvL.112c0602R|ref={{harvid|Roßnagel et al.|2014}} }}
: {{cite journal|last1=Roßnagell|first1=J.|last2=Dawkins|first2=S. T.|last3=Tolazzi|first3=K. N.|last4=Abah|first4=O.|last5=Lutz|first5=E.|last6=Schmidt-Kaler|first6=F.|last7=Singer|first7=K.|title=A single-atom heat engine|journal=Science|volume=352|issue=6283|year=2016|pages=325–329|issn=0036-8075|doi=10.1126/science.aad6320|url=https://arxiv.org/pdf/1510.03681.pdf|arxiv=1510.03681|bibcode=2016Sci...352..325R|ref={{harvid|Roßnagel et al.|2016}} }}
: {{cite journal|last1=Tatara|first1=Gen|last2=Kikuchi|first2=Makoto|last3=Yukawa|first3=Satoshi|last4=Matsukawa|first4=Hiroshi|title=Dissipation Enhanced Asymmetric Transport in Quantum Ratchets|journal=Journal of the Physical Society of Japan|volume=67|issue=4|year=1998|pages=1090–1093|issn=0031-9015|doi=10.1143/JPSJ.67.1090|url=https://arxiv.org/pdf/cond-mat/9711045.pdf|arxiv=cond-mat/9711045|ref={{harvid|Tatara et al.|1998}} }}
: {{cite journal|last1=Volovik|first1=G. E.|title=On the broken time translation symmetry in macroscopic systems: Precessing states and off-diagonal long-range order|journal=JETP Letters|volume=98|issue=8|year=2013|pages=491–495|issn=0021-3640|doi=10.1134/S0021364013210133|arxiv=1309.1845v2 |url=https://arxiv.org/pdf/1309.1845v2.pdf|bibcode=2013JETPL..98..491V|ref=harv}}
: {{cite journal|last1=von Keyserlingk|first1=C. W.|last2=Khemani|first2=Vedika|last3=Sondhi|first3=S. L.|title=Absolute stability and spatiotemporal long-range order in Floquet systems|journal=Physical Review B|volume=94|issue=8|year=2016|issn=2469-9950|doi=10.1103/PhysRevB.94.085112|arxiv=1605.00639v3|bibcode=2016PhRvB..94h5112V|url=https://arxiv.org/pdf/1605.00639v3.pdf|ref={{harvid|von Keyserlingk et al.|2016}} }}
: {{cite journal|last1=Wang|first1=Y. H.|last2=Steinberg|first2=H.|last3=Jarillo-Herrero|first3=P.|last4=Gedik|first4=N.|title=Observation of Floquet-Bloch States on the Surface of a Topological Insulator|journal=Science|volume=342|issue=6157|year=2013|pages=453–457|issn=0036-8075|doi=10.1126/science.1239834|arxiv=1310.7563v1|bibcode=2013Sci...342..453W|url=https://arxiv.org/pdf/1310.7563v1.pdf|ref={{harvid|Wang et al.|2013}} }}
: {{cite journal|last1=Watanabe|first1=Haruki|last2=Oshikawa|first2=Masaki|title=Absence of Quantum Time Crystals|journal=Physical Review Letters|volume=114|issue=25|year=2015|issn=0031-9007|doi=10.1103/PhysRevLett.114.251603|bibcode=2015PhRvL.114y1603W|arxiv=1410.2143v3|url=https://arxiv.org/pdf/1410.2143v3.pdf|ref=harv}}
: {{cite journal|last1=Wilczek|first1=Frank|title=Quantum Time Crystals|journal=Physical Review Letters|volume=109|issue=16|year=2012|issn=0031-9007|doi=10.1103/PhysRevLett.109.160401|arxiv=1202.2539v2|url=https://arxiv.org/pdf/1202.2539v2.pdf|bibcode=2012PhRvL.109p0401W|ref=harv}}
: {{cite journal|last1=Wilczek|first1=Frank|title=Wilczek Reply:|journal=Physical Review Letters|volume=110|issue=11|year=2013a|issn=0031-9007|doi=10.1103/PhysRevLett.110.118902|url=http://xa.yimg.com/kq/groups/2385221/2027721577/name/WilzcekreplyPhysRevLett.110.118902-1.pdf|bibcode=2013PhRvL.110k8902W|ref=harv}}
: {{cite journal|last1=Wilczek|first1=Frank|title=Superfluidity and Space-Time Translation Symmetry Breaking|journal=Physical Review Letters|volume=111|issue=25|year=2013b|issn=0031-9007|doi=10.1103/PhysRevLett.111.250402|bibcode=2013PhRvL.111y0402W|arxiv=1308.5949v1|url=https://arxiv.org/pdf/1308.5949v1.pdf|ref=harv}}
: {{cite journal|last1=Willett|first1=R. L.|last2=Nayak|first2=C.|last3=Shtengel|first3=K.|last4=Pfeiffer|first4=L. N.|last5=West|first5=K. W.|title=Magnetic-Field-Tuned Aharonov-Bohm Oscillations and Evidence for Non-Abelian Anyons atν=5/2|journal=Physical Review Letters|volume=111|issue=18|year=2013|issn=0031-9007|doi=10.1103/PhysRevLett.111.186401|bibcode=2013PhRvL.111r6401W|arxiv=1301.2639v1|url=https://arxiv.org/pdf/1301.2639v1.pdf|ref={{harvid|Willett et al.|2013}} }}
: {{cite journal|last1=Yao|first1=N. Y.|last2=Potter|first2=A. C.|last3=Potirniche|first3=I.-D.|last4=Vishwanath|first4=A.|title=Discrete Time Crystals: Rigidity, Criticality, and Realizations|journal=Physical Review Letters|volume=118|issue=3|year=2017|issn=0031-9007|doi=10.1103/PhysRevLett.118.030401|arxiv=1608.02589v2|url=https://arxiv.org/pdf/1608.02589v2.pdf|bibcode=2016arXiv160802589Y|ref={{harvid|Yao et al.|2017}} }}
: {{cite journal|last1=Yoshii|first1=Ryosuke|last2=Takada|first2=Satoshi|last3=Tsuchiya|first3=Shunji|last4=Marmorini|first4=Giacomo|last5=Hayakawa|first5=Hisao|last6=Nitta|first6=Muneto|title=Fulde-Ferrell-Larkin-Ovchinnikov states in a superconducting ring with magnetic fields: Phase diagram and the first-order phase transitions|journal=Physical Review B|volume=92|issue=22|year=2015|issn=1098-0121|doi=10.1103/PhysRevB.92.224512|arxiv=1404.3519v2|url=https://arxiv.org/pdf/1404.3519v2.pdf|bibcode=2015PhRvB..92v4512Y|ref={{harvid|Yoshii et al.|2015}} }}
: {{cite journal|last1=Yukawa|first1=Satoshi|last2=Kikuchi|first2=Macoto|last3=Tatara|first3=Gen|last4=Matsukawa|first4=Hiroshi|title=Quantum Ratchets|journal=Journal of the Physical Society of Japan|volume=66|issue=10|year=1997|pages=2953–2956|issn=0031-9015|doi=10.1143/JPSJ.66.2953|url=https://arxiv.org/pdf/cond-mat/9706222.pdf|arxiv=cond-mat/9706222|bibcode=1997JPSJ...66.2953Y|ref={{harvid|Yukawa et al.|1997}} }}
: {{cite journal|last1=Yukawa|first1=Satoshi|title=A Quantum Analogue of the Jarzynski Equality|journal=Journal of the Physical Society of Japan|volume=69|issue=8|year=2000|pages=2367–2370|issn=0031-9015|doi=10.1143/JPSJ.69.2367|url=https://arxiv.org/pdf/cond-mat/0007456.pdf|arxiv=cond-mat/0007456|bibcode=2000JPSJ...69.2367Y|ref=harv}}
: {{cite journal|last1=Zel'Dovich|first1=Y. B.|title=The quasienergy of a quantum-mechanical system subjected to a periodic action|journal=Soviet Physics JETP|date=1967|volume=24|issue=5|pages=1006-1008|url=http://jetp.ac.ru/cgi-bin/dn/e_024_05_1006.pdf|bibcode=1967JETP...24.1006Z|ref=harv}}
: {{cite journal|last1=Zhang|first1=J.|last2=Hess|first2=P. W.|last3=Kyprianidis|first3=A.|last4=Becker|first4=P.|last5=Lee|first5=A.|last6=Smith|first6=J.|last7=Pagano|first7=G.|last8=Potirniche|first8=I.-D.|last9=Potter|first9=A. C.|last10=Vishwanath|first10=A.|last11=Yao|first11=N. Y.|last12=Monroe|first12=C.|title=Observation of a Discrete Time Crystal|date=2016|url=https://arxiv.org/pdf/1609.08684v1.pdf|arxiv=1609.08684v1|bibcode=2016arXiv160908684Z|ref={{harvid|Zhang et al.|2016}} }}
{{refend}}

===Books===
{{Refbegin|3|indent=yes}}
: {{cite journal|last1=Bordag|first1=M.|last2=Mohideen|first2=U.|last3=Mostepanenko|first3=V.M.|title=New developments in the Casimir effect|journal=Physics Reports|volume=353|issue=1-3|year=2001|pages=1–205|issn=03701573|doi=10.1016/S0370-1573(01)00015-1|arxiv=quant-ph/0106045|url=https://arxiv.org/pdf/quant-ph/0106045v1.pdf|ref=harv}}
: {{cite book|last1=Bordag|first1=M.|last2=Mohideen|first2=U.|last3=Mostepanenko|first3=V.M.|last4=Klimchitskaya|first4=G. L|title=Advances in the Casimir Effect|url=https://books.google.com/books?id=CqE1f_s5PgYC|date=28 May 2009|publisher=Oxford University Press|location=Oxford|isbn=978-0-19-157988-2|ref=harv}}
: {{cite book|last1=Cao|first1=Tian Yu|title=Conceptual Foundations of Quantum Field Theory|url=https://books.google.co.uk/books?id=d0wS0EJHZ3MC&printsec=frontcover#v=onepage&q&f=falseC|date=25 March 2004|publisher=Cambridge University Press|isbn=978-0-521-60272-3|location=Cambridge|ref=harv}}
: {{cite book|last1=Enz|first1=Charles P.|editor1-last=Enz|editor1-first=C. P.|editor2-last=Mehra|editor2-first=J.|title=Physical Reality and Mathematical Description|chapter=Is the Zero-Point Energy Real?|date=1974|publisher=D. Reidel Publishing Company|location=Dordrecht|isbn=978-94-010-2274-3|pages=124–132|doi=10.1007/978-94-010-2274-3_8|ref=harv}}
: {{cite book|last1=Greiner|first1=Walter|last2=Müller|first2=B.|last3=Rafelski|first3=J.|title=Quantum Electrodynamics of Strong Fields: With an Introduction into Modern Relativistic Quantum Mechanics|date=2012|publisher=Springer|isbn=978-3-642-82274-2|doi=10.1007/978-3-642-82272-8|url=https://books.google.co.uk/books?id=Wh3-CAAAQBAJ&printsec=frontcover#v=onepage&q&f=false|ref={{harvid|Greiner et al.|2012}} }}
: {{cite book|last1=Lee|first1=T. D.|title=Particle Physics|url=https://books.google.co.uk/books?id=sZxBBAAAQBAJ&printsec=frontcover&vq=unobservable#v=onepage&q&f=false|date=15 August 1981|publisher=CRC Press|isbn=978-3-7186-0033-5|ref=harv}}
: {{cite book|last1=Feng|first1=Duan|last2=Jin|first2=Guojun|title=Introduction to Condensed Matter Physics|url=https://books.google.co.uk/books?id=-iuYN5arHwoC&printsec=frontcover#v=onepage&q&f=false|year=2005|publisher=World Scientific|location=singapore|isbn=978-981-238-711-0|ref=harv}}
: {{cite book|last1=Milonni|first1=Peter W.|title=The Quantum Vacuum: An Introduction to Quantum Electrodynamics|date=1994|publisher=Academic Press|location=London|isbn=978-0-124-98080-8|url=https://books.google.com/books?id=uPHJCgAAQBAJ&lpg=PP1&dq=inauthor%3A%22Peter%20W.%20Milonni%22&pg=PP1#v=onepage&q&f=false|ref=harv}}
: {{cite book|title=Quantum Mechanics for Pedestrians 2: Applications and Extensions|url=https://books.google.co.uk/books?id=KOy5BAAAQBAJ&printsec=frontcover#v=onepage&q&f=false|publisher=Springer|isbn=978-3-319-00813-4|last1=Pade|first1=Jochen|year=2014|issn=2192-4791|doi=10.1007/978-3-319-00813-4|location=Dordrecht|ref=harv}}
: {{cite book|last1=Schwinger|first1=Julian|title=Particles, Sources, And Fields, Volume 1: v. 1 (Advanced Books Classics)|date=1998a|publisher=Perseus|isbn=978-0-738-20053-8|ref=harv}}
: {{cite book|last1=Schwinger|first1=Julian|title=Particles, Sources, And Fields, Volume 2: v. 2 (Advanced Books Classics)|date=1998b|publisher=Perseus|isbn=978-0-738-20054-5|ref=harv}}
: {{cite book|last1=Schwinger|first1=Julian|title=Particles, Sources, And Fields, Volume 3: v. 3 (Advanced Books Classics)|date=1998c|publisher=Perseus|isbn=978-0-738-20055-2|ref=harv}}
: {{cite book|last1=Sólyom|first1=Jenö|title=Fundamentals of the Physics of Solids: Volume 1: Structure and Dynamics|url=https://books.google.com/books?id=zn-se2TKv3QC|date=19 September 2007|publisher=Springer|isbn=978-3-540-72600-5|ref=harv}}
: {{cite book|last1=Wilczek|first1=Frank|title=A Beautiful Question: Finding Nature's Deep Design|url=https://books.google.co.uk/books?id=Oh3ICAAAQBAJ&printsec=frontcover#v=onepage&q&f=false|date=16 July 2015|publisher=Penguin Books Limited|isbn=978-1-84614-702-9|ref=harv}}
{{refend}}

===Press===
{{Refbegin|3|indent=yes}}
: {{cite web|author1=Aalto University|title=Physicists discover quantum-mechanical monopoles|url=https://phys.org/news/2015-04-physicists-quantum-mechanical-monopoles.html|website=phys.org|publisher=Science X|archiveurl=http://archive.is/PYXDV|archivedate=30 Apr 2015|date=30 April 2015|ref=harv}}
: {{cite journal|last1=Aitchison|first1=Ian|title=Observing the Unobservable|journal=New Scientist|date=19 November 1981|volume=92|issue=1280|pages=540-541|url=https://books.google.co.uk/books?id=riW31Fy4kpkC&printsec=frontcover#v=onepage&q&f=false|issn=0262-4079|ref=harv}}
: {{cite web|author1=Amherst College|title=Physicists create synthetic magnetic monopole predicted more than 80 years ago|url=https://phys.org/news/2014-01-physicists-synthetic-magnetic-monopole-years.html|archiveurl=http://archive.is/u1dh8|archivedate=29 Jan 2014|date=29 January 2014|website=phys.org|publisher=Science X|ref=harv}}
: {{cite web|last1=Aron|first1=Jacob|title=Computer that could outlive the universe a step closer|url=https://www.newscientist.com/article/dn22028-computer-that-could-outlive-the-universe-a-step-closer/|website=newscientist.com|publisher=New Scientist|archiveurl=http://archive.is/Z6d1F|archivedate=2 Feb 2017|date=6 July 2012|ref=harv}}
: {{cite web|last1=Ball|first1=Philip|title=Focus: New Crystal Type is Always in Motion|url=http://physics.aps.org/articles/v9/4|website=physics.aps.org|publisher=APS Physics|archiveurl=http://archive.is/HxWE0|archivedate=3 Feb 2017|date=8 January 2016|ref=harv}}
: {{cite journal|last1=Ball|first1=Philip|title=Scepticism greets pitch to detect dark energy in the lab|url=http://www.readcube.com/articles/10.1038/430126b|journal=Nature|volume=430|issue=6996|date=8 July 2004|pages=126–126|issn=0028-0836|doi=10.1038/430126b|bibcode=2004Natur.430..126B|ref=harv}}
: {{cite web|last1=Cartlidge|first1=Edwin|title=Scientists build heat engine from a single atom|url=http://www.sciencemag.org/news/2015/10/scientists-build-heat-engine-single-atom|website=sciencemag.org|publisher=Science Magazine|archiveurl=http://archive.is/0F5Oc|archivedate=1 Feb 2017|date=21 October 2015|ref=harv}}
: {{cite web|last1=Chandler|first1=David|title=Topological insulators: Persuading light to mix it up with matter|url=https://phys.org/news/2013-10-topological-insulators.html|website=phys.org|publisher=Science X|archiveurl=http://archive.is/9Ci5y|archivedate=8 Feb 2017|date=24 October 2014|ref=harv}}
: {{cite journal|last1=Coleman|first1=Piers|title=Quantum physics: Time crystals|journal=Nature|volume=493|issue=7431|date=9 January 2013|pages=166–167|issn=0028-0836|doi=10.1038/493166a|bibcode=2013Natur.493..166C|ref=harv}}
: {{cite web|last1=Cowen|first1=Ron|title="Time Crystals" Could Be a Legitimate Form of Perpetual Motion|url=https://www.scientificamerican.com/article/time-crystals-could-be-legitimate-form-perpetual-motion/|website=scientificamerican.com|publisher=Scientific American|archiveurl=http://archive.is/UZYQA|archivedate=2 Feb 2017|date=27 February 2012|ref=harv}}
: {{cite web|last1=Daghofer|first1=Maria|title=Viewpoint: Toward Fractional Quantum Hall Physics with Cold Atoms|url=http://physics.aps.org/articles/v6/49#c2|website=physics.aps.org|publisher=APS Physics|archiveurl=http://archive.is/1Kztv|archivedate=7 Feb 2017|date=29 April 2013|ref=harv}}
: {{cite web|last1=Grossman|first1=Lisa|title=Death-defying time crystal could outlast the universe|url=https://www.newscientist.com/article/mg21328484-000-death-defying-time-crystal-could-outlast-the-universe/|website=newscientist.com|publisher=New Scientist|archiveurl=http://archive.is/2LeIF|archivedate=2 Feb 2017|date=18 January 2012}}
: {{cite web|last1=Hackett|first1=Jennifer|title=Curious Crystal Dances for Its Symmetry|url=https://www.scientificamerican.com/article/curious-crystal-dances-for-its-symmetry/|website=scientificamerican.com|publisher=Scientific American|archiveurl=http://archive.is/jDkID#selection-515.0-515.16|archivedate=3 Feb 2017|date=22 February 2016|ref=harv}}
: {{cite web|last1=Hewitt|first1=John|title=Creating time crystals with a rotating ion ring|url=https://phys.org/news/2013-05-crystals-rotating-ion.html|website=phys.org|publisher=Science X|archiveurl=http://archive.is/NORiD|archivedate=4 Jul 2013|date=3 May 2013}}
: {{cite web|last1=Johnston|first1=Hamish|title='Choreographic crystals' have all the right moves|url=http://physicsworld.com/cws/article/news/2016/jan/18/choreographic-crystals-have-all-the-right-moves|website=physicsworld.com|publisher=Institute of Physics|archiveurl=http://archive.is/zMle4#selection-1141.128-1141.346|archivedate=3 Feb 2017|date=18 January 2016|ref=harv}}
: {{cite web|author1=Johannes Gutenberg Universitaet Mainz|title=Prototype of single ion heat engine created|url=https://www.sciencedaily.com/releases/2014/02/140203101031.htm?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+sciencedaily+%28Latest+Science+News+--+ScienceDaily%29|website=sciencedaily.com|publisher=ScienceDaily|archiveurl=http://archive.is/iLS4K|archivedate=1 Feb 2017|date=3 February 2014|ref={{harvid|Johannes Gutenberg Universitaet Mainz|2014}} }}
: {{cite web|author1=Joint Quantum Institute|title=Floquet Topological Insulators|url=http://jqi.umd.edu/news/floquet-topological-insulators|website=jqi.umd.edu|publisher=Joint Quantum Institute|date=22 March 2011|ref=harv}}
: {{cite web|last1=Morgan|first1=James|title=Elusive magnetic 'monopole' seen in quantum system|url=http://www.bbc.co.uk/news/science-environment-25946734|website=bbc.co.uk|publisher=BBC|archiveurl=http://archive.is/kgRc6|archivedate=30 Jan 2014|date=30 January 2014|ref=harv}}
: {{cite web|last1=Moskowitz|first1=Clara|title=New Particle Is Both Matter and Antimatter|url=https://www.scientificamerican.com/article/majorana-particle-matter-and-antimatter/|website=scientificamerican.com|publisher=Scientific American|archiveurl=http://archive.is/GtTwC|archivedate=9 Oct 2014|date=2 October 2014|ref=harv}}
: {{cite web|last1=Ouellette|first1=Jennifer|title=World’s first time crystals cooked up using new recipe|url=https://www.newscientist.com/article/2119804-worlds-first-time-crystals-cooked-up-using-new-recipe/|website=newscientist.com|publisher=New Scientist|archiveurl=http://archive.is/vUMuu|archivedate=1 Feb 2017|date=31 January 2017|ref=harv}}
: {{cite news|last1=Pilkington|first1=Mark|title=Zero point energy|url=https://www.theguardian.com/education/2003/jul/17/research.highereducation|publisher=The Guardian|date=17 July 2003|archiveurl=http://archive.is/56vqz|archivedate=7 Feb 2017|website=theguardian.com|ref=harv}}
: {{cite journal|last1=Powell|first1=Devin|title=Can matter cycle through shapes eternally?|journal=Nature|year=2013|issn=1476-4687|doi=10.1038/nature.2013.13657|url=http://www.nature.com/news/can-matter-cycle-through-shapes-eternally-1.13657|archiveurl=http://archive.is/SOPK8|archivedate=3 Feb 2017|ref=harv}}
: {{cite web|last1=Rao|first1=Achintya|title=BaBar makes first direct measurement of time-reversal violation|url=http://physicsworld.com/cws/article/news/2012/nov/21/babar-makes-first-direct-measurement-of-time-reversal-violation|website=physicsworld.com|publisher=Institute of Physics|archiveurl=http://archive.is/FF0fG|archivedate=24 Mar 2015|date=21 November 2012|ref=harv}}
: {{cite web|last1=Richerme|first1=Phil|title=Viewpoint: How to Create a Time Crystal|url=http://physics.aps.org/articles/v10/5|website=physics.aps.org|publisher=APS Physics|archiveurl=http://archive.is/eXKGV|archivedate=2 Feb 2017|date=18 January 2017|ref=harv}}
: {{cite web|last1=Thomas|first1=Jessica|title=Notes from the Editors: The Aftermath of a Controversial Idea|url=http://physics.aps.org/articles/v6/31|website=physics.aps.org|publisher=APS Physics|archiveurl=http://archive.is/5CBHl|archivedate=2 Feb 2017|date=15 March 2013|ref=harv}}
: {{cite journal|last1=Qi|first1=Xiao-Liang|last2=Zhang|first2=Shou-Cheng|title=The quantum spin Hall effect and topological insulators|journal=Physics Today|volume=63|issue=1|year=2010|pages=33–38|issn=0031-9228|doi=10.1063/1.3293411|url=http://web.physics.ucsb.edu/~phys123B/w2015/QiZhangReview-1.pdf|ref=harv}}
: {{cite web|author1=University of California, Berkeley|title=Physicists unveil new form of matter—time crystals|url=https://phys.org/news/2017-01-physicists-unveil-mattertime-crystals.html|website=phys.org|publisher=Science X|archiveurl=http://archive.is/hc5GB|archivedate=28 Jan 2017|date=26 January 2017}}
: {{cite web|last1=Weiner|first1=Sophie|title=Scientists Create A New Kind Of Matter: Time Crystals|url=http://www.popularmechanics.com/science/a24957/time-crystals/|website=popularmechanics.com|publisher=Popular mechanics|archiveurl=http://archive.is/jpcXR|archivedate=3 Feb 2017|date=28 January 2017|ref=harv}}
: {{cite web|last1=Wolchover|first1=Natalie|title=Perpetual Motion Test Could Amend Theory of Time|url=https://www.quantamagazine.org/20130425-perpetual-motion-test-could-amend-theory-of-time/#|website=quantamagazine.org|publisher=Simons Foundation|archiveurl=http://archive.is/FubVX|archivedate=2 Feb 2017|date=25 April 2013|ref=harv}}
: {{cite web|last1=Wolchover|first1=Natalie|title=Forging a Qubit to Rule Them All|url=https://www.quantamagazine.org/20140515-forging-a-qubit-to-rule-them-all/|website=quantamagazine.org|publisher=Simmons Foundation|archiveurl=http://archive.is/15gEj|archivedate=15 Mar 2016|date=15 May 2014|ref=harv}}
: {{cite web|last1=Wood|first1=Charlie|title=Time crystals realize new order of space-time|url=http://www.csmonitor.com/Science/2017/0131/Time-crystals-realize-new-order-of-space-time|website=csmonitor.com|publisher=Christian Science Monitor|archiveurl=http://archive.is/xwzMc|archivedate=2 Feb 2017|date=31 January 2017|ref=harv}}
: {{cite web|last1=Yirka|first1=Bob|title=Physics team proposes a way to create an actual space-time crystal|url=https://phys.org/news/2012-07-physics-team-actual-space-time-crystal.html|website=phys.org|publisher=Science X|archiveurl=http://archive.is/5AuCp#selection-789.0-789.12|archivedate=15 Apr 2013|date=9 July 2012}}
: {{cite web|last1=Zakrzewski|first1=Jakub|title=Viewpoint: Crystals of Time|url=http://physics.aps.org/articles/v5/116|website=physics.aps.org|publisher=APS Physics|archiveurl=http://archive.is/f8aFI|archivedate=2 Feb 2017|date=15 October 2012}}
:{{cite web|last1=Zeller|first1=Michael|title=Viewpoint: Particle Decays Point to an Arrow of Time|url=http://physics.aps.org/articles/v5/129|website=physics.aps.org|publisher=APS Physics|archiveurl=http://archive.is/MQ5Qn|archivedate=4 Feb 2017|date=19 November 2012|ref=harv}}
: {{cite web|last1=Zyga|first1=Lisa|title=Time crystals could behave almost like perpetual motion machines|url=https://phys.org/news/2012-02-crystals-perpetual-motion-machines.html#nRlv|website=phys.org|publisher=Science X|archiveurl=http://archive.is/rjBZs|archivedate=3 Feb 2017|date=20 February 2012}}
: {{cite web|last1=Zyga|first1=Lisa|title=Physicist proves impossibility of quantum time crystals|url=https://phys.org/news/2013-08-physicist-impossibility-quantum-crystals.html|website=phys.org|publisher=Space X|archiveurl=http://archive.is/nZCdy|archivedate=3 Feb 2017|date=22 August 2013}}
: {{cite web|last1=Zyga|first1=Lisa|title=Nanoscale heat engine exceeds standard efficiency limit|url=https://phys.org/news/2014-01-nanoscale-standard-efficiency-limit.html|website=phys.org|publisher=Science X|archiveurl=http://archive.is/WZQfZ|archivedate=4 Apr 2015|date=27 January 2014|ref=harv}}
: {{cite web|last1=Zyga|first1=Lisa|title=Physicists propose new definition of time crystals—then prove such things don't exist|url=https://phys.org/news/2015-07-physicists-definition-crystalsthen-dont.html|website=phys.org|publisher=Science X|archiveurl=http://archive.is/k5Z8V|archivedate=9 Jul 2015|date=9 July 2015}}
: {{cite web|last1=Zyga|first1=Lisa|title=Time crystals might exist after all (Update)|url=https://phys.org/news/2016-09-crystals.html|website=phys.org|publisher=Science X|archiveurl=http://archive.is/g2i8V|archivedate=11 Sep 2016|date=9 September 2016}}
{{Refend}}

==External Links==
{{colbegin|2}}
* [https://www.umdphysics.umd.edu/people/faculty/current/item/348-monroe.html Christopher Monroe Bio, Maryland]
* [http://frankwilczek.com/ The Frank Wilczek Web Site]
* [http://lukin.physics.harvard.edu/ Lukin Group, Harvard]
* [http://physics.berkeley.edu/people/faculty/norman-yao Norman Yao Bio, Berkeley]
{{colend}}


{{Condensed matter physics topics}}
==Further reading==
{{Quantum computing}}
*H. Brown, R. Bulow, J. Neubuser, H. Wondratschek and H. Zassenhaus, ''Crystallographic Groups of Four-Dimensional Space''. Wiley, New York, 1978
{{Statistical mechanics topics}}
*{{cite journal|last=Toffoli|first=Tommaso|year=2004|title=A pedestrian's introduction to spacetime crystallography|journal=IBM Journal of Research and Development|volume=48|issue=1|pages=13–29|issn=0018-8646|doi=10.1147/rd.481.0013}}
{{Physics-footer}}
*{{cite web|url=http://www.ctc.cam.ac.uk/stephen70/talks/swh70_wilczek.pdf|title=Time Crystals|author=Frank Wilczek|accessdate=19 July 2012}}
*Frank Wilczek 11 July 2012 [http://arxiv.org/abs/1202.2539 ''Quantum Time Crystals'']
*{{Cite journal|author1=Alfred Shapere|author2=Frank Wilczek|arxiv=1202.2537|title=Classical Time Crystals|journal=Physical Review Letters|volume=109|issue=16|date=12 July 2012|doi=10.1103/PhysRevLett.109.160402|bibcode=2012PhRvL.109p0402S}}
{{portal bar|Physics}}


{{DEFAULTSORT:Condensed Matter Physics}}
[[Category:Branches of thermodynamics]]
[[Category:Condensed matter physics]]
[[Category:Concepts in physics]]
[[Category:Crystallography]]
[[Category:Crystallography]]
[[Category:Hypothetical objects]]
[[Category:Non-equilibrium thermodynamics]]
[[Category:Perpetual motion]]
[[Category:Perpetual motion]]
[[Category:Spacetime]]
[[Category:Physical paradoxes]]
[[Category:Physics]]
[[Category:Quantum information theory]]
[[Category:Quantum measurement]]
[[Category:Quantum mechanics]]
[[Category:Statistical mechanics]]
[[Category:Thermodynamics]]

Revision as of 18:54, 8 February 2017

File:Time crystal phase transition.png
Phase diagram of a discrete time crystal as function of Ising interaction strength and spin-echo pulse imperfections. (Yao et al. 2017)

A time crystal or space-time crystal is an open system in non-equilibrium with its environment that exhibits time translation symmetry breaking (TTSB). It is impossible for a time crystal to be in equilibrium with its environment. The idea of a time crystal was first put forward by Nobel laureate and professor at MIT Frank Wilczek in 2012.[a] Time crystals extend the ordinary three-dimensional symmetry seen in crystals to include the fourth dimension of time; a time crystal spontaneously breaks the symmetry of time translation. The crystal's pattern repeats not in space, but in time, which remarkably allows for the crystal to be in perpetual motion.[2] Time crystals are closely related to the concepts of zero-point energy and the dynamical Casimir effect[b]

In 2016 Norman Yao and his colleagues from the University of California, Berkeley put forward a concrete proposal that would allow time crystals to be created in a laboratory environment.[c] Yao's blueprint was then used by two teams, a group led by Christopher Monroe at the University of Maryland[d] and a group led by Mikhail Lukin at Harvard university,[e] who were both able to successfully create a time crystal. Both experiments have been accepted for publication in peer reviewed journals.[6]

Time crystals are thought to exhibit topological order, an emergent phenomena, in which nonlocal correlations encoded in the whole wave-function of a system allow for fault tolerance against perturbations, thus allowing quantum states to stabilize against decoherence effects that usually limit their useful lifetime. Preventing decoherence has a wide range of implications: The efficiency of some information theory and quantum thermodynamic tasks can be greatly enhanced when using quantum correlated states. It is also that time crystals could also give deeper understanding of the theory of time.

History

Nobel laureate Frank Wilczek at University of Paris-Saclay

The idea of a time crystal was first put forward by Frank Wilczek, a professor at MIT and Nobel laureate, in 2012.[f]

Xiang Zhang a nanoengineer at University of California, Berkeley and his team proposed creating a time crystal in the form of a constantly rotating ring of charged ions.[g]

In response to Wilczek and Zhang, Patrick Bruno, a theorist at the European Synchrotron Radiation Facility in Grenoble, France, published several papers claiming to show that time crystals were impossible.[h][9]

Subsequent work developed more precise definitions of time translation symmetry breaking (TTSB) [i] which ultimately led to a proof that quantum time crystals in equilibrium are not possible.[j]

Several realizations of time crystals, which avoid the equilibrium no-go arguments, were proposed.[k]

The no-go theorem leaves the door open to TTSB in an non-equilibrium system, and pioneering work[l] has demonstrated that quantum systems subject to periodic driving can indeed exhibit discrete TTSB.

Jakub Zakrzewski and his team at Jagiellonian University in Krakow, Poland have attempted to predict the behaviour of time crystals with numerical simulations.[m]

Using Wilczek's idea, Norman Yao and his colleagues from the University of California, Berkeley studied a different model that would allow the existence of time crystals.[n]

Yao's blueprint was then used by two teams: a group led by Mikhail Lukin at Harvard university[o] and a group led by Christopher Monroe at University of Maryland[d] both of whom were able to independantly create a time crystal successfully.[6]

Time translation symmetry

Symmetry

Symmetries are of prime importance in physics and are closely related to the hypothesis that certain physical quantities are only relative and unobservable.[12] Symmetries apply to the equations that govern the physical laws rather then the initial conditions or ts themselves and state that the laws remain unchanged under a transformation.[13] If a symmetry is preserved under a transformation it is said to be invariant. Symmetries in nature lead directly to conservation laws, something which is precisely formulated by the Noether theorem.[14]

Symmetries in condensed matter physics[12]
Symmetry Transformation Unobservable Conservation law
Space-translation absolute position in space momentum
Time-translation absolute time energy
Rotation absolute direction in space angular momentum
Space inversion absolute left or right parity
Time-reversal absolute sign of time Krammers degeneracy
Sign reversion of charge absolute sign of electric charge charge conjugation
Particle substitution distinguishability of identical particles Bose or Fermi statistics
Gauge transformation relative phase between different normal states particle number

The basic idea of time-translation symmetry is that a translation in time has no effect on physical laws, that the laws of nature that apply today were the same in the past and will be the same in the future.[13] For example if we measure the energy levels of hydrogen today, tomorrow or in ten years it makes no difference - we will always observe the same energy. Moreover, when we look at distant stars we are really looking back in time, so the fact that the energy levels of hydrogen are the same in all stars we ever looked at tells us something about the symmetry of both space and time. Invariance of time-translation implies absolute time is unobservable and a direct consequence is the conservation of energy.[12] A violation in time-translation symmetry means that under certain conditions or select cases energy is not a conserved quantity and that laws of nature themselves are variable with time.

Broken symmetry

For a long time physicists believed that symmetries in the laws nature were absolute, but deviations do occur. In 1957 scientists confirmed experimentally[p] a broken symmetry in space inversion (a right-left asymmetry) in weak interactions and that therefore parity was not a conserved quantity (known as a P violation). This lead to the 1957 Nobel Prize in physics being awarded to Tsung-Dao Lee and Chen-Ning Yang who had put forward the original idea in 1956. It was also established in 1957 that there was not only a right-left asymmetries but also asymmetries between the positive and negative signs of electric charge (a charge conjugation or C violation). At around the same time questions of possible asymmetries under time-reversal T and CP violations (the product of C and P transformations) were also raised, though actual experimental confirmation did not come until quite a few years later.[15]

A consequence of these asymmetries in nature is that it is therefore possible to determine an absolute left or right, absolute charge or absolute direction of time in the universe; such terms are not merely relative or a subjective naming convention.[16] If two advanced civilisations were separated on different sides of the universe with no possiblity of physical contact but could somehow send signals to communicate with each other, they would be able to convey the results of experiments that will lead them to agree on the definitions of what direction is left and right, whether they are made of particle or antiparticles and whether time was flowing in the same direction.[17][q]

Broken symmetry in normal crystals

Figure 2. Normal process (N-process) and Umklapp process (U-process). While the N-process conserves total phonon momentum, the U-process changes phonon momentum.

Different states of matter can be classified by the symmetries they spontaneously break. In a magnet, for example, spins are limited to a few possible orientations along a common direction chosen spontaneously from ones of less orientation but greater freedom and symmetry; thus a ferromagnet breaks symmetry as this process occurs. Normal crystals exhibit broken translation symmetry. For example, a gas is said to have translational symmetry as its atoms can move freely to occupy any point in a given area. A crystal by contrast does not have the same degree of symmetry; only certain spacial points are permitted and there is a requirement that the atoms have a particular structure or order. If a gas cools to form a crystal the symmetry is said to be continuously broken as the crystal gains order.

Since crystals are not invariant under arbitrary translations, strictly speaking, momentum is not conserved. No strict conservation law can be applied but a discrete translation symmetry may sometimes be achieved. The crystal momentum is called quasimomentum[21] which determines the crystals Bloch state and is the cause of Umklapp processes.[22] This technical violation of the conservation of momentum is important in establishing some of the properties of crystals, for example thermal conductivity of crystals cannot be understood without taking into consideration Umklapp proccesses.[23] The violation in the conservation of momentum can be accounted for as a transfer to the vacuum state (i.e the zero-point field).[24]

Quasienergy

Ordinary crystals break spatial translational symmetries leading to repeated spacial patterns, time crystals spontaneously break time-translation symmetry (TTS) and have repeated patterns in time. Fields or particles in the presence of a time crystal background will appear to violate the conservation of energy, analogous to the apparent violation of the conservation of momentum in crystalline Umklapp processes. In either case the apparent non-conservation is in reality a transfer to the vacuum field (i.e. zero-point field).[24] The term quasienergy has been coined to explain some of the predicted properties of time crystals.

Topological order

Time crystals are thought to exhibit topological order, an emergent phenomena, in which nonlocal correlations encoded in the whole wave-function of the system allow for fault tolerance against perturbations, thus allowing quantum states to stabilize against decoherence effects that usually limit their useful lifetime.

Topological states

Albert Einstein insisted that all fundamental laws of nature could be understood in terms of geometry and symmetry.[25] Before 1980 all states of matter could be classified by the principle of broken symmetry. The quantum Hall state provided the first example of a quantum state that had no spontaneously broken symmetry. Its behaviour depends only on its topology and not its specific geometry. The quantum Hall effect earned von Klitzing the Nobel Prize in Physics for 1985 and though it was not understood at the time, the quantum Hall effect is an example of Topological order.[r]. Topological order violates the long-held belief that ordering requires symmetry breaking. Fundamental laws can be studied under the context of topological field theory.

Recently a new class of topological states has emerged called quantum spin Hall (QSH) states or topological insulators. Inside a topological insulator Maxwell's equations of electromagnetism are dramatically altered to include an extra topological terms which gives rise to novel new physics.[26] A dipole such as an electron above the surface of a topological insulator induces an emergent quasi-particle image magnetic monopole, known as a dyon, which is a composite of electric and magnetic charges.[s] This new particle obeys neither Bose nor Fermi statistics but behave like a so called anyon named as such because it is governed by with "any possible" statistics. When a superconducter is close to the surface of a topological insulator, Majorana fermions occur inside vortices.[t] These particles are governed by non-abelian statistics[u] and could have radical applications in a new form of electronics called spintronics and topological quantum computers.[25] Non-local effects analogous to the Aharonov Bohm effect have been observed in topological insulators, and certain conditions are expected to give rise to the ability of Majorana fermions to teleport, a test of which has been proposed.[v]

Floquent topological states

Floquent topological states combine ideas from photonics and condensed matter physics. A system that is driven by a periodic external field shows a discrete time-translation symmetry. In the framework of the Floquet theory the concepts of quasienergy and Floquet states[w] were introduced to account for this time periodicity: the term quasienergy reflects the formal analogy with the quasimomentum characterizing the Bloch eigenstates in a periodic solid.[x] Recently it has been shown that the topological properties can be "tuned" by applying a time-dependant electromagnetic field.[y] For example when microwaves periodically drive a crystalline material (i.e. a combined spacial and time periodicity) it may become a Floquet topological insulator. The crystal's quasienergy spectrum causes the emergence of new forms of topological order. It is hoped that many topological properties may be transmuted into the material at will simply by using low energy electromagnetic fields, acting like a topological switch.[z][36]

Floquent time crystals

Time crystals can extend the idea of Floquet topological insulators still further, by enabling entirely new non-equilibrium dynamical phases. These dynamical phases are characterised by properties forbidden in the thermal equilibrium, such as spontaneous time-translation symmetry breaking or dynamical topological order. The latter opens the door to a new realm of quantum topological phenomena, which has only barely begun to be explored.

Fault-tolerance against decoherence

Preventing decoherence via topological order has a wide range of implications: The efficiency of some computing and information theory tasks can be greatly enhanced when using quantum correlated states; quantum correlations are an equally valuable resource in the realm of quantum thermodynamics[37] New types of quantum devices in non-equilibrium states function very differently to their classical counterparts: For example, it has been theoretically shown that non-equilibrium quantum ratchet systems function far more efficiently then that predicted by classical thermodynamics.[aa] It has also been shown that quantum coherence can be used to enhance the efficiency of systems beyond the classical Carnot limit. This is because it could be possible to extract work, in the form of photons, from a single heat bath. Quantum coherence can be used in effect to play the role of Maxwell's demon[39] allowing a hypothetical bypassing of the second law of thermodynamics[ab][44]

Thermodynamics

Compatibility with the laws of thermodynamics

File:Qualitative explanation of time translation symmetry breaking.png
Figure 1: We can imagine a situation where a permanently rotating object can be either (a) spontaneous or (b) explicit. In normal situations we must do work to cause an object to rotate; in (a) we must do work to cause the object to stop rotating. (Chernodub 2012)

A time crystal is a driven (i.e. open) quantum system that is in perpetual motion, it does not violate the laws of thermodynamics:[45]

  • A time crystal does not produce work as it rotates in its ground state, energy is conserved so that the first law of thermodynamics is not violated. (otherwise such a device would be a perpetuum mobile of the first kind).
  • A time crystal does not spontaneously convert thermal energy into mechanical work so that the second law of thermodynamics is not violated. (otherwise such a device would be a perpetuum mobile of the second kind).
  • A time crystal cannot serve as a perpetual store of work, so that the third law of thermodynamics is not violated (otherwise the device would be a perpetuum mobile of the third kind).

A time crystal has been said to be a perpetuum mobile of the fourth kind: it does not produce work and it cannot serve as a perpetual energy storage. But it rotates perpetually.[46]

Zero point energy

Zero-point radiation continually imparts random impulses on an electron, so that it never comes to a complete stop. Zero-point radiation gives the oscillator an average energy equal to the frequency of oscillation multiplied by one-half of Planck's constant

Time crystals are closely related to concepts of zero-point energy and the dynamical Casimir effect[ac] As temperature is reduced to absolute zero, it might be thought that all motion ceases and particles come completely to rest. In fact, however, kinetic energy is retained by particles even at the lowest possible temperature. The random fluctuation corresponding to this zero-point energy never vanishes as a consequence of the uncertainty principle of quantum mechanics.[47] According to modern physics (i.e. quantum field theory) the universe is made up of matter fields whose quanta are fermions (i.e. leptons and quarks) and force fields, whose quanta are bosons (e.g. photons and gluons). All these fields have zero-point energy.[48] The predicted zero-point energy contained in the vacuum is very large: physicists John Wheeler and Richard Feynman calculated that there is enough energy in the vacuum inside a single light bulb to boil all the world's oceans.[49]

Zero-point energy has many observed physical consequences such as spontaneous emission, Casimir force, Lamb shift and the magnetic moment of the electron.[50][ah] According to the fluctuation-dissipation theorem, fluctuations and dissipation go hand in hand; we cannot have one without the other, and the vacuum therefore dissipates energy. It is relatively easy to show that zero-point motion of a particle is in fact sustained by the driving zero-point field, or vacuum state.[ai][57] Zero-point energy may even be the cause of dark energy and the current acceleration of the universe, though this idea has been disputed.[aj]

The zero-point field is reminiscent of the discredited aether theory prevalent before the advent of Einstein's relativity, all broken symmetries can be attributed to the influence of this all pervading vacuum state.[60] If we imagine the entire universe was immersed in a vast magnet, the presence of this magnet might cause the background to be (In the words of Wolfgang Pauli) "weakly left handed" i.e. it might cause a preference of left over right and account for the broken symmetry we observe; the idea of a complex vacuum state that has a rich structure to account for all broken symmetries in nature is in the same spirit of this idea.[61]

No-go theorem in equilibrium

There is a proof that quantum time crystals in thermal equilibrium are not possible.[ak]

Non-equilibrium systems

Non-equilibrium quantum fluctuations have been studied for some time[al] and the past few years have seen a surge of interest in this topic. A comprehensive definition of energy and work in these contexts is yet to be formulated and an open area of research.[am]

Experiments

University of Maryland

In October 2016, researchers at the University of Maryland, College Park, claimed to have created the world's first discrete time crystal. Using the idea from the March proposal, they trapped a chain of 171Yb+ (ytterbium) ions in a Paul trap, confined by radio frequency electromagnetic fields. One of the two spin states was selected by a pair of laser beams. The lasers were pulsed, with the shape of the pulse controlled by an acousto-optic modulator using the Tukey window to avoid too much energy at the wrong optical frequency. The hyperfine electron states are called 2S1/2 |F=0, mF = 0⟩ and |F = 1, mF = 0⟩. The different energy levels of these are very close, separated by 12.642831 GHz. Ten Doppler cooled ions were used in a line 0.025 mm long. The ions were coupled together. The researchers observed a subharmonic oscillation of the drive. The experiment also showed "rigidity" of the time crystal, where the oscillation frequency remained unchanged even when the time crystal was perturbed. However, if the perturbation drive was too great, the time crystal "melted" and lost its oscillation.[d]

Harvard University

Mikhail Lukin led a group at Harvard University who also replicated to creation of a driven time crystal. The group used black diamond dipolar spin impurities and observed sub-harmonics of the drive frequency. Nitrogen vacancies in the diamond exposed to a magnetic field provide sites to store information in the form of spin direction. The diamond is exposed to a green laser and simultaneously to alternating pulses of radiowaves polarized perpendicular to each other. When the spin state is read out it is modulated at a one half frequency of the drive. The oscillations persist for over 100 cycles.[e]

Related Concepts

Choreographic Crystals

A similar idea called a choreographic crystal has been proposed.[an]

Dynamical Casimir effect

Time Crystals are closely related to the dynamical Casimir effect or Unruh effect. These effects are basically an instability of the quantum vacuum, which leads to an exponential growth of emitted boson pairs (known as Superradiance in the form of photons or phonons) when the oscillating frequency of the medium is equal to twice the boson frequency.

See also

References

Notes

  1. ^ See Wilczek (2012)[1] and Shapere & Wilczek (2012)[1]
  2. ^ See Chernodub (2012, 2013a, 2013b),[3] and Mendonça & Dodonov (2014)[3]
  3. ^ See Yao et al. (2017)}[4]
  4. ^ a b c See Zhang et al. (2016)[5]
  5. ^ a b See Choi et al. (2016)[5]
  6. ^ See Wilczek (2012) and Shapere & Wilczek (2012)
  7. ^ See Li et al. (2012a, 2012b)[7]
  8. ^ See Bruno (2013a)[8] and Bruno (2013b)[8]
  9. ^ See Nozières (2013)[10] and Volovik (2013)[10]
  10. ^ See Watanabe & Oshikawa (2015)[10]
  11. ^ See Wilczek (2013b)[11] and Yoshii et al. (2015)[11]
  12. ^ See Khemani et al. (2016)[10] and Else et al. (2016)[10]
  13. ^ See Sacha (2015)[9]
  14. ^ See Yao et al. (2017)}[4]
  15. ^ See Choi et al. (2016)[5]
  16. ^ See Wu experiment
  17. ^ While violations of C, P, T, CP, PT, TC exist it is thought that the product of these transformations CPT is always invariant.[18] The CPT theorem says that CPT symmetry holds for all physical phenomena. Thus an experiment that measures a violation of CP might infer a corresponding violation under time-reversal T in order to maintain CPT invariance. Only recently was a violation of time-reversal T symmetry directly observed (Lees et al. 2012).[19] Even with time-reversal asymmetry, CPT invariance still remain valid however.[20]
  18. ^ See von Klitzing et al. (1980)[26]
  19. ^ See Ray et al. (2014)[27] and Ray et al. (2015)[28]
  20. ^ See Nadi-Perge et al. (2014)[29]
  21. ^ See Willett et al. (2013)[30]
  22. ^ See Peng et al. (2009)[31] and Fu (2010)[31]
  23. ^ See Shirley (1965)[32] and Zel'Dovich (1967)[33]
  24. ^ See Grifoni & Hänggi (1998)[34] for a review of Floquet theory
  25. ^ See Wang et al. (2013)[35]
  26. ^ See Lindner et al. (2011),[36]
  27. ^ See for example Yukawa et al. (1997), Reimann et al. (1997), Tatara et al. (1998)[38]
  28. ^ See for example Scully (2001),[40] Scully et al. (2003),[39] Dillenschneider & Lutz (2009),[41] Roßnagel et al. (2014),[42] and Roßnagel et al. (2016)[43]
  29. ^ See Chernodub (2012, 2013a, 2013b),[3] and Mendonça & Dodonov (2014)[3]
  30. ^ See for example Enz (1974)
  31. ^ In QED it is argued the entire universe is completed bathed in the zero-point electromagnetic field, and as such it can only add some constant amount to measurement values. Physical measurements will therefore reveal only deviations from this constant vacuum state. It is argued that the zero-point energy is a c-number (i.e. constant) and therefore has no physical effect.[51] It is declared by fiat that the ground state has zero energy. The zero-point energy can be dropped from the Hamiltonian by redefining the zero of energy and by stating that it has no effect on the Heisenberg equations of motion:[52]
    The new Hamiltonian is said to be normally ordered (or Wick ordered) and is denoted by a double-dot symbol. The normally ordered Hamiltonian is denoted ::, i.e.:
    However, when we do this and solve the Heisenberg equation for a field operator, we must include the vacuum field, which is the homogeneous part of the solution for the field operator. It can be shown that the vacuum field is essential for the preservation of the commutators and the formal consistency of the theory (Milonni 1994). When the field energy is calculated a contribution from from the vacuum field is always present (i.e. the zero-point field energy). In other words, the zero-point field energy "reappears" even though it may have deleted it from the Hamiltonian via Wick ordering.[53]
  32. ^ See Schwinger (1998a, 1998b, 1998c)
  33. ^ Such a derivation was first given by Schwinger (1975) for a scalar field, and then generalised to the electromagnetic case by Schwinger et al. (1978) in which they state "the vacuum is regarded as truly a state with all physical properties equal to zero". More recently Jaffe (2005) has highlighted a similar approach in deriving the Casimir effect stating "the concept of zero-point fluctuations is a heuristic and calculational aid in the description of the Casimir effect, but not a necessity in QED."
  34. ^ There is a long debate[ad] over the question of whether zero-point fluctuations of quantized vacuum fields are “real” i.e. do they have physical effects that cannot be interpreted by an equally valid alternative theory? In quantum electrodynamics (QED) zero-point energy is frequently assumed to be a constant (c-number) of no physical significance as the field is in equilibrium.[ae] Julian Schwinger, in particular, attempted to formulate QED without reference to zero-point fluctuations via his "source theory".[af] From such an approach it is possible to derive the Casimir effect without reference to a fluctuating zero-point field.[ag] While the efforts of Schwinger and others have identified the difficultly in judging the physical reality of infinite zero-point energies that are inherent in field theories, no one has shown that source theory or another S-matrix based approach can provide a complete description of QED to all orders[54] and the zero-point field can be shown to be an essential requirement to preserve the formal consistency of QED.[55] zero-point energies and all they entail would seem to be a necessity for any attempt at any grand unified theory of physics: They give an explanation as to how spontaneous symmetry breaking occurs at all levels of the standard model[54] and modern physics does not know any way to construct gauge-invariant, renormalizable theories without zero-point energy.[56]
  35. ^ See Senitzky (1960)[57]
  36. ^ See for example Beck & Mackey (2005)[58] arguing for and Jetzer & Straumann (2006)[59] arguing against.
  37. ^ See Watanabe & Oshikawa (2015)[10]
  38. ^ See for example Yukawa (2000)[62] and Mukamel (2003)[63]
  39. ^ See Esposito et al. (2009) and Campisi et al. (2011) for academic review articles on non-equilibrium quantum fluctuations[64]
  40. ^ See Boyle et al. (2016)[65]

Citations

  1. ^ a b Powell 2013.
  2. ^ Cowen 2012; Powell 2013.
  3. ^ a b c d Sacha 2015, p. 1.
  4. ^ a b Richerme 2017.
  5. ^ a b c Richerme 2017; Wood 2017; Ouellette 2017.
  6. ^ a b Ouellette 2017.
  7. ^ Wolchover 2013.
  8. ^ a b Else et al. 2016, p. 1; Watanabe & Oshikawa 2015, p. 1; Wilczek 2013a; Sacha 2015, p. 1.
  9. ^ a b Thomas 2013.
  10. ^ a b c d e f Yao et al. 2017, p. 1.
  11. ^ a b Watanabe & Oshikawa 2015, p. 1.
  12. ^ a b c Feng & Jin 2005, p. 18.
  13. ^ a b Wilczek 2015, chpt. 3.
  14. ^ Cao 2004, p. 151.
  15. ^ Lee 1981, pp. 183–184.
  16. ^ Aitchison 1981, p. 540.
  17. ^ Lee 1981, pp. 184–187.
  18. ^ Lee 1981, pp. 188.
  19. ^ Rao 2012; Zeller 2012.
  20. ^ Zeller 2012.
  21. ^ Sólyom 2007, p. 191.
  22. ^ Sólyom 2007, p. 193.
  23. ^ Sólyom 2007, p. 194.
  24. ^ a b Wilczek 2012, p. 4.
  25. ^ a b Qi & Zhang 2010, p. 38.
  26. ^ a b Qi & Zhang 2010, p. 33.
  27. ^ Amherst College 2014; Morgan 2014.
  28. ^ Aalto University 2015.
  29. ^ Moskowitz 2014.
  30. ^ Wolchover 2014.
  31. ^ a b Hasan & Kane 2010, p. 19.
  32. ^ Grifoni & Hänggi 1998, pp. 233–234, 241.
  33. ^ Grifoni & Hänggi 1998, p. 237.
  34. ^ Guo et al. 2013, p. 1.
  35. ^ Chandler 2014.
  36. ^ a b Joint Quantum Institute 2011.
  37. ^ Dillenschneider & Lutz 2009, p. 6.
  38. ^ Yukawa 2000, p. 1.
  39. ^ a b Maruyama et al. 2009, p. 20.
  40. ^ Horodecki et al. 2009, p. 80; Maruyama et al. 2009, p. 20.
  41. ^ Modi et al. 2012, p. 43.
  42. ^ Johannes Gutenberg Universitaet Mainz 2014; Zyga 2014.
  43. ^ Cartlidge 2015.
  44. ^ Dillenschneider & Lutz 2009, pp. 5–6.
  45. ^ Chernodub 2013b, p. 2, 13.
  46. ^ Chernodub 2013a, p. 10.
  47. ^ Milonni 1994, pp. 36–38.
  48. ^ Milonni 1994, p. 35.
  49. ^ Pilkington 2003.
  50. ^ Milonni 1994, p. 111.
  51. ^ Milonni 1994, pp. 42–43.
  52. ^ Itzykson & Zuber 1980, p. 111.
  53. ^ Milonni 1994, p. 73.
  54. ^ a b Jaffe 2005, p. 7.
  55. ^ Milonni 1994, p. 48.
  56. ^ Greiner et al. 2012, p. 20.
  57. ^ a b Milonni 1994, p. 54.
  58. ^ Ball 2004; Copeland et al. 2006, p. 20.
  59. ^ Copeland et al. 2006, p. 20.
  60. ^ Lee 1981, pp. 378–381.
  61. ^ Aitchison 1981, p. 541.
  62. ^ Esposito et al. 2009, p. 2; Jarzynski 2011, p. 348; Campisi et al. 2011, p. 8.
  63. ^ Esposito et al. 2009, p. 2, 8; Jarzynski 2011, p. 348; Campisi et al. 2011, p. 13.
  64. ^ Seifert 2012, p. 9.
  65. ^ Ball 2016; Johnston 2016; Hackett 2016.

Academic papers

Beck, Christian; Mackey, Michael C. (2005). "Could dark energy be measured in the lab?" (PDF). Physics Letters B. 605 (3–4): 295–300. arXiv:astro-ph/0406504v2. Bibcode:2005PhLB..605..295B. doi:10.1016/j.physletb.2004.11.060. ISSN 0370-2693. {{cite journal}}: Invalid |ref=harv (help)
Boyle, Latham; Khoo, Jun Yong; Smith, Kendrick (2016). "Symmetric Satellite Swarms and Choreographic Crystals" (PDF). Physical Review Letters. 116 (1). arXiv:1407.5876v2. Bibcode:2016PhRvL.116a5503B. doi:10.1103/PhysRevLett.116.015503. ISSN 0031-9007.
Bruno, Patrick (2013a). "Comment on "Quantum Time Crystals"" (PDF). Physical Review Letters. 110 (11). arXiv:1210.4128v1. Bibcode:2013PhRvL.110k8901B. doi:10.1103/PhysRevLett.110.118901. ISSN 0031-9007. {{cite journal}}: Invalid |ref=harv (help)
Bruno, Patrick (2013b). "Comment on "Space-Time Crystals of Trapped Ions"" (PDF). Physical Review Letters. 111 (2). arXiv:1211.4792v1. Bibcode:2013PhRvL.111b9301B. doi:10.1103/PhysRevLett.111.029301. ISSN 0031-9007. {{cite journal}}: Invalid |ref=harv (help)
Campisi, Michele; Hänggi, Peter; Talkner, Peter (2011). "Colloquium: Quantum fluctuation relations: Foundations and applications" (PDF). Reviews of Modern Physics. 83 (3): 771–791. arXiv:1012.2268v5. Bibcode:2011RvMP...83..771C. doi:10.1103/RevModPhys.83.771. ISSN 0034-6861.
Choi, Soonwon; Choi, Joonhee; Landig, Renate; Kucsko, Georg; Zhou, Hengyun; Isoya, Junichi; Jelezko, Fedor; Onoda, Shinobu; Sumiya, Hitoshi; Khemani, Vedika; von Keyserlingk, Curt; Yao, Norman Y.; Demler, Eugene; Lukin, Mikhail D. (2016). "Observation of discrete time-crystalline order in a disordered dipolar many-body system" (PDF). arXiv:1610.08057v1. Bibcode:2016arXiv161008057C. {{cite journal}}: Cite journal requires |journal= (help)
Chernodub, M. N. (2012). "Permanently rotating devices: extracting rotation from quantum vacuum fluctuations?" (PDF). arXiv:1203.6588v1. Bibcode:2012arXiv1203.6588C. {{cite journal}}: Cite journal requires |journal= (help); Invalid |ref=harv (help)
Chernodub, M. N. (2013a). "Zero-point fluctuations in rotation: Perpetuum mobile of the fourth kind without energy transfer" (PDF). Nuovo Cimento C. 5 (36): 53–63. arXiv:1302.0462v1. Bibcode:2013arXiv1302.0462C. doi:10.1393/ncc/i2013-11523-5. {{cite journal}}: Invalid |ref=harv (help)
Chernodub, M. N. (2013b). "Rotating Casimir systems: Magnetic-field-enhanced perpetual motion, possible realization in doped nanotubes, and laws of thermodynamics" (PDF). Physical Review D. 87 (2). arXiv:1207.3052v2. Bibcode:2013PhRvD..87b5021C. doi:10.1103/PhysRevD.87.025021. ISSN 1550-7998. {{cite journal}}: Invalid |ref=harv (help)
Copeland, Edmund J.; Sami, M.; Tsujikawa, Shinji (2006). "Dynamics of dark energy" (PDF). International Journal of Modern Physics D. 15 (11): 1753–1935. arXiv:hep-th/0603057. Bibcode:2006IJMPD..15.1753C. doi:10.1142/S021827180600942X. ISSN 0218-2718.
Dillenschneider, R.; Lutz, E. (2009). "Energetics of quantum correlations" (PDF). EPL (Europhysics Letters). 88 (5): 50003. arXiv:0803.4067. Bibcode:2009EL.....8850003D. doi:10.1209/0295-5075/88/50003. ISSN 0295-5075. {{cite journal}}: Invalid |ref=harv (help)
Else, Dominic V.; Bauer, Bela; Nayak, Chetan (2016). "Floquet Time Crystals" (PDF). Physical Review Letters. 117 (9). arXiv:1603.08001v4. Bibcode:2016PhRvL.117i0402E. doi:10.1103/PhysRevLett.117.090402. ISSN 0031-9007.
Esposito, Massimiliano; Harbola, Upendra; Mukamel, Shaul (2009). "Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems" (PDF). Reviews of Modern Physics. 81 (4): 1665–1702. arXiv:0811.3717v2. Bibcode:2009RvMP...81.1665E. doi:10.1103/RevModPhys.81.1665. ISSN 0034-6861.
Grifoni, Milena; Hänggi, Peter (1998). "Driven quantum tunneling" (PDF). Physics Reports. 304 (5–6): 229–354. Bibcode:1998PhR...304..229G. doi:10.1016/S0370-1573(98)00022-2. ISSN 0370-1573. {{cite journal}}: Invalid |ref=harv (help)
Guo, Lingzhen; Marthaler, Michael; Schön, Gerd (2013). "Phase Space Crystals: A New Way to Create a Quasienergy Band Structure" (PDF). Physical Review Letters. 111 (20). arXiv:1305.1800v3. Bibcode:2013PhRvL.111t5303G. doi:10.1103/PhysRevLett.111.205303. ISSN 0031-9007.
Hasan, M. Z.; Kane, C. L. (2010). "Colloquium: Topological insulators" (PDF). Reviews of Modern Physics. 82 (4): 3045–3067. arXiv:1002.3895v2. Bibcode:2010RvMP...82.3045H. doi:10.1103/RevModPhys.82.3045. ISSN 0034-6861. {{cite journal}}: Invalid |ref=harv (help)
Horodecki, Ryszard; Horodecki, Paweł; Horodecki, Michał; Horodecki, Karol (2009). "Quantum entanglement" (PDF). Reviews of Modern Physics. 81 (2): 865–942. arXiv:quant-ph/0702225v2. Bibcode:2009RvMP...81..865H. doi:10.1103/RevModPhys.81.865. ISSN 0034-6861.
Jaffe, R. L. (2005). "Casimir effect and the quantum vacuum" (PDF). Physical Review D. 72 (2): 021301. arXiv:hep-th/0503158. Bibcode:2005PhRvD..72b1301J. doi:10.1103/PhysRevD.72.021301. {{cite journal}}: Invalid |ref=harv (help)
Jarzynski, Christopher (2011). "Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale" (PDF). Annual Review of Condensed Matter Physics. 2 (1): 329–351. Bibcode:2011ARCMP...2..329J. doi:10.1146/annurev-conmatphys-062910-140506. ISSN 1947-5454. {{cite journal}}: Invalid |ref=harv (help)
Jetzer, Philippe; Straumann, Norbert (2006). "Josephson junctions and dark energy" (PDF). Physics Letters B. 639 (2): 57–58. arXiv:astro-ph/0604522. Bibcode:2006PhLB..639...57J. doi:10.1016/j.physletb.2006.06.020. ISSN 0370-2693. {{cite journal}}: Invalid |ref=harv (help)
Khemani, Vedika; Lazarides, Achilleas; Moessner, Roderich; Sondhi, S. L. (2016). "Phase Structure of Driven Quantum Systems" (PDF). Physical Review Letters. 116 (25). arXiv:1508.03344v3. Bibcode:2016PhRvL.116y0401K. doi:10.1103/PhysRevLett.116.250401. ISSN 0031-9007.
Lees, J. P. (2012). "Observation of Time-Reversal Violation in the B0 Meson System" (PDF). Physical Review Letters. 109 (21). arXiv:1207.5832v4. Bibcode:2012PhRvL.109u1801L. doi:10.1103/PhysRevLett.109.211801. ISSN 0031-9007.
Li, Tongcang; Gong, Zhe-Xuan; Yin, Zhang-Qi; Quan, H. T.; Yin, Xiaobo; Zhang, Peng; Duan, L.-M.; Zhang, Xiang (2012a). "Space-Time Crystals of Trapped Ions" (PDF). Physical Review Letters. 109 (16). arXiv:1206.4772v2. Bibcode:2012PhRvL.109p3001L. doi:10.1103/PhysRevLett.109.163001. ISSN 0031-9007.
Li, Tongcang; Gong, Zhe-Xuan; Yin, Zhang-Qi; Quan, H. T.; Yin, Xiaobo; Zhang, Peng; Duan, L.-M.; Zhang, Xiang (2012b). "Reply to Comment on "Space-Time Crystals of Trapped Ions"" (PDF). arXiv:1212.6959v2. Bibcode:2012arXiv1212.6959L. {{cite journal}}: Cite journal requires |journal= (help)
Lindner, Netanel H.; Refael, Gil; Galitski, Victor (2011). "Floquet topological insulator in semiconductor quantum wells" (PDF). Nature Physics. 7 (6): 490–495. arXiv:1008.1792v2. Bibcode:2011NatPh...7..490L. doi:10.1038/nphys1926. ISSN 1745-2473.
Nadj-Perge, S.; Drozdov, I. K.; Li, J.; Chen, H.; Jeon, S.; Seo, J.; MacDonald, A. H.; Bernevig, B. A.; Yazdani, A. (2014). "Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor" (PDF). Science. 346 (6209): 602–607. arXiv:1410.0682v1. Bibcode:2014Sci...346..602N. doi:10.1126/science.1259327. ISSN 0036-8075.
Nozières, Philippe (2013). "Time crystals: Can diamagnetic currents drive a charge density wave into rotation?" (PDF). EPL (Europhysics Letters). 103 (5): 57008. arXiv:1306.6229v1. Bibcode:2013EL....10357008N. doi:10.1209/0295-5075/103/57008. ISSN 0295-5075. {{cite journal}}: Invalid |ref=harv (help)
Sacha, Krzysztof (2015). "Modeling spontaneous breaking of time-translation symmetry" (PDF). Physical Review A. 91 (3). arXiv:1410.3638v3. Bibcode:2015PhRvA..91c3617S. doi:10.1103/PhysRevA.91.033617. ISSN 1050-2947. {{cite journal}}: Invalid |ref=harv (help)
Schwinger, Julian (1975). "Casimir effect in source theory". Letters in Mathematical Physics. 1 (1): 43–47. Bibcode:1975LMaPh...1...43S. doi:10.1007/BF00405585. {{cite journal}}: Invalid |ref=harv (help)
Schwinger, Julian; DeRaad, Lester L.; Milton, Kimball A. (1978). "Casimir effect in dielectrics". Annals of Physics. 115 (1): 1–23. Bibcode:1978AnPhy.115....1S. doi:10.1016/0003-4916(78)90172-0.
Scully, Marlan O. (2001). "Extracting Work from a Single Thermal Bath via Quantum Negentropy". Physical Review Letters. 87 (22). Bibcode:2001PhRvL..87v0601S. doi:10.1103/PhysRevLett.87.220601. ISSN 0031-9007. {{cite journal}}: Invalid |ref=harv (help)
Scully, Marlan O.; Zubairy, M. Suhail; Agarwal, Girish S.; Walther, Herbert. (2003). "Extracting Work from a Single Heat Bath via Vanishing Quantum Coherence". Science. 299 (5608): 862–864. Bibcode:2003Sci...299..862S. doi:10.1126/science.1078955. ISSN 0036-8075. PMID 12511655.
Seifert, Udo (2012). "Stochastic thermodynamics, fluctuation theorems and molecular machines" (PDF). Reports on Progress in Physics. 75 (12): 126001. arXiv:1205.4176v1. Bibcode:2012RPPh...75l6001S. doi:10.1088/0034-4885/75/12/126001. ISSN 0034-4885. {{cite journal}}: Invalid |ref=harv (help)
Senitzky, I. R. (1960). "Dissipation in Quantum Mechanics. The Harmonic Oscillator". Physical Review. 119 (2): 670–679. Bibcode:1960PhRv..119..670S. doi:10.1103/PhysRev.119.670. ISSN 0031-899X. {{cite journal}}: Invalid |ref=harv (help)
Shapere, Alfred; Wilczek, Frank (2012). "Classical Time Crystals" (PDF). Physical Review Letters. 109 (16). arXiv:1202.2537v2. Bibcode:2012PhRvL.109p0402S. doi:10.1103/PhysRevLett.109.160402. ISSN 0031-9007. {{cite journal}}: Invalid |ref=harv (help)
Shirley, Jon H. (1965). "Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time". Physical Review. 138 (4B): B979–B987. Bibcode:1965PhRv..138..979S. doi:10.1103/PhysRev.138.B979. ISSN 0031-899X. {{cite journal}}: Invalid |ref=harv (help)
Smith, J.; Lee, A.; Richerme, P.; Neyenhuis, B.; Hess, P. W.; Hauke, P.; Heyl, M.; Huse, D. A.; Monroe, C. (2016). "Many-body localization in a quantum simulator with programmable random disorder" (PDF). Nature Physics. 12 (10): 907–911. arXiv:1508.07026v1. Bibcode:2016NatPh..12..907S. doi:10.1038/nphys3783. ISSN 1745-2473.
Maruyama, Koji; Nori, Franco; Vedral, Vlatko (2009). "Colloquium: The physics of Maxwell's demon and information" (PDF). Reviews of Modern Physics. 81 (1): 1–23. arXiv:0707.3400. Bibcode:2009RvMP...81....1M. doi:10.1103/RevModPhys.81.1. ISSN 0034-6861.
Mendonça, J. T.; Dodonov, V. V. (2014). "Time Crystals in Ultracold Matter" (PDF). Journal of Russian Laser Research. 35 (1): 93–100. doi:10.1007/s10946-014-9404-9. ISSN 1071-2836. {{cite journal}}: Invalid |ref=harv (help)
Modi, Kavan; Brodutch, Aharon; Cable, Hugo; Paterek, Tomasz; Vedral, Vlatko (2012). "The classical-quantum boundary for correlations: Discord and related measures" (PDF). Reviews of Modern Physics. 84 (4): 1655–1707. arXiv:1112.6238. Bibcode:2012RvMP...84.1655M. doi:10.1103/RevModPhys.84.1655. ISSN 0034-6861.
Ray, M. W.; Ruokokoski, E.; Kandel, S.; Möttönen, M.; Hall, D. S. (2014). "Observation of Dirac monopoles in a synthetic magnetic field" (PDF). Nature. 505 (7485): 657–660. arXiv:1408.3133v1. Bibcode:2014Natur.505..657R. doi:10.1038/nature12954. ISSN 0028-0836.
Ray, M. W.; Ruokokoski, E.; Tiurev, K.; Mottonen, M.; Hall, D. S. (2015). "Observation of isolated monopoles in a quantum field" (PDF). Science. 348 (6234): 544–547. Bibcode:2015Sci...348..544R. doi:10.1126/science.1258289. ISSN 0036-8075.
Reimann, Peter; Grifoni, Milena; Hänggi, Peter (1997). "Quantum Ratchets" (PDF). Physical Review Letters. 79 (1): 10–13. Bibcode:1997PhRvL..79...10R. doi:10.1103/PhysRevLett.79.10. ISSN 0031-9007.
Roßnagel, J.; Abah, O.; Schmidt-Kaler, F.; Singer, K.; Lutz, E. (2014). "Nanoscale Heat Engine Beyond the Carnot Limit" (PDF). Physical Review Letters. 112 (3). arXiv:1308.5935. Bibcode:2014PhRvL.112c0602R. doi:10.1103/PhysRevLett.112.030602. ISSN 0031-9007.
Roßnagell, J.; Dawkins, S. T.; Tolazzi, K. N.; Abah, O.; Lutz, E.; Schmidt-Kaler, F.; Singer, K. (2016). "A single-atom heat engine" (PDF). Science. 352 (6283): 325–329. arXiv:1510.03681. Bibcode:2016Sci...352..325R. doi:10.1126/science.aad6320. ISSN 0036-8075.
Tatara, Gen; Kikuchi, Makoto; Yukawa, Satoshi; Matsukawa, Hiroshi (1998). "Dissipation Enhanced Asymmetric Transport in Quantum Ratchets" (PDF). Journal of the Physical Society of Japan. 67 (4): 1090–1093. arXiv:cond-mat/9711045. doi:10.1143/JPSJ.67.1090. ISSN 0031-9015.
Volovik, G. E. (2013). "On the broken time translation symmetry in macroscopic systems: Precessing states and off-diagonal long-range order" (PDF). JETP Letters. 98 (8): 491–495. arXiv:1309.1845v2. Bibcode:2013JETPL..98..491V. doi:10.1134/S0021364013210133. ISSN 0021-3640. {{cite journal}}: Invalid |ref=harv (help)
von Keyserlingk, C. W.; Khemani, Vedika; Sondhi, S. L. (2016). "Absolute stability and spatiotemporal long-range order in Floquet systems" (PDF). Physical Review B. 94 (8). arXiv:1605.00639v3. Bibcode:2016PhRvB..94h5112V. doi:10.1103/PhysRevB.94.085112. ISSN 2469-9950.
Wang, Y. H.; Steinberg, H.; Jarillo-Herrero, P.; Gedik, N. (2013). "Observation of Floquet-Bloch States on the Surface of a Topological Insulator" (PDF). Science. 342 (6157): 453–457. arXiv:1310.7563v1. Bibcode:2013Sci...342..453W. doi:10.1126/science.1239834. ISSN 0036-8075.
Watanabe, Haruki; Oshikawa, Masaki (2015). "Absence of Quantum Time Crystals" (PDF). Physical Review Letters. 114 (25). arXiv:1410.2143v3. Bibcode:2015PhRvL.114y1603W. doi:10.1103/PhysRevLett.114.251603. ISSN 0031-9007. {{cite journal}}: Invalid |ref=harv (help)
Wilczek, Frank (2012). "Quantum Time Crystals" (PDF). Physical Review Letters. 109 (16). arXiv:1202.2539v2. Bibcode:2012PhRvL.109p0401W. doi:10.1103/PhysRevLett.109.160401. ISSN 0031-9007. {{cite journal}}: Invalid |ref=harv (help)
Wilczek, Frank (2013a). "Wilczek Reply:" (PDF). Physical Review Letters. 110 (11). Bibcode:2013PhRvL.110k8902W. doi:10.1103/PhysRevLett.110.118902. ISSN 0031-9007. {{cite journal}}: Invalid |ref=harv (help)
Wilczek, Frank (2013b). "Superfluidity and Space-Time Translation Symmetry Breaking" (PDF). Physical Review Letters. 111 (25). arXiv:1308.5949v1. Bibcode:2013PhRvL.111y0402W. doi:10.1103/PhysRevLett.111.250402. ISSN 0031-9007. {{cite journal}}: Invalid |ref=harv (help)
Willett, R. L.; Nayak, C.; Shtengel, K.; Pfeiffer, L. N.; West, K. W. (2013). "Magnetic-Field-Tuned Aharonov-Bohm Oscillations and Evidence for Non-Abelian Anyons atν=5/2" (PDF). Physical Review Letters. 111 (18). arXiv:1301.2639v1. Bibcode:2013PhRvL.111r6401W. doi:10.1103/PhysRevLett.111.186401. ISSN 0031-9007.
Yao, N. Y.; Potter, A. C.; Potirniche, I.-D.; Vishwanath, A. (2017). "Discrete Time Crystals: Rigidity, Criticality, and Realizations" (PDF). Physical Review Letters. 118 (3). arXiv:1608.02589v2. Bibcode:2016arXiv160802589Y. doi:10.1103/PhysRevLett.118.030401. ISSN 0031-9007.
Yoshii, Ryosuke; Takada, Satoshi; Tsuchiya, Shunji; Marmorini, Giacomo; Hayakawa, Hisao; Nitta, Muneto (2015). "Fulde-Ferrell-Larkin-Ovchinnikov states in a superconducting ring with magnetic fields: Phase diagram and the first-order phase transitions" (PDF). Physical Review B. 92 (22). arXiv:1404.3519v2. Bibcode:2015PhRvB..92v4512Y. doi:10.1103/PhysRevB.92.224512. ISSN 1098-0121.
Yukawa, Satoshi; Kikuchi, Macoto; Tatara, Gen; Matsukawa, Hiroshi (1997). "Quantum Ratchets" (PDF). Journal of the Physical Society of Japan. 66 (10): 2953–2956. arXiv:cond-mat/9706222. Bibcode:1997JPSJ...66.2953Y. doi:10.1143/JPSJ.66.2953. ISSN 0031-9015.
Yukawa, Satoshi (2000). "A Quantum Analogue of the Jarzynski Equality" (PDF). Journal of the Physical Society of Japan. 69 (8): 2367–2370. arXiv:cond-mat/0007456. Bibcode:2000JPSJ...69.2367Y. doi:10.1143/JPSJ.69.2367. ISSN 0031-9015. {{cite journal}}: Invalid |ref=harv (help)
Zel'Dovich, Y. B. (1967). "The quasienergy of a quantum-mechanical system subjected to a periodic action" (PDF). Soviet Physics JETP. 24 (5): 1006–1008. Bibcode:1967JETP...24.1006Z. {{cite journal}}: Invalid |ref=harv (help)
Zhang, J.; Hess, P. W.; Kyprianidis, A.; Becker, P.; Lee, A.; Smith, J.; Pagano, G.; Potirniche, I.-D.; Potter, A. C.; Vishwanath, A.; Yao, N. Y.; Monroe, C. (2016). "Observation of a Discrete Time Crystal" (PDF). arXiv:1609.08684v1. Bibcode:2016arXiv160908684Z. {{cite journal}}: Cite journal requires |journal= (help)

Books

Bordag, M.; Mohideen, U.; Mostepanenko, V.M. (2001). "New developments in the Casimir effect" (PDF). Physics Reports. 353 (1–3): 1–205. arXiv:quant-ph/0106045. doi:10.1016/S0370-1573(01)00015-1. ISSN 0370-1573. {{cite journal}}: Invalid |ref=harv (help)
Bordag, M.; Mohideen, U.; Mostepanenko, V.M.; Klimchitskaya, G. L (28 May 2009). Advances in the Casimir Effect. Oxford: Oxford University Press. ISBN 978-0-19-157988-2. {{cite book}}: Invalid |ref=harv (help)
Cao, Tian Yu (25 March 2004). Conceptual Foundations of Quantum Field Theory. Cambridge: Cambridge University Press. ISBN 978-0-521-60272-3. {{cite book}}: Invalid |ref=harv (help)
Enz, Charles P. (1974). "Is the Zero-Point Energy Real?". In Enz, C. P.; Mehra, J. (eds.). Physical Reality and Mathematical Description. Dordrecht: D. Reidel Publishing Company. pp. 124–132. doi:10.1007/978-94-010-2274-3_8. ISBN 978-94-010-2274-3. {{cite book}}: Invalid |ref=harv (help)
Greiner, Walter; Müller, B.; Rafelski, J. (2012). Quantum Electrodynamics of Strong Fields: With an Introduction into Modern Relativistic Quantum Mechanics. Springer. doi:10.1007/978-3-642-82272-8. ISBN 978-3-642-82274-2.
Lee, T. D. (15 August 1981). Particle Physics. CRC Press. ISBN 978-3-7186-0033-5. {{cite book}}: Invalid |ref=harv (help)
Feng, Duan; Jin, Guojun (2005). Introduction to Condensed Matter Physics. singapore: World Scientific. ISBN 978-981-238-711-0. {{cite book}}: Invalid |ref=harv (help)
Milonni, Peter W. (1994). The Quantum Vacuum: An Introduction to Quantum Electrodynamics. London: Academic Press. ISBN 978-0-124-98080-8. {{cite book}}: Invalid |ref=harv (help)
Pade, Jochen (2014). Quantum Mechanics for Pedestrians 2: Applications and Extensions. Dordrecht: Springer. doi:10.1007/978-3-319-00813-4. ISBN 978-3-319-00813-4. ISSN 2192-4791. {{cite book}}: Invalid |ref=harv (help)
Schwinger, Julian (1998a). Particles, Sources, And Fields, Volume 1: v. 1 (Advanced Books Classics). Perseus. ISBN 978-0-738-20053-8. {{cite book}}: Invalid |ref=harv (help)
Schwinger, Julian (1998b). Particles, Sources, And Fields, Volume 2: v. 2 (Advanced Books Classics). Perseus. ISBN 978-0-738-20054-5. {{cite book}}: Invalid |ref=harv (help)
Schwinger, Julian (1998c). Particles, Sources, And Fields, Volume 3: v. 3 (Advanced Books Classics). Perseus. ISBN 978-0-738-20055-2. {{cite book}}: Invalid |ref=harv (help)
Sólyom, Jenö (19 September 2007). Fundamentals of the Physics of Solids: Volume 1: Structure and Dynamics. Springer. ISBN 978-3-540-72600-5. {{cite book}}: Invalid |ref=harv (help)
Wilczek, Frank (16 July 2015). A Beautiful Question: Finding Nature's Deep Design. Penguin Books Limited. ISBN 978-1-84614-702-9. {{cite book}}: Invalid |ref=harv (help)

Press

Aalto University (30 April 2015). "Physicists discover quantum-mechanical monopoles". phys.org. Science X. Archived from the original on 30 Apr 2015. {{cite web}}: Invalid |ref=harv (help)
Aitchison, Ian (19 November 1981). "Observing the Unobservable". New Scientist. 92 (1280): 540–541. ISSN 0262-4079. {{cite journal}}: Invalid |ref=harv (help)
Amherst College (29 January 2014). "Physicists create synthetic magnetic monopole predicted more than 80 years ago". phys.org. Science X. Archived from the original on 29 Jan 2014. {{cite web}}: Invalid |ref=harv (help)
Aron, Jacob (6 July 2012). "Computer that could outlive the universe a step closer". newscientist.com. New Scientist. Archived from the original on 2 Feb 2017. {{cite web}}: Invalid |ref=harv (help)
Ball, Philip (8 January 2016). "Focus: New Crystal Type is Always in Motion". physics.aps.org. APS Physics. Archived from the original on 3 Feb 2017. {{cite web}}: Invalid |ref=harv (help)
Ball, Philip (8 July 2004). "Scepticism greets pitch to detect dark energy in the lab". Nature. 430 (6996): 126–126. Bibcode:2004Natur.430..126B. doi:10.1038/430126b. ISSN 0028-0836. {{cite journal}}: Invalid |ref=harv (help)
Cartlidge, Edwin (21 October 2015). "Scientists build heat engine from a single atom". sciencemag.org. Science Magazine. Archived from the original on 1 Feb 2017. {{cite web}}: Invalid |ref=harv (help)
Chandler, David (24 October 2014). "Topological insulators: Persuading light to mix it up with matter". phys.org. Science X. Archived from the original on 8 Feb 2017. {{cite web}}: Invalid |ref=harv (help)
Coleman, Piers (9 January 2013). "Quantum physics: Time crystals". Nature. 493 (7431): 166–167. Bibcode:2013Natur.493..166C. doi:10.1038/493166a. ISSN 0028-0836. {{cite journal}}: Invalid |ref=harv (help)
Cowen, Ron (27 February 2012). ""Time Crystals" Could Be a Legitimate Form of Perpetual Motion". scientificamerican.com. Scientific American. Archived from the original on 2 Feb 2017. {{cite web}}: Invalid |ref=harv (help)
Daghofer, Maria (29 April 2013). "Viewpoint: Toward Fractional Quantum Hall Physics with Cold Atoms". physics.aps.org. APS Physics. Archived from the original on 7 Feb 2017. {{cite web}}: Invalid |ref=harv (help)
Grossman, Lisa (18 January 2012). "Death-defying time crystal could outlast the universe". newscientist.com. New Scientist. Archived from the original on 2 Feb 2017.
Hackett, Jennifer (22 February 2016). "Curious Crystal Dances for Its Symmetry". scientificamerican.com. Scientific American. Archived from the original on 3 Feb 2017. {{cite web}}: Invalid |ref=harv (help)
Hewitt, John (3 May 2013). "Creating time crystals with a rotating ion ring". phys.org. Science X. Archived from the original on 4 Jul 2013.
Johnston, Hamish (18 January 2016). "'Choreographic crystals' have all the right moves". physicsworld.com. Institute of Physics. Archived from the original on 3 Feb 2017. {{cite web}}: Invalid |ref=harv (help)
Johannes Gutenberg Universitaet Mainz (3 February 2014). "Prototype of single ion heat engine created". sciencedaily.com. ScienceDaily. Archived from the original on 1 Feb 2017.{{cite web}}: CS1 maint: ref duplicates default (link)
Joint Quantum Institute (22 March 2011). "Floquet Topological Insulators". jqi.umd.edu. Joint Quantum Institute. {{cite web}}: Invalid |ref=harv (help)
Morgan, James (30 January 2014). "Elusive magnetic 'monopole' seen in quantum system". bbc.co.uk. BBC. Archived from the original on 30 Jan 2014. {{cite web}}: Invalid |ref=harv (help)
Moskowitz, Clara (2 October 2014). "New Particle Is Both Matter and Antimatter". scientificamerican.com. Scientific American. Archived from the original on 9 Oct 2014. {{cite web}}: Invalid |ref=harv (help)
Ouellette, Jennifer (31 January 2017). "World's first time crystals cooked up using new recipe". newscientist.com. New Scientist. Archived from the original on 1 Feb 2017. {{cite web}}: Invalid |ref=harv (help)
Pilkington, Mark (17 July 2003). "Zero point energy". theguardian.com. The Guardian. Archived from the original on 7 Feb 2017. {{cite news}}: Invalid |ref=harv (help)
Powell, Devin (2013). "Can matter cycle through shapes eternally?". Nature. doi:10.1038/nature.2013.13657. ISSN 1476-4687. Archived from the original on 3 Feb 2017. {{cite journal}}: Invalid |ref=harv (help)
Rao, Achintya (21 November 2012). "BaBar makes first direct measurement of time-reversal violation". physicsworld.com. Institute of Physics. Archived from the original on 24 Mar 2015. {{cite web}}: Invalid |ref=harv (help)
Richerme, Phil (18 January 2017). "Viewpoint: How to Create a Time Crystal". physics.aps.org. APS Physics. Archived from the original on 2 Feb 2017. {{cite web}}: Invalid |ref=harv (help)
Thomas, Jessica (15 March 2013). "Notes from the Editors: The Aftermath of a Controversial Idea". physics.aps.org. APS Physics. Archived from the original on 2 Feb 2017. {{cite web}}: Invalid |ref=harv (help)
Qi, Xiao-Liang; Zhang, Shou-Cheng (2010). "The quantum spin Hall effect and topological insulators" (PDF). Physics Today. 63 (1): 33–38. doi:10.1063/1.3293411. ISSN 0031-9228. {{cite journal}}: Invalid |ref=harv (help)
University of California, Berkeley (26 January 2017). "Physicists unveil new form of matter—time crystals". phys.org. Science X. Archived from the original on 28 Jan 2017.
Weiner, Sophie (28 January 2017). "Scientists Create A New Kind Of Matter: Time Crystals". popularmechanics.com. Popular mechanics. Archived from the original on 3 Feb 2017. {{cite web}}: Invalid |ref=harv (help)
Wolchover, Natalie (25 April 2013). "Perpetual Motion Test Could Amend Theory of Time". quantamagazine.org. Simons Foundation. Archived from the original on 2 Feb 2017. {{cite web}}: Invalid |ref=harv (help)
Wolchover, Natalie (15 May 2014). "Forging a Qubit to Rule Them All". quantamagazine.org. Simmons Foundation. Archived from the original on 15 Mar 2016. {{cite web}}: Invalid |ref=harv (help)
Wood, Charlie (31 January 2017). "Time crystals realize new order of space-time". csmonitor.com. Christian Science Monitor. Archived from the original on 2 Feb 2017. {{cite web}}: Invalid |ref=harv (help)
Yirka, Bob (9 July 2012). "Physics team proposes a way to create an actual space-time crystal". phys.org. Science X. Archived from the original on 15 Apr 2013.
Zakrzewski, Jakub (15 October 2012). "Viewpoint: Crystals of Time". physics.aps.org. APS Physics. Archived from the original on 2 Feb 2017.
Zeller, Michael (19 November 2012). "Viewpoint: Particle Decays Point to an Arrow of Time". physics.aps.org. APS Physics. Archived from the original on 4 Feb 2017. {{cite web}}: Invalid |ref=harv (help)
Zyga, Lisa (20 February 2012). "Time crystals could behave almost like perpetual motion machines". phys.org. Science X. Archived from the original on 3 Feb 2017.
Zyga, Lisa (22 August 2013). "Physicist proves impossibility of quantum time crystals". phys.org. Space X. Archived from the original on 3 Feb 2017.
Zyga, Lisa (27 January 2014). "Nanoscale heat engine exceeds standard efficiency limit". phys.org. Science X. Archived from the original on 4 Apr 2015. {{cite web}}: Invalid |ref=harv (help)
Zyga, Lisa (9 July 2015). "Physicists propose new definition of time crystals—then prove such things don't exist". phys.org. Science X. Archived from the original on 9 Jul 2015.
Zyga, Lisa (9 September 2016). "Time crystals might exist after all (Update)". phys.org. Science X. Archived from the original on 11 Sep 2016.

External Links