Abū al-Wafā' Būzjānī

From Wikipedia, the free encyclopedia
  (Redirected from Abul Wáfa)
Jump to: navigation, search
"Abul Wáfa" redirects here. For the lunar crater, see Abul Wáfa (crater).
Abu al-Wafa' al-Buzjani
Buzjani, the Persian.jpg
Born (940-06-10)June 10, 940
Buzhgan
Died 997 or 998 CE
Baghdad
Era Islamic Golden Age
Region Baghdad
Main interests Mathematics and Astronomy
Notable ideas
Major works Almagest of Abū al-Wafā'

Abū al-Wafāʾ, Muḥammad ibn Muḥammad ibn Yaḥyā ibn Ismāʿīl ibn al-ʿAbbās al-Būzjānī (Persian: ابوالوفای بوزجانی‎) [1] (10 June 940 – 15 July 998) was a Persian[2] mathematician and astronomer who worked in Baghdad. He made important innovations in spherical trigonometry, and his work on arithmetics for businessmen contains the first instance of using negative numbers in a medieval Islamic text.

He is also credited with compiling the tables of sines and tangents at 15' intervals. He also introduced the sec and cosec functions, as well studied the interrelations between the six trigonometric lines associated with an arc.[3] His Almagest was widely read by medieval Arabic astronomers in the centuries after his death. He is known to have written several other books that have not survived.

Life[edit]

He was born in Buzhgan, (now Torbat-e Jam) in Khorasan (in today's Iran). At age 19, in 959 AD, he moved to Baghdad and remained there for the next forty years, and died there in 998.[3] He was a contemporary of the distinguished scientists Abū Sahl al-Qūhī and Al-Sijzi who were in Baghdad at the time and others like Abu Nasr ibn Iraq, Abu-Mahmud Khojandi, Kushyar ibn Labban and Al-Biruni.[4] In Baghdad, he received patronage by members of the Buyid court.[5]

Astronomy[edit]

Abu Al-Wafa' was the first to build a wall quadrant to observe the sky.[4] It has been suggested that he was influenced by the works of Al-Battani as the latter describes a quadrant instrument in his Kitāb az-Zīj.[4] His use of tangent helped to solve problems involving right-angled spherical triangles, and developed a new technique to calculate sine tables, allowing him to construct more accurate tables than his predecessors.[5]

In 997, he participated in an experiment to determine the difference in local time between his location and that of al-Biruni (who was living in Kath, now a part of Uzbekistan). The result was very close to present-day calculations, showing a difference of approximately 1 hour between the two longitudes. Abu al-Wafa is also known to have worked with Abū Sahl al-Qūhī, who was a famous maker of astronomical instruments.[5] While what is extant from his works lacks theoretical innovation, his observational data were used by many later astronomers, including al-Biruni's.[5]

Almagest[edit]

Among his works on astronomy, only the first seven treatises of his Almagest (Kitāb al-Majisṭī) are now extant.[6] The work covers numerous topics in the fields of plane and spherical trigonometry, planetary theory, and solutions to determine the direction of Qibla.[4][5]

Mathematics[edit]

He established several trigonometric identities such as sin(a ± b) in their modern form, where the Ancient Greek mathematicians had expressed the equivalent identities in terms of chords.[7]

\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta

He also discovered the law of sines for spherical triangles:

\frac{A}{\sin a} = \frac{B}{\sin b} 
= \frac{C}{\sin c}

where A, B, C are the sides and a, b, c are the opposing angles.[7]

Some sources suggest that he introduced the tangent function, although other sources give the credit for this innovation to al-Marwazi.[7]

Works[edit]

  • Almagest (كتاب المجسطي Kitāb al-Majisṭī).
  • A book of zij called Zīj al‐wāḍiḥ (زيج الواضح), no longer extant.[5]
  • "A Book on Those Geometric Constructions Which Are Necessary for a Craftsman", (كتاب في ما یحتاج إليه الصانع من الأعمال الهندسية Kitāb fī mā yaḥtāj ilayh al-ṣāniʿ min al-aʿmāl al-handasiyya).[8] This text contains over one hundred geometric constructions which have been reviewed and compared with other mathematical treatises. The legacy of this text in Latin Europe is still debated.[9]
  • "A Book on What Is Necessary from the Science of Arithmetic for Scribes and Businessmen", (كتاب في ما يحتاج إليه الكتاب والعمال من علم الحساب Kitāb fī mā yaḥtāj ilayh al-kuttāb wa’l-ʿummāl min ʾilm al-ḥisāb).[8] This is the first book where negative numbers have been used in the medieval Islamic texts.[5]

He also wrote translations and commentaries on the algebraic works of Diophantus, al-Khwārizmī, and Euclid's Elements.[5]

Legacy[edit]

The crater Abul Wáfa on the Moon is named after him.

Notes[edit]

  1. ^ "بوزجانی". Encyclopaediaislamica.com. Retrieved 2009-08-30. 
  2. ^ "Iran" in USECO History of Humanity, ed. by M.A. Bakhit, Volume 4 of History of humanity : scientific and cultural development,UNESCO, 2000 pg 375: ""The science of trigonometry as known today was established by Islamic mathematicians. One of the most important of these was the Persian Abu'l Wafa Buzjani (d. 997 or 998), who wrote a work called the Almagest dealing mostly with trigonometry"" [1]
  3. ^ a b O'Connor, John J.; Robertson, Edmund F., "Mohammad Abu'l-Wafa Al-Buzjani", MacTutor History of Mathematics archive, University of St Andrews .
  4. ^ a b c d Moussa, Ali (2011). "Mathematical Methods in Abū al-Wafāʾ's Almagest and the Qibla Determinations". Arabic Sciences and Philosophy (Cambridge University Press) 21 (1). doi:10.1017/S095742391000007X. 
  5. ^ a b c d e f g h Hashemipour 2007.
  6. ^ Kennedy, E. S. (1956). Survey of Islamic Astronomical Tables. American Philosophical Society. p. 12. 
  7. ^ a b c Jacques Sesiano, "Islamic mathematics", p. 157, in Selin, Helaine; D'Ambrosio, Ubiratan, eds. (2000), Mathematics Across Cultures: The History of Non-western Mathematics, Springer, ISBN 1-4020-0260-2 
  8. ^ a b Youschkevitch 1970.
  9. ^ Raynaud 2012.

References[edit]

External links[edit]