Jump to content

Sustainability: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m BOT - Reverted edits by 86.150.180.131 {possible vandalism} (mistake?) to last version by "ClueBot".
m the removed content has not made sense for quite some time
Line 1: Line 1:
[[Image:Earth flag PD.jpg|thumb|right|The [[Earth Day]] flag includes a [[NASA]] [[The Blue Marble|photo]] of the [[Earth]].]]
[[Image:Earth flag PD.jpg|thumb|right|The [[Earth Day]] flag includes a [[NASA]] [[The Blue Marble|photo]] of the [[Earth]].]]
'''Sustainability''' is a characteristic of a process or state that can be maintained at a certain level indefinitely. The term, in its [[Natural environment|environmental]] usage, refers to the potential longevity of vital human [[Ecology|ecological]] support systems, such as the planet's [[Climate|climatic system]], systems of [[agriculture]], [[industry]], [[forestry]], and [[fisheries]], systems on which they depend in balance with the impacts of our unsustainable or [[sustainable design]].
'''Sustainability''' is a characteristic of a process or state that can be maintained at a certain level indefinitely. The term, in its [[Natural environment|environmental]] usage, refers to the potential longevity of vital human [[Ecology|ecological]] support systems, such as the planet's [[Climate|climatic system]], systems of [[agriculture]], [[industry]], [[forestry]], [[fisheries]], and the systems on which they depend. In recent years an academic public discourse led to this use of the word sustainability in reference to how long human ecological systems can be expected to be usefully productive. In the past, complex human [[Society|societies]] have died out, sometimes as a result of their own growth-associated impacts on ecological support systems. The implication is that modern industrial society, which continues to grow in scale and complexity, will also [[Societal collapse|collapse]].

In recent years an academic public discourse led to this use of the word sustainability in reference to how long human ecological systems can be expected to be usefully productive. In the past, complex human [[Society|societies]] have died out, sometimes as a result of their own growth-associated impacts on ecological support systems. The implication is that modern industrial society, which continues to grow in scale and complexity, will also [[Societal collapse|collapse]].


The implied preference would be for systems to be productive indefinitely, or be "sustainable." For example, "[[sustainable agriculture]]" would develop agricultural systems to last indefinitely; "[[sustainable development]]" can be a development of economic systems that last indefinitely, etc. A side discourse relates the term sustainability to longevity of natural ecosystems and reserves (set aside for other-than-human species), but the challenging emphasis has been on human systems and [[anthropogenic]] problems, such as anthropogenic [[climate change]], or the depletion of [[fossil fuel]] reserves.
The implied preference would be for systems to be productive indefinitely, or be "sustainable." For example, "[[sustainable agriculture]]" would develop agricultural systems to last indefinitely; "[[sustainable development]]" can be a development of economic systems that last indefinitely, etc. A side discourse relates the term sustainability to longevity of natural ecosystems and reserves (set aside for other-than-human species), but the challenging emphasis has been on human systems and [[anthropogenic]] problems, such as anthropogenic [[climate change]], or the depletion of [[fossil fuel]] reserves.

Revision as of 03:20, 8 May 2008

The Earth Day flag includes a NASA photo of the Earth.

Sustainability is a characteristic of a process or state that can be maintained at a certain level indefinitely. The term, in its environmental usage, refers to the potential longevity of vital human ecological support systems, such as the planet's climatic system, systems of agriculture, industry, forestry, fisheries, and the systems on which they depend. In recent years an academic public discourse led to this use of the word sustainability in reference to how long human ecological systems can be expected to be usefully productive. In the past, complex human societies have died out, sometimes as a result of their own growth-associated impacts on ecological support systems. The implication is that modern industrial society, which continues to grow in scale and complexity, will also collapse.

The implied preference would be for systems to be productive indefinitely, or be "sustainable." For example, "sustainable agriculture" would develop agricultural systems to last indefinitely; "sustainable development" can be a development of economic systems that last indefinitely, etc. A side discourse relates the term sustainability to longevity of natural ecosystems and reserves (set aside for other-than-human species), but the challenging emphasis has been on human systems and anthropogenic problems, such as anthropogenic climate change, or the depletion of fossil fuel reserves.

Definitions

Though relatively new, the term "sustainability" has already proved useful. Sustainability discourse is discussion of how to make human economic systems last longer and have less impact on ecological systems, and particularly relates to concern over major global problems relating to climate change and oil depletion. More useful than discussion, however, is to find ways to make some unit of economic production — a business firm, a family household, a farm — more sustainable. To assist in this, it is meaningful, and pragmatic, to speak of some practices being "more sustainable" or "less sustainable." Thus energy-saving compact fluorescent light bulbs might be considered more sustainable than incandescent ones, and so on. Given the science, it is more apt to talk of moving "towards sustainability," or away from it. Sustainability advocates would argue that this kind of discourse helps inform debate about human impacts on planet Earth.

One reason many commentators consider sustainability hard to define, is the sheer number of meanings of sustainability that abound. The popularity of the term, and the many isolated attempts on the part of governments and other agents to begin sustainability programs, have led to these competing definitions, and much confusion. The often-uttered statement that there "is no agreed-upon definition of sustainability" results from this confusion.

One of the first and most oft-cited definitions of sustainability, and almost certainly the one that will survive for posterity, is the one created by the Brundtland Commission, led by the former Norwegian Prime Minister Gro Harlem Brundtland. The Commission defined sustainable development as development that "meets the needs of the present without compromising the ability of future generations to meet their own needs."[1] The Brundtland definition thus implicitly argues for the rights of future generations to raw materials and vital ecosystem services to be taken into account in decision making.

Sustainability can be defined both qualitatively in words, as an ethical/ecological proposition such as the Brundtland definition above, and quantitatively in terms of system life expectancy and the trajectory of certain factors or terms in the system. Operationalization of the term obviously raises the question of a quantitative definition; in order to set sustainability goals and achieve them, communities have to know whether their efforts are successful or not, so they have to know what to measure. Most recently, the leading attempts at operationalization have given metrics of climate emissions, and their reduction, some level of priority above other metrics. Since the factor of fossil fuel use is necessarily embedded in any meaningful climate emissions metric, climate neutrality (or the state of being climate neutral) is not an unreasonable partial proxy metric for overall sustainability, and is also relatively easy to measure. Many institutional sustainability programs have placed becoming climate neutral at the top of their list of sustainability goals, although the social and deliberative processes by which this prioritization took place is generally unexamined, or only partially examined a priori.

Other sustainability concerns might be harder to account for because of the complexity of their cycles and systems. Quantitative analysis in sustainability thinking typically uses system dynamics modeling, because systems are often non-linear and so-called feedback loops are key factors. So, for instance, important human ecological sub-systems that could be analyzed or modeled in this way might include the nitrogen cycle, and cycles of other important nutrients, in sustainable agriculture, or the depletion of oil reserves and other fossil energy reserves. One of the key problems in communicating the quantitative impacts of many sustainability issues, such as climate change, oil depletion, or population growth, is that feedback effects often create exponential change. Because the mathematics of exponentiality is not well-understood by ordinary people, and since human nature seems to be to expect linear change, if any, people are often surprised by the speed and rate of change of sustainability phenomena. This has led to recommendations that understanding feedback in dynamic systems be a primary goal of basic environmental education.

Conceptual issues in sustainability thinking

Values, purpose and the focus on outcomes

For what purpose are we conserving natural capital? Is the society supported by this capital just and decent, worthy of preservation? Obviously, the work of sustaining a society raises the question of the moral worth of that society. This is clearly a question of ethics or values.

Values vary greatly in detail within and between cultures, as well as between academic disciplines (e.g., between economists and ecologists). [2] The introduction of social values to sustainability goals implies a much more complex and contentious debate, and those focused on ecological impacts tend to strongly resist non-ecological interpretations.

Others see at the heart of the concept of sustainability a fundamental, immutable value set that is best stated as 'parallel care and respect for the ecosystem and for the people within'. From this value set emerges the goal of sustainability: to achieve human and ecosystem longevity and well-being together. Seen in this way, the concept of sustainability is much more than environmental protection in another guise. It is a positive concept that has as much to do with achieving well-being for people and ecosystems as it has to do with reducing ecological stress or environmental impacts. This kind of vision is of course much more debatable or subjective than the simpler definitions such as the Bruntland Definition or the "Daly Rules."

At its least, sustainability implies paying attention to comprehensive outcomes of events and actions insofar as they can be anticipated at present. This is known as full cost accounting, or Environmental accounting. This kind of accounting assumes that all aspects of a system can be measured and audited (Environmental audits).

Environmental accounting can be a limited biological interpretation as in ecological footprint analysis, or may include social factors as in the ICLEITriple Bottom Line standards for urban and community accounts. Obviously, sustainability definitions and metrics that focus on accounting are often less prescriptive of economic systems or of political, philosophical, or religious values.

At most, sustainability is clearly intended by some advocates as a means of configuring civilization and human activity so that society, its members and its economies are able to meet their needs and express their greatest potential in the present, while preserving biodiversity and natural ecosystems, and planning and acting for the ability to maintain these ideals in a very long term. It can easily be seen that the definitions and metrices that might result are prescriptive of political, philosophical or religious values.

Common principles

Despite differences, a number of common principles are embedded in most charters or action programmes to achieve sustainable development, sustainability or sustainable prosperity. These include (Hargroves & Smith 2005, see bibliography):

  • Recognizing the global integration of localities.
  • The need for good governance.

Weak versus strong sustainability

However, a distinction between different 'degrees' of sustainability should be made. The debate currently focuses on the sustainability between economy and the environment which can in other words be considered as between 'natural capital' and 'manufactured/man-made capital'. This is also captured in the 'weak' versus 'strong' sustainability discussions, which began as a debate between conservative British economist Wilfred Beckerman and sustainability founder Herman E. Daly.

Weak sustainability is advocated by the Hartwick's Rule, which states that as long as TOTAL capital stays constant, sustainable development can be achieved. As long as the diminishing natural capital stocks are being replaced by gains in the man-made stock, total capital will stay constant and the current level of consumption can continue. The proponents believe that economic growth is beneficial as increased levels of income lead to increased levels of environmental protectionism. This is also known as the 'substitutability paradigm'.

Conversely, strong sustainability, as supported by Herman Daly, holds the view that natural capital and man-made capital are only complementary at best. In order for sustainable development to be achieved, natural capital has to be kept constant independently from man-made capital. This is known as the 'non-substitutability paradigm'. Advocates of weak sustainability thus make a categorical error. So, for instance, and according to Daly, it makes no sense to substitute man-made capital, in the form of fishing boats, for natural capital, in the form of fish stocks, and the attempt to do so usually ends in ecological disaster.

Population growth and consumption

One of the critical issues in sustainability is that of human overpopulation combined with current lifestyle patterns. Some studies have suggested that the current population of the Earth exceeding six billion, is too great to support sustainably,[3] others, such as the book The Improving State of the World, argues that this is sustainable. At current material consumption levels, this challenge for sustainability is distributed unevenly. According to calculations of the ecological footprint, the ecological pressure of a US resident is 12 times that of a resident of India and 24 times that of a Somali resident.[4] Obviously, were the total human population to be reduced, it would be easier to achieve sustainability in most human systems. Equally, reduction of levels of consumption by those nations with large per-capita footprints could have an equal or greater impact. The inclusion of discussion of the factor of population in the overall sustainability debate has led to the accusation, typically from conservative or libertarian economists such as Julian Simon, that sustainability advocates are neo-malthusians.

With the world population continuing to grow, there is increasing pressure on arable land, water, energy, and biological resources to provide enough food while supporting viable ecosystems. World Bank and United Nations studies show that there are over 854 million people who are undernourished. This is due to a combination of lack of food, low incomes, and poor food distribution.[5] The world population is projected to grow from the current 6 billion and peak at 9.2 billion in 2075 due to the demographic transition.[1]. With expanding population, the food problem will worsen.[6]

Critics of efforts to reduce population rather than consumption fear that efforts to reduce population growth may lead to human rights violations such as involuntary sterilization and the abandoning of infants to die. Some human-rights watchers report that this is already taking place in China, as a result of its one child per family policy.

It appears inevitable to some commentators [citation needed] that human population numbers will be constrained and brought into some form of equilibrium by the Malthusian limit and in accordance with the Logistic function. In his book Collapse, author Jared Diamond presents several societies where population growth mixed with unsustainable consumption levels have led to collapses in population numbers.

The phenomenon of change resistance

The above concepts focus primarily on the proper practices required to live sustainably. However, there is also the need to consider why there is such strong resistance to adopting sustainable practices.

Barriers to achieving ecological sustainability

There has been long-standing and widespread public awareness of the seriousness of the consequence of overpopulation (e.g., Nelson, 1986; Yankelovitch, et al., 1983; Diamond, Jared (2005) ).

Unruh (2000, 2002) has argued that numerous barriers to sustainability arise because today's technological systems and governing institutions were designed and built for permanence and reliability, not change. In the case of fossil fuel-based systems this is termed "carbon lock-in" and inhibits many change efforts.

Others, particularly Thwink.org, argue that if enough members of the environmental movement adopted a problem solving process that fit the problem, the movement would make the astonishing discovery that the crux of the problem is not what it thought it was. It is not the proper practices or technical side of the problem after all. Any number of these practices would be adequate. Instead the real issue is why is it so difficult to persuade social agents (such as people, corporations, and nations) to adopt the proper practices needed to live sustainably? Thus the heart of the matter is the change resistance or social side of the problem.

This is generally attributed to “change resistance” (see, e.g., Thwink.org), viewed as involving change in individual values, whether at personal, corporate, or collective levels (see e.g., Stafford Beer). Unfortunately, it has been frequently demonstrated, e.g., in the studies cited, that people’s values are, in general, in the right place. The problem is to enact them. This has led to the preparation of numerous “wish lists”—such as that compiled by Shah, H., & Marks, N. (2004)—drawing together many recommendations for government action.

Government and individual failure to act on the available information is widely attributed to personal greed (deemed to be inherent in human nature) especially on the part of international capitalists. But even Karl Marx did not suggest this, instead highlighting sociological processes which have been in operation for thousands of years.[citation needed] Murray Bookchin likewise documents this process over millenia, describing, in detail, the factors that were operational at each transition point.[citation needed] If fault is to be found with Marx's work it can be argued that it lies elsewhere. Because he believed that the collapse of capitalism was imminent, he never discussed how to run society in an innovative way in the long term public interest. Strangely, Bookchin, in the end, does not suggest how to intervene in and harness the sociocybernetic processes he has identified but contents himself with an account of requisite features of a sustainable society derived from his analysis of organic (primordial) societies.[citation needed]

Two things seem to follow from this brief discussion.

  1. It is vital to follow up the study of the sociocybernetic, or systems (see also systems theory), processes which, it seems, primarily control what happens in society.
  2. We should use the social-science-based insights already available to evolve forms of Public management that will act on information in an innovative way in the long term public interest.[citation needed]

Precautionary principle

The precautionary principle states that if there is a risk that an action could cause harm, and there is a lack of scientific consensus on the matter, the burden of proof is on those who would support taking the action.

When competing "experts" recommend diametrically opposing paths of action regarding resources, carrying capacity, sustainability, and the future, we serve the cause of sustainability by choosing the conservative path, which is defined as the path that would leave society in the less precarious position if the chosen path turns out to be the wrong path.[7]

Cleaner Production aims at applying the precautionary principle to industrial processes. The objective is to minimize waste, emissions, energy consumption by optimizing the organization and technology of production, and increasing the use of renewable resources.

See also

Other sustainability articles

Notes and references

Footnotes

  1. ^ United Nations. 1987. "Report of the World Commission on Environment and Development." General Assembly Resolution 42/187, 11 December 1987. Retrieved: 2007-04-12
  2. ^ Tisdell, C. 1988. Sustainable development: Differing perspectives of ecologists and economists, and relevance to LDCs. World Development 16(3): 373-384.
  3. ^ E. O. Wilson, The future of life, 2001
  4. ^ Global Footprint Network "National Footprints". Download National Footprint Results in .xls format. Retrieved on: August 4, 2007.
  5. ^ World Hunger Education Service World Hunger Facts 2008. Retrieved on: February 10, 2008.
  6. ^ Pimentel, D, X. Huang, A. Cordova, and M. Pimentel (1996). "Impact of Population Growth on Food Supplies and Environment". Paper presented at AAAS Annual Meeting, Baltimore, February 1996. Population and Development Review. Retrieved on August 4, 2007.
  7. ^ Bartlett, A. (1997). "Reflections on Sustainability, Population Growth and the Environment -- Revisited". Renewable Resources Journal, 15, 4, Winter 1997-98. Retrieved on: August 4, 2007.

References

Bibliography

  • Allen, P. (Ed) 1993. Food for the Future: Conditions and Contradictions of Sustainability. ISBN 0-471-58082-1 Paperback. 344 pages.
  • AtKisson, A. 1999. Believing Cassandra, An Optimist looks at a Pessimist’s World, Chelsea Green Publishing., White River Junction, VT
  • Bartlett, A. 1998. "Reflections on Sustainability, Population Growth, and the Environment—Revisited" revised version (January 1998) of paper first published in Population & Environment, Vol. 16, No. 1, September 1994, pp. 5-35.
  • Benyus, J. 1997. Biomimicry: Innovations Inspired by Nature, William Morrow, New York
  • Bookchin, M. 2005. The Ecology of Freedom: the emergence and dissolutioni of hierarchy. Oakland, CA: AK Press.
  • Brown, M.T. and Ulgiati, S 1999. Emergy Evaluation of Natural Capital and Biosphere Services, AMBIO, Vol.28, No.6, Sept. 1999.
  • Brundtland, G.H. (ed.), (1987), Our common future: The World Commission on Environment and Development, Oxford, Oxford University Press.
  • Costanza, Robert, Lisa J. Graumlich, and Will Steffen (eds.), (2007), Sustainability or Collapse? An Integrated History and Future of People on Earth, The MIT Press. ISBN 978-0-262-03366-4.
  • Dalal-Clayton, B. (1993) Modified Eia And Indicators Of Sustainability: First Steps Towards Sustainability Analysis, Environmental Planning Issues No.1, International Institute For Environment And Development, Environmental Planning Group.
  • Daly H. 1996. Beyond Growth: The Economics of Sustainable Development. Boston: Beacon Press. ISBN 0-8070-4709-0
  • Daly H. and J. Cobb. 1989. For the Common Good: Redirecting the Economy Toward Community, the Environment, and a Sustainable Future. Boston: Beacon Press. ISBN 0-8070-4705-8 Review
  • Dean, J. W. (2006). Conservatives Without Conscience. New York: Viking Penguin.
  • Ekins, P. (Ed.). (1986). The Living Economy. London: Routledge and Kegan Paul.
  • Hargroves, K. and M. Smith (Eds.) 2005. The Natural Advantage of Nations: Business Opportunities, Innovation and Governance in the 21st Century. ISBN 1-84407-121-9, 525 pages. Earthscan/James&James. (See the books online companion at www.thenaturaladvantage.info)
  • Hawken, Paul, Lovins, Amory and Lovins, L. H. 1999. Natural Capitalism: Creating the Next Industrial Revolution, Earthscan, London (Downloadable from www.natcap.org)
  • International Institute for Sustainable Development (1996) Global Tomorrow Coalition Sustainable Development Tool Kit: A Sample Policy Framework, Chapter 4.
  • Jarzombek, Mark. "Sustainability—Architecture: between Fuzzy Systems and Wicked Problems," Blueprints 21/1 (Winter 2003), pp. 6-9; and LOG 8 (Summer 206) 7-13.
  • Kriegman, O. 2006. Dawn of the Cosmopolitan: The Hope of a Global Citizens Movement. Boston: Tellus Institute.
  • Kull, Kalevi; Kukk, Toomas; Lotman, Aleksei 2003. When culture supports biodiversity: The case of the wooded meadow. In: Roepstrorff, Andreas; Bubandt, Nils; Kull, Kalevi (eds.), Imagining Nature: Practices of Cosmology and Identity. Aarhus: Aarhus University Press, 76-96.
  • Lane, R. E. (1991). The Market Experience. New York: Cambridge University Press.
  • Marks, N., Simms, A., Thompson, S., and Abdallah, S. (2006).The (Un)happy Planet Index. London: New Economics Foundation. Downloadable from www.neweconomics.org
  • McDonough, W. & Braungart, M. (2002). Cradle to Cradle. North Point Press
  • Nelson, E. H. (1986). New Values and Attitudes Throughout Europe. Epsom, England: Taylor-Nelson.
  • Rajan, C. 2006. Global Politics and Institutions. Boston: Tellus Institute.
  • Raskin, P., Banuri, T., Gallopin, G., Gutman, P., Hammond, A., Kates, R., and Swart, R. 2002. Great Transition: The Promise and Lure of the Times Ahead. Boston: Tellus Institute.
  • Raven, J. (1995). The New Wealth of Nations: A New Enquiry into the Nature and Origins of the Wealth of Nations and the Societal Learning Arrangements Needed for a Sustainable Society. Unionville, New York: Royal Fireworks Press; Sudbury, Suffolk: Bloomfield Books.
  • Richardson, B.J. and Wood, S. (eds) (2006). Environmental Law for Sustainability: A Reader, Hart Publishing, Oxford.
  • Robèrt, Karl-Henrik. (2002). The Natural Step Story: Seeding a Quiet Revolution. Gabriola Island, BC: New Society Publishers.
  • Shah, H., & Marks, N. (2004). A Well-being Manifesto for a Flourishing Society. London: New Economics Foundation.
  • Sinclair, Fiona, D. (2007). "What is Sustainability"
  • Steffen, Alex (2006). Worldchanging: A User's Guide to the 21st Century. Abrams, New York.
  • Trainer, F. E. (Ed.). (1990). A rejection of the Bruntland Report. International Foundation for the Development of Alternatives Dossier, 77, May-June, 71-85.
  • Unruh, G. (2000). Understanding Carbon Lock-in, Energy Policy, Volume 28, Issue 12, October, 817–830.
  • Unruh, G. (2002). Escaping Carbon Lock-in, Energy Policy, Volume 30, Issue 4, March, 317-325.
  • Yankelovitch, D., Zetterberg, H., Strumpel, B., Shanks, M., et al. (1983). Work and Human Values. New York: Aspen Institute for Humanistic Studies.
  • Young, L. & J. Hamshire 2000. Promoting Practical Sustainability. Australian Agency for International Development (AusAID), Canberra Australia, ISBN 0-642-45058-7. Free copies available at AusAID Public Affairs, GPO Box 887, Canberra, ACT 2601, Australia.


  • AAAS Center for Science, Innovation and Sustainability [2]
  • Sustainability at the National Academies [3]