LHS 1140

From Wikipedia, the free encyclopedia
(Redirected from LHS 1140 c)

LHS 1140

Artist's impression of LHS 1140 and LHS 1140b.
Observation data
Epoch J2000.0      Equinox J2000.0
Constellation Cetus
Right ascension 00h 44m 59.33091s[1]
Declination −15° 16′ 17.5428″[1]
Apparent magnitude (V) 14.18[2]
Characteristics
Evolutionary stage Red dwarf
Spectral type M4.5V[2]
Astrometry
Radial velocity (Rv)−13.74±0.42[1] km/s
Proper motion (μ) RA: 318.152 mas/yr[1]
Dec.: −596.623 mas/yr[1]
Parallax (π)66.8287 ± 0.0479 mas[1]
Distance48.80 ± 0.03 ly
(14.96 ± 0.01 pc)
Details[3]
Mass0.1844±0.0045 M
Radius0.2159±0.0030 R
Luminosity0.0038±0.0003 L
Surface gravity (log g)5.041±0.016 cgs
Temperature3,096±48 K
Metallicity [Fe/H]−0.15±0.09 dex
Rotation131±5 d
Age>5 Gyr
Other designations
GJ 3053, G 270-58, G 268-38, LHS 1140, NLTT 2465, TOI-256, TIC 92226327, 2MASS J00445930-1516166[4]
Database references
SIMBADdata
ARICNSdata

LHS 1140 is a red dwarf in the constellation of Cetus. Based on stellar parallax measurement, it is 48.8 light-years (15.0 parsecs) away from the Sun.[1] 'LHS' refers to the Luyten Half-Second Catalogue of stars with proper motions exceeding half a second of arc annually.[5] The star is over 5 billion years old and has only about 18% the mass of the Sun and 21% of its radius.[6] LHS 1140's rotational period is 130 days. No flares have been observed.[7]

Planetary system[edit]

As of October 2023, LHS 1140 is known to have two confirmed planets orbiting it.[3]

The first to be discovered was LHS 1140 b, discovered by the MEarth Project in 2017 using the transit method.[2] Follow-up radial velocities were measured by the High Accuracy Radial Velocity Planet Searcher instrument to confirm the planet and measure the mass.[7] The planet LHS 1140 b is a super-Earth in the habitable zone and transits the star every 24.7 days. This should allow its atmosphere to be studied in future: the combination of the transiting super-Earth and the relatively small and nearby host star make this system one of the most promising known for atmosphere studies, along with the TRAPPIST-1 system.[2][8] Observations by the Hubble Space Telescope in 2020 found signs of water vapor in the planet's atmosphere, but this has not been confirmed.[9]

LHS 1140 b was initially estimated to be about 7 times Earth's mass and about 1.4 times its radius, suggesting a dense rocky planet.[2] Later studies in 2018 and 2020 revised the radius upwards to about 1.7 times Earth's, giving it a density of about 7.5 g/cm3, still consistent with a rocky composition.[10][11] However, a 2023 study measuring the planet's mass and radius with greater precision found a lower mass of about 5.6 times Earth's, and a correspondingly lower density, no longer consistent with a rocky planet given the planet's size. LHS 1140 b is likely an ocean world (with 9-19% of its mass composed of water) or a dense mini-Neptune.[3]

In July 2018, Feng et al. published a reanalysis of the radial velocity data for LHS 1140, and proposed the likely existence of two additional planets: an inner Earth-mass planet orbiting every 3.8 days and an outer Neptune-mass planet orbiting every 90 days.[12] In August 2018, Ment et al., using the transit method of detection, confirmed the existence of the inner planet LHS 1140 c with a mass about 1.8 times Earth's and a radius 1.3 times as large, giving it a density of about 5 g/cm3,[10] consistent with a rocky composition.[3]

The orbital period of the outer planet candidate LHS 1140 d was refined to 78 days in 2020,[11] but this radial velocity signal was found to originate from stellar activity rather than a planet in 2023.[3]

The LHS 1140 planetary system[3]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
c 1.91±0.06 M🜨 0.0270±0.0005 3.777940±0.000002 <0.050 89.80+0.14
−0.19
°
1.272±0.026 R🜨
b 5.60±0.19 M🜨 0.0946±0.0017 24.73723±0.00002 <0.043 89.86±0.04° 1.730±0.025 R🜨

See also[edit]

References[edit]

  1. ^ a b c d e f Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  2. ^ a b c d e Dittmann, Jason A.; Irwin, Jonathan M.; Charbonneau, David; Bonfils, Xavier; Astudillo-Defru, Nicola; Haywood, Raphaëlle D.; et al. (2017). "A temperate rocky super-Earth transiting a nearby cool star". Nature. 544 (7650): 333–336. arXiv:1704.05556. Bibcode:2017Natur.544..333D. doi:10.1038/nature22055. PMID 28426003. S2CID 2718408.
  3. ^ a b c d e f Cadieux, Charles; Plotnykov, Mykhaylo; Doyon, René; et al. (3 January 2024). "New Mass and Radius Constraints on the LHS 1140 Planets: LHS 1140 b Is either a Temperate Mini-Neptune or a Water World". The Astrophysical Journal Letters. 960 (1): L3. arXiv:2310.15490. doi:10.3847/2041-8213/ad1691. ISSN 2041-8205.
  4. ^ "G 268-38". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 16 October 2020.
  5. ^ Luyten, Willem Jacob (1979). Catalogue of stars with proper motions exceeding 0.5" annually. University of Minnesota Press.
  6. ^ Pineda, J. Sebastian; Youngblood, Allison; France, Kevin (September 2021). "The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars". The Astrophysical Journal. 918 (1): 23. arXiv:2106.07656. Bibcode:2021ApJ...918...40P. doi:10.3847/1538-4357/ac0aea. S2CID 235435757. 40.
  7. ^ a b Dickinson, David (19 April 2017). "Welcome to LHS 1140b: A super-Earth in the habitable zone". Sky & Telescope. Retrieved 19 April 2017.
  8. ^ Overbye, Dennis (19 April 2017). "A new exoplanet may be most promising yet in search for life". The New York Times. Retrieved 20 April 2017.
  9. ^ Edwards, Billy; Changeat, Quentin; Mori, Mayuko; Anisman, Lara O.; Morvan, Mario; Kai Hou Yip; Tsiaras, Angelos; Al-Refaie, Ahmed; Waldmann, Ingo; Tinetti, Giovanna (2020). "Hubble WFC3 Spectroscopy of the Habitable-zone Super-Earth LHS 1140 b". The Astronomical Journal. 161 (1): 44. arXiv:2011.08815. Bibcode:2021AJ....161...44E. doi:10.3847/1538-3881/abc6a5. S2CID 226975730.
  10. ^ a b Kristo Ment; Jason A. Dittmann; Nicola Astudillo-Defru; David Charbonneau; Jonathan Irwin; Xavier Bonfils; Felipe Murgas; Jose-Manuel Almenara; Thierry Forveille; Eric Agol; Sarah Ballard; Zachory K. Berta-Thompson; Franc¸ois Bouchy; Ryan Cloutier; Xavier Delfosse; Rene Doyon; Courtney D. Dressing; Gilbert A. Esquerdo; Raphaelle D. Haywood; David M. Kipping; David W. Latham; Christophe Lovis; Elisabeth R. Newton; Francesco Pepe; Joseph E. Rodriguez; Nuno C. Santos; Thiam-Guan Tan; Stephane Udry; Jennifer G. Winters; Anael Wunsche (3 August 2018). "A Second Terrestrial Planet Orbiting the Nearby M Dwarf LHS 1140". The Astronomical Journal. 157 (1): 32. arXiv:1808.00485. Bibcode:2019AJ....157...32M. doi:10.3847/1538-3881/aaf1b1. S2CID 119504366.
  11. ^ a b Lillo-Box, J.; Figueira, P.; Leleu, A.; Acuña, L.; Faria, J. P.; Hara, N.; et al. (2020). "Planetary system LHS 1140 revisited with ESPRESSO and TESS". Astronomy & Astrophysics. 642: A121. arXiv:2010.06928. Bibcode:2020A&A...642A.121L. doi:10.1051/0004-6361/202038922.
  12. ^ Feng, Fabo; Tuomi, Mikko; Jones, Hugh R. A. (2018). "Minimizing the bias in exoplanet detection – application to radial velocities of LHS 1140". arXiv:1807.02483 [astro-ph.EP].