Jump to content

Sepsis: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Reverted edits by 110.55.0.183 to last revision by Jmarchn (HG)
Line 114: Line 114:


=== Neonatal sepsis ===
=== Neonatal sepsis ===
{{main|Neonatal sepsis}}

In common clinical usage, sepsis specifically refers to the presence of a [[serious bacterial infection]] (SBI) (such as [[meningitis]], [[pneumonia]], [[pyelonephritis]], or [[gastroenteritis]]) in the setting of fever. Criteria with regards to hemodynamic compromise or respiratory failure are not useful clinically because these symptoms often do not arise in neonates until death is imminent and unpreventable.
In common clinical usage, sepsis specifically refers to the presence of a [[serious bacterial infection]] (SBI) (such as [[meningitis]], [[pneumonia]], [[pyelonephritis]], or [[gastroenteritis]]) in the setting of fever. Criteria with regards to hemodynamic compromise or respiratory failure are not useful clinically because these symptoms often do not arise in neonates until death is imminent and unpreventable.

It is difficult to clinically exclude sepsis in newborns less than 90 days old that have fever (defined as a temperature > 38°C (100.4°F). Except in the case of obvious acute viral [[bronchiolitis]], the current practice in newborns less than 30 days old is to perform a complete workup including [[complete blood count]] with differential, blood culture, [[urinalysis]], urine culture, and [[cerebrospinal fluid]](CSF) studies and CSF culture, admit the newborn to the hospital, and treat empirically for serious bacterial infection for at least 48 hours until cultures are demonstrated to show no growth. Attempts have been made to see whether it is possible to risk stratify newborns in order to decide if a newborn can be safely monitored at home without treatment despite having a fever. One such attempt is the Rochester criteria.

A study performed at Strong Memorial Hospital in [[Rochester, New York]], showed that infants ≤ 60 days old meeting the following criteria were at low-risk for having a serious bacterial illness<ref name="pmid4067741">{{cite journal |author=Dagan R, Powell KR, Hall CB, Menegus MA |title=Identification of infants unlikely to have serious bacterial infection although hospitalized for suspected sepsis |journal=J. Pediatr. |volume=107 |issue=6 |pages=855–60 |year=1985 |month=Dec |pmid=4067741 |url=http://www.jpeds.com/article/S0022-3476(85)80175-X/abstract |doi=10.1016/S0022-3476(85)80175-X}}</ref>:

*generally well-appearing
*previously healthy
**full term (at ≥37 weeks gestation)
**no antibiotics perinatally
**no unexplained hyperbilirubinemia that required treatment
**no antibiotics since discharge
**no hospitalizations
**no chronic illness
**discharged at the same time or before the mother
*no evidence of skin, soft tissue, bone, joint, or ear infection
*WBC count 5,000-15,000/mm<sup>3</sup>
*absolute band count ≤ 1,500/mm<sup>3</sup>
*urine WBC count ≤ 10 per high power field (hpf)
*stool WBC count ≤ 5 per high power field (hpf) ''only in infants with diarrhea''

Those meeting these criteria likely do not require a lumbar puncture, and are felt to be safe for discharge home without antibiotic treatment, or with a single dose of intramuscular antibiotics, but will still require close outpatient follow-up.


==Diagnosis==
==Diagnosis==

Revision as of 06:12, 3 January 2010

Sepsis
SpecialtyInfectious diseases Edit this on Wikidata

Sepsis is a serious medical condition that is characterized by a whole-body inflammatory state (called a systemic inflammatory response syndrome or SIRS) and the presence of a known or suspected infection.[1][2] The body may develop this inflammatory response to microbes in the blood, urine, lungs, skin, or other tissues. An incorrect layman's term for sepsis is blood poisoning, more aptly applied to Septicemia, below.

Septicemia (also septicaemia or septicæmia [sep⋅ti⋅cæ⋅mi⋅a][3], or erroneously Septasemia and Septisema) is a related but deprecated (formerly sanctioned) medical term referring to the presence of pathogenic organisms in the blood-stream, leading to sepsis.[4] The term has not been sharply defined. It has been inconsistently used in the past by medical professionals, for example as a synonym of bacteremia, causing some confusion. The present medical consensus is therefore that the term "septicemia" is problematic and should be avoided.[2]

Sepsis is usually treated in the intensive care unit with intravenous fluids and antibiotics. If fluid replacement is insufficient to maintain blood pressure, specific vasopressor drugs can be used. Artificial ventilation and dialysis may be needed to support the function of the lungs and kidneys, respectively. To guide therapy, a central venous catheter and an arterial catheter may be placed. Sepsis patients require preventive measures for deep vein thrombosis, stress ulcers and pressure ulcers, unless other conditions prevent this. Some patients might benefit from tight control of blood sugar levels with insulin (targeting stress hyperglycemia), low-dose corticosteroids or activated drotrecogin alfa (recombinant protein C).[5]

Terminology

Severe sepsis occurs when sepsis leads to organ dysfunction, low blood pressure (hypotension), or insufficient blood flow (hypoperfusion) to one or more organs (causing, for example, lactic acidosis, decreased urine production, or altered mental status). Sepsis can lead to septic shock, multiple organ dysfunction syndrome (formerly known as multiple organ failure), and death. Organ dysfunction results from sepsis-induced hypotension (< 90 mmHg or a reduction of ≥ 40 mmHg from baseline) and diffuse intravascular coagulation, among other things.

Bacteremia is the presence of viable bacteria in the bloodstream. Likewise, the terms viremia and fungemia simply refer to viruses and fungi in the bloodstream. These terms say nothing about the consequences this has on the body. For example, bacteria can be introduced into the bloodstream during toothbrushing.[6] This form of bacteremia almost never causes problems in normal individuals. However, bacteremia associated with certain dental procedures can cause bacterial infection of the heart valves (known as endocarditis) in high-risk patients.[7] Conversely, a systemic inflammatory response syndrome can occur in patients without the presence of infection, for example in those with burns, polytrauma, or the initial state in pancreatitis and chemical pneumonitis.[2]

Epidemiology

In the United States, sepsis is the second-leading cause of death in non-coronary ICU patients, and the tenth-most-common cause of death overall according to data from the Centers for Disease Control and Prevention (the first being multiple organ dysfunction syndrome).[8] Sepsis is common and also more dangerous in elderly, immunocompromised, and critically-ill patients.[9] It occurs in 1–2% of all hospitalizations and accounts for as much as 25% of intensive-care unit (ICU) bed utilization. It is a major cause of death in intensive-care units worldwide, with mortality rates that range from 20% for sepsis to 40% for severe sepsis to >60% for septic shock.

Signs and symptoms

In addition to symptoms related to the provoking infection, sepsis is characterized by evidence of acute inflammation present throughout the entire body, and is, therefore, frequently associated with fever and elevated white blood cell count (leukocytosis) or low white blood cell count and lower-than-average temperature, and vomiting [citation needed]. The modern concept of sepsis is that the host's immune response to the infection causes most of the symptoms of sepsis, resulting in hemodynamic consequences and damage to organs. This host response has been termed systemic inflammatory response syndrome (SIRS) and is characterized by hemodynamic compromise and resultant metabolic derangement. Outward physical symptoms of this response frequently include a high heart rate (above 100 beats per minute), high respiratory rate (above 20 breaths per minute), elevated WBC count (above 12,000) and elevated or lowered body temperature (under 36 °C or over 38 °C). Sepsis is differentiated from SIRS by the presence of a known pathogen. For example SIRS and a positive blood culture for a pathogen indicates the presence of sepsis. Without a known infection you can not classify the above symptoms as sepsis, only SIRS.

This immunological response causes widespread activation of acute-phase proteins, affecting the complement system and the coagulation pathways, which then cause damage to the vasculature as well as to the organs. Various neuroendocrine counter-regulatory systems are then activated as well, often compounding the problem. Even with immediate and aggressive treatment, this may progress to multiple organ dysfunction syndrome and eventually death.

Definition

According to the American College of Chest Physicians and the Society of Critical Care Medicine[2], there are different levels of sepsis:

Examples of end-organ dysfunction include the following:[10]

More specific definitions of end-organ dysfunction exist for SIRS in pediatrics.[11]

  • Cardiovascular dysfunction (after fluid resuscitation with at least 40 ml/kg of crystalloid)
    • hypotension with blood pressure < 5th percentile for age or systolic blood pressure < 2 standard deviations below normal for age, OR
    • vasopressor requirement, OR
    • two of the following criteria:
  • Respiratory dysfunction (in the absence of cyanotic heart disease or known chronic lung disease)
    • the ratio of the arterial partial-pressure of oxygen to the fraction of oxygen in the gases inspired (PaO2/FiO2) < 300 (the definition of acute lung injury), OR
    • arterial partial-pressure of carbon dioxide (PaCO2) > 65 torr (20 mmHg) over baseline PaCO2 (evidence of hypercapnic respiratory failure), OR
    • supplemental oxygen requirement of greater than FiO2 0.5 to maintain oxygen saturation ≥ 92%
  • Neurologic dysfunction
  • Hematologic dysfunction
  • Renal dysfunction
  • Hepatic dysfunction (only applicable to infants > 1 month)

Consensus definitions, however, continue to evolve, with the latest expanding the list of signs and symptoms of sepsis to reflect clinical bedside experience.[12]

Neonatal sepsis

In common clinical usage, sepsis specifically refers to the presence of a serious bacterial infection (SBI) (such as meningitis, pneumonia, pyelonephritis, or gastroenteritis) in the setting of fever. Criteria with regards to hemodynamic compromise or respiratory failure are not useful clinically because these symptoms often do not arise in neonates until death is imminent and unpreventable.

Diagnosis

neonatal sepsis screening:

1.DLC showing increased numbers of polymorphs. 2.DLC: band cells> 20% 3.increased haptoglobins 4.micro ESR titre: >55mm 5.gastric aspirate showing > 5 polymorphs per high power field. 6.newborn CSF screen: showing increased cells and proteins. 7.suggestive history of chorioamnionitis, PROM, etc...

Treatment

Adults and children

The therapy of sepsis rests on antibiotics, surgical drainage of infected fluid collections, fluid replacement and appropriate support for organ dysfunction. This may include hemodialysis in kidney failure, mechanical ventilation in pulmonary dysfunction, transfusion of blood products, and drug and fluid therapy for circulatory failure. Ensuring adequate nutrition—preferably by enteral feeding, but if necessary by parenteral nutrition—is important during prolonged illness.

A problem in the adequate management of septic patients has been the delay in administering therapy after sepsis has been recognized. Published studies have demonstrated that for every hour delay in the administration of appropriate antibiotic therapy there is an associated 7% rise in mortality. A large international collaboration was established to educate people about sepsis and to improve patient outcomes with sepsis, entitled the "Surviving Sepsis Campaign." The Campaign has published an evidence-based review of management strategies for severe sepsis,[5] with the aim to publish a complete set of guidelines in subsequent years.

Early Goal Directed Therapy (EGDT), developed at Henry Ford Hospital by E. Rivers, MD, is a systematic approach to resuscitation that has been validated in the treatment of severe sepsis and septic shock. It is meant to be started in the Emergency Department. The theory is that one should use a step-wise approach, having the patient meet physiologic goals, to optimize cardiac preload, afterload, and contractility, thus optimizing oxygen delivery to the tissues.[13] A recent meta-analysis showed that EGDT provides a benefit on mortality in patients with sepsis.[14] As of December 2008 some controversy around its uses remains and a number of trials are ongoing in an attempt to resolve this.[15]

In EGDT, fluids are administered until the central venous pressure (CVP), as measured by a central venous catheter, reaches 8-12 cm of water (or 10-15 cm of water in mechanically ventilated patients). Rapid administration of several liters of isotonic crystalloid solution is usually required to achieve this. If the mean arterial pressure is less than 65 mmHg or greater than 90 mmHg, vasopressors or vasodilators are given as needed to reach the goal. Once these goals are met, the mixed venous oxygen saturation (SvO2), i.e., the oxygen saturation of venous blood as it returns to the heart as measured at the vena cava, is optimized. If the SvO2 is less than 70%, blood is given to reach a hemoglobin of 10 g/dl and then inotropes are added until the SvO2 is optimized. Elective intubation may be performed to reduce oxygen demand if the SvO2 remains low despite optimization of hemodynamics. Urine output is also monitored, with a minimum goal of 0.5 ml/kg/h. In the original trial, mortality was cut from 46.5% in the control group to 30.5% in the intervention group.[13] The Surviving Sepsis Campaign guidelines recommend EGDT for the initial resuscitation of the septic patient with a level B strength of evidence (single randomized control trial).[5]

Most therapies aimed at the inflammation process itself have failed to improve outcome, however drotrecogin alfa (activated protein C, one of the coagulation factors) has been shown to decrease mortality from about 31% to about 25% in severe sepsis. To qualify for drotrecogin alfa, a patient must have severe sepsis or septic shock with an APACHE II score of 25 or greater and a low risk of bleeding.[16]

During critical illness, a state of adrenal insufficiency and tissue resistance (the word 'relative' resistance should be avoided[17]) to corticosteroids may occur. This has been termed critical illness–related corticosteroid insufficiency.[17] Treatment with corticosteroids might be most beneficial in those with septic shock and early severe acute respiratory distress syndrome (ARDS), whereas its role in other patients such as those with pancreatitis or severe pneumonia is unclear.[17] These recommendations stem from studies showing benefits from low dose hydrocortisone treatment for septic shock patients and methylprednisolone in ARDS patients.[18][19][20][21][22][23] However, the exact way of determining corticosteroid insufficiency remains problematic. It should be suspected in those poorly responding to resuscitation with fluids and vasopressors. ACTH stimulation testing is not recommended to confirm the diagnosis.[17] Glucocorticoid drugs should be weaned and not stopped abruptly.

In some cases, sepsis may lead to inadequate tissue perfusion and necrosis. As this may affect the extremities, amputation may become necessary. On January 8 2009 a patent request was submitted for the possible treatment of sepsis ( 20090011974 Scavenger Receptor B1 (Cla-1) Targeting for the Treatment of Infection, Sepsis and Inflammation 01-08-2009) .

Neonates

Note that, in neonates, sepsis is difficult to diagnose clinically. They may be relatively asymptomatic until hemodynamic and respiratory collapse is imminent, so, if there is even a remote suspicion of sepsis, they are frequently treated with antibiotics empirically until cultures are sufficiently proven to be negative. In addition to fluid resuscitation and supportive care, a common antibiotic regimen in infants with suspected sepsis is a beta-lactam antibiotic (usually ampicillin) in combination with an aminoglycoside (usually gentamicin) or a third-generation cephalosporin (usually cefotaximeceftriaxone is generally avoided in neonates due to the theoretical risk of kernicterus.) The organisms which are targeted are species that predominate in the female genitourinary tract and to which neonates are especially vulnerable to, specifically Group B Streptococcus, Escherichia coli, and Listeria monocytogenes (This is the main rationale for using ampicillin versus other beta-lactams.) Of course, neonates are also vulnerable to other common pathogens that can cause meningitis and bacteremia such as Streptococcus pneumoniae and Neisseria meningitidis. Although uncommon, if anaerobic species are suspected (such as in cases where necrotizing enterocolitis or intestinal perforation is a concern, clindamycin is often added.

Granulocyte-macrophage colony stimulating factor (GM-CSF) is often used in neonatal sepsis, however a recent study found that, while GM-CSF corrects neutropenia if present, it has no effect on reducing sepsis or improving survival. [24]

Prognosis

Prognosis can be estimated with the MEDS score.[25] Approximately 20–35% of patients with severe sepsis and 40–60% of patients with septic shock die within 30 days. Others die within the ensuing 6 months. Late deaths often result from poorly controlled infection, immunosuppression, complications of intensive care, failure of multiple organs, or the patient's underlying disease.

Prognostic stratification systems such as APACHE II indicate that factoring in the patient's age, underlying condition, and various physiologic variables can yield estimates of the risk of dying of severe sepsis. Of the individual covariates, the severity of underlying disease most strongly influences the risk of dying. Septic shock is also a strong predictor of short- and long-term mortality. Case-fatality rates are similar for culture-positive and culture-negative severe sepsis.

Some patients may experience severe long term cognitive decline following an episode of severe sepsis, but the absence of baseline neuropsychological data in most sepsis patients makes the incidence of this difficult to quantify or to study.[26] A preliminary study of nine patients with septic shock showed abnormalities in seven patients by MRI.[27]

See also

References

  1. ^ Levy MM, Fink MP, Marshall JC; et al. (2003). "2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference". Crit. Care Med. 31 (4): 1250–6. doi:10.1097/01.CCM.0000050454.01978.3B. PMID 12682500. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  2. ^ a b c d Bone RC, Balk RA, Cerra FB; et al. (1992). "Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine". Chest. 101 (6): 1644–55. doi:10.1378/chest.101.6.1644. PMID 1303622. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  3. ^ Dictionary
  4. ^ Template:EMedicineDictionary
  5. ^ a b c Dellinger RP, Levy MM, Carlet JM, et al., for the International Surviving Sepsis Campaign Guidelines Committee. (2008). "Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock: 2008" (Subscription required). Crit Care Med. 36 (1): 296–327. doi:10.1097/01.CCM.0000298158.12101.41. PMID 18158437.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Lockhart PB, Brennan MT, Sasser HC, Fox PC, Paster BJ, Bahrani-Mougeot FK (2008). "Bacteremia associated with toothbrushing and dental extraction". Circulation. 117 (24): 3118–25. doi:10.1161/CIRCULATIONAHA.107.758524. PMID 18541739. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  7. ^ Wilson W, Taubert KA, Gewitz M; et al. (2007). "Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group". Circulation. 116 (15): 1736–54. doi:10.1161/CIRCULATIONAHA.106.183095. PMID 17446442. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  8. ^ Martin GS, Mannino DM, Eaton S, Moss M (2003-04-17). "The epidemiology of sepsis in the United States from 1979 through 2000". N Engl J Med. 348 (16): 1546–54. doi:10.1056/NEJMoa022139. PMID 12700374.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. ^ "Sepsis can strike, kill shockingly fast" by Elizabeth Cohen, January 29, 2009, CNN
  10. ^ Abraham E, Singer M (2007). "Mechanisms of sepsis-induced organ dysfunction" (Subscription required). Crit. Care Med. 35 (10): 2408–16. doi:10.1097/01.CCM.0000282072.56245.91. PMID 17948334.
  11. ^ Goldstein B, Giroir B, Randolph A (2005). "International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics". Pediatr Crit Care Med. 6 (1): 2–8. doi:10.1097/01.PCC.0000149131.72248.E6. PMID 15636651.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. ^ Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G (2003). "2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference". Crit Care Med. 31 (4): 1250–1256. doi:10.1097/01.CCM.0000050454.01978.3B. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  13. ^ a b Rivers E, Nguyen B, Havstad S; et al. (2001). "Early goal-directed therapy in the treatment of severe sepsis and septic shock". N. Engl. J. Med. 345 (19): 1368–77. doi:10.1056/NEJMoa010307. PMID 11794169. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  14. ^ Jones AE, Brown MD, Trzeciak S; et al. (2008). "The effect of a quantitative resuscitation strategy on mortality in patients with sepsis: a meta-analysis". Critical care medicine. 36 (10): 2734–9. doi:10.1097/CCM.0b013e318186f839. PMID 18766093. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  15. ^ McKenna M (2008). "Controversy swirls around early goal-directed therapy in sepsis: pioneer defends ground- breaking approach to deadly disease". Ann Emerg Med. 52 (6): 651–4. doi:10.1016/j.annemergmed.2008.10.013. PMID 19048659. {{cite journal}}: Unknown parameter |month= ignored (help)
  16. ^ Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, Helterbrand JD, Ely EW, Fisher CJ Jr (2001-03-08). "Recombinant human protein C Worldwide Evaluation in Severe Sepsis (PROWESS) study group. Efficacy and safety of recombinant human activated protein C for severe sepsis". N Engl J Med. 344 (10): 699–709. doi:10.1056/NEJM200103083441001. PMID 11236773.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. ^ a b c d Marik PE, Pastores SM, Annane D; et al. (2008). "Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients: consensus statements from an international task force by the American College of Critical Care Medicine". Crit. Care Med. 36 (6): 1937–49. doi:10.1097/CCM.0b013e31817603ba. PMID 18496365. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  18. ^ Annane D, Sebille V, Charpentier C, Bollaert PE, Francois B, Korach JM, Capellier G, Cohen Y, Azoulay E, Troche G, Chaumet-Riffaut P, Bellissant E (2002-08-21). "Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock". JAMA. 288 (7): 862–71. doi:10.1001/jama.288.7.862. PMID 12186604.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  19. ^ Meduri GU, Headley AS, Golden E; et al. (1998). "Effect of prolonged methylprednisolone therapy in unresolving acute respiratory distress syndrome: a randomized controlled trial". JAMA. 280 (2): 159–65. doi:10.1001/jama.280.2.159. PMID 9669790. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  20. ^ Meduri GU, Golden E, Freire AX; et al. (2007). "Methylprednisolone infusion in early severe ARDS: results of a randomized controlled trial". Chest. 131 (4): 954–63. doi:10.1378/chest.06-2100. PMID 17426195. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  21. ^ Sprung CL, Annane D, Keh D; et al. (2008). "Hydrocortisone therapy for patients with septic shock". N. Engl. J. Med. 358 (2): 111–24. doi:10.1056/NEJMoa071366. PMID 18184957. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  22. ^ Steinberg KP, Hudson LD, Goodman RB; et al. (2006). "Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome". N. Engl. J. Med. 354 (16): 1671–84. doi:10.1056/NEJMoa051693. PMID 16625008. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  23. ^ Annane D, Sébille V, Bellissant E (2006). "Effect of low doses of corticosteroids in septic shock patients with or without early acute respiratory distress syndrome". Crit. Care Med. 34 (1): 22–30. doi:10.1097/01.CCM.0000194723.78632.62. PMID 16374152. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  24. ^ Carr R, Brocklehurst P, Doré CJ, Modi N (2009). "Granulocyte-macrophage colony stimulating factor administered as prophylaxis for reduction of sepsis in extremely preterm, small for gestational age neonates (the PROGRAMS trial): a single-blind, multicentre, randomised controlled trial". Lancet. 373 (9659): 226–33. doi:10.1016/S0140-6736(09)60071-4. PMID 19150703. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  25. ^ Shapiro NI, Wolfe RE, Moore RB, Smith E, Burdick E, Bates DW (2003). "Mortality in Emergency Department Sepsis (MEDS) score: a prospectively derived and validated clinical prediction rule". Crit. Care Med. 31 (3): 670–5. doi:10.1097/01.CCM.0000054867.01688.D1. PMID 12626967.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  26. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1097/SMJ.0b013e3181b6a592, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1097/SMJ.0b013e3181b6a592 instead.
  27. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1007/s00134-007-0598-y, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1007/s00134-007-0598-y instead.


Template:Link FA