Jump to content

Talk:Coulomb's law: Difference between revisions

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
Content deleted Content added
Line 33: Line 33:


--[[User:JeffVaughan|JeffVaughan]] 16:38, 29 Sep 2004 (UTC)
--[[User:JeffVaughan|JeffVaughan]] 16:38, 29 Sep 2004 (UTC)

== Media other than Vacuum ==
The article is very misleading and actually false in not stating that the equation given for the force between charges is only true if the medium in which the charges are immersed is vacuum. Since many other media could exist the formula should be generalised by including the relative permittivity of the medium as a factor in the equation. The same objection applies to the equation for field in the vicinity of a point charge. It strikes me that to assume that the medium is always vacuum is a very childish and unrealistic position to adopt <span style="font-size: smaller;" class="autosigned">—Preceding [[Wikipedia:Signatures|unsigned]] comment added by [[Special:Contributions/82.32.49.157|82.32.49.157]] ([[User talk:82.32.49.157|talk]]) 17:55, 26 March 2011 (UTC)</span><!-- Template:UnsignedIP --> <!--Autosigned by SineBot-->


== Units of coulomb's constant ==
== Units of coulomb's constant ==

Revision as of 18:15, 26 March 2011

Please add {{WikiProject banner shell}} to this page and add the quality rating to that template instead of this project banner. See WP:PIQA for details.
WikiProject iconPhysics B‑class Top‑importance
WikiProject iconThis article is within the scope of WikiProject Physics, a collaborative effort to improve the coverage of Physics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
BThis article has been rated as B-class on Wikipedia's content assessment scale.
TopThis article has been rated as Top-importance on the project's importance scale.
Please add {{WikiProject banner shell}} to this page and add the quality rating to that template instead of this project banner. See WP:PIQA for details.
WikiProject iconElectronics B‑class Low‑importance
WikiProject iconThis article is part of WikiProject Electronics, an attempt to provide a standard approach to writing articles about electronics on Wikipedia. If you would like to participate, you can choose to edit the article attached to this page, or visit the project page, where you can join the project and see a list of open tasks. Leave messages at the project talk page
BThis article has been rated as B-class on Wikipedia's content assessment scale.
LowThis article has been rated as Low-importance on the project's importance scale.

Am I correct in translating my physics book's ambiguous claim that the "charges must be small" as meaning the two objects must have small volume?

Even if this is correct, can someone clarify what "small volume" means? On one hand, the implication seems to be, the smaller the volume of the two substances/objects/particles, the more correctly the Law will predict the forces acting on them. So perhaps we could reformulate Coulomb's Law as a statement along the lines of "as the limit of the particles' volumes goes to 0..." But if this is so, how are we to think about the lowest levels of matter, where everything seems to be quantized, not continuous?

Finally, I don't suppose there's a handy expression for how accurate one can expect Coulomb's Law (or other such laws) to be, given the size of the substances involved? How does the day-to-day engineering question of "Is Coulomb's Law accurate enough for my particular use?" get answered? (Or perhaps Coulomb's law, by itself, isn't useful in a day-to-day sense....)

Coulombs law is usually stated as giving the force on a small test charge. This simply means that the field due to the test charge should be weak enough not to significantly change the charge distribution producing the original field. DJIndica 07:10, 2 January 2006 (UTC)[reply]

Use of Coulomb's Law

You're right. Stictly speaking Coulomb's law is only valid for (unphysical) point particles. For extended shapes you need to treat the object as an infinite number of infinitely small charges. Once you've broken down the shapre this way, integration yields the actual forces on the object. For charged non-conducting spheres, it happens that the Coulomb's law gives exact results.

What I described above is the classical answer, and gives excellent results for volumes that are a few orders larger than atoms, and charges that are a few orders larger than the charge of the electron. Once you want to start talking about very small distances or charges, you get into really awful and messy quantum mechanics.

In typical applications Coulombs law is a very useful approximation. Anytime you're dealing with objects you can hold (even if you need tweezers), and the objects are separated by (say) ten or one hundred times the larger of thier radii, Coulomb's law will give good results. If your objects have reasonably spherical shapes (say cubes, octohedrons, etc...), you'll get good results even closer.

--JeffVaughan 16:38, 29 Sep 2004 (UTC)

Media other than Vacuum

The article is very misleading and actually false in not stating that the equation given for the force between charges is only true if the medium in which the charges are immersed is vacuum. Since many other media could exist the formula should be generalised by including the relative permittivity of the medium as a factor in the equation. The same objection applies to the equation for field in the vicinity of a point charge. It strikes me that to assume that the medium is always vacuum is a very childish and unrealistic position to adopt —Preceding unsigned comment added by 82.32.49.157 (talk) 17:55, 26 March 2011 (UTC)[reply]

Units of coulomb's constant

Unless I'm mistaken, the units for coulombs constant are exactly the opposite of what they should be, i.e. rather than C^2*N^(-1)*m^1, it should be N*C^(-2)*m^(-1).

I don't know about the other units (F m^(-1) or whatever), though, so I'll leave it for the moment. 81.226.53.55

You are obviously right, and the units including farads are inverted as well. I changed it in the constant k, which obviously should have the inverse of the units of ε0. Was this the only place with the problem? Gene Nygaard 22:53, 16 Feb 2005 (UTC)

i dunno why it was necessary to introduce in place of , but since it was done, the units on should be the reciprocal of . in addition, the symbol can be confused by some to be the Boltzmann constant, which is why i don't think it should be there at all. also, Gene, why do you think "esu of charge " is necessary. esu is a unit of charge, synonymous with statcoulomb, although it is dimensionally defined in terms of base cgs units. i don't think the article was improved with the last 2 or 3 edits. r b-j 23:51, 16 Feb 2005 (UTC)

No, "esu" was used to identify any electrostatic unit; there were "esu of charge" and "esu of current" and "esu of induction flux" and "esu of magnetic field intensity" and "esu" of many other things. Gene Nygaard 00:24, 17 Feb 2005 (UTC)
okay, then we should just say statcoulomb for the cgs version of Coulomb's law. r b-j 04:12, 17 Feb 2005 (UTC)


A note on -- in many introductory textbooks, this constant is given as the numerical version rather than the version, so giving it as both is not a bad idea. As for the confusion with the Boltzmann constant, many letters and symbols are used to mean more than one thing in physics, and if we refrained from using the same leters or symbols over and over again, we would have run out of letters and symbols by the end of mechanics. (Remember, k also stands for the spring constant) It's just a matter of paying attention to what you are studying and knowing which constant they mean. K of slinky 22:55, 9 Sept 2005 (UTC)


The correct units are N m^2 C^{-2}. Also, since the Coulomb constant is defined in terms of the speed of light and the permeability of free space (both of which are known exactly) it's possible to compute the exact value of the Coulomb constant. I've put the exact value (c^2/10^7) in the article. SimpsonDG (talk) 04:36, 31 January 2011 (UTC)[reply]

Other article?

What's the relation between this article and Coulomb barrier? Should they at least link to one another? -- Tarquin 12:51, 10 Mar 2005 (UTC)

Symbol for permittivity

Rbj, why do you put regular epsilon for the permittivity constant? I see nothing but the varepsilon symbol except on the Wolfram science website. --Yath 05:54, 12 Mar 2005 (UTC)

NIST uses a graphic version of that dimpled variant, with alt=" $\varepsilon_0$, at http://physics.nist.gov/cgi-bin/cuu/Value?ep0%7Csearch_for=electric+constant
But what I'm wondering is why, if you are so nitpicky about the shape of the epsilon, you aren't also jumping in to change the obsolete "permittivity" to "electric constant"? Gene Nygaard 06:10, 12 Mar 2005 (UTC)
Because I'm not aware of any overriding authority that can be cited to definitively set the symbol and/or name of this value. I'm going by usage, which seems (and I could be wrong) to be varepsilon for the symbol, and "permittivity of free space" for the name.
So I'm waiting to see if Rbj or someone knows of an authority that people should follow, like the BIPM or something. --Yath 16:16, 12 Mar 2005 (UTC)
i'll do a survey of usage from online and printed references. my EE fields text and my undergrad physics texts use the symbol . i think also NIST. i don't think i ever edited physical constants and they use the same symbol. frankly i don't care but it should be utterly self-consistent and mostly consistent with the usage in the literature. r b-j 22:58, 12 Mar 2005 (UTC)


NIST is kinda funny. if you go to [1] , you get it Yath's version, if you hit the symbol to get its definition in terms of more fundamental constants, you get [2] , which is what i have been saying. it would be nice if, even they could be self-consistent. their PDF of physical constants has it like . r b-j 23:08, 12 Mar 2005 (UTC)

In Talk:Speaker_wire someone mentioned Coulomb's law in reference to wire length. Does this law apply here, or is it out of context? Lowmagnet 21:52, 25 March 2006 (UTC)[reply]


== Headline text

Point Source used in definition is not defined anywhere

Coulomb's "law" used pith balls and assumed the charge on them could be represented as a point source. There is no definition of point source within Wiki. If I were to add a definition, then it would be that of a mathematical point and I would remove the word source. Bvcrist 20:26, 24 August 2006 (UTC)[reply]

point soure or piont charge is that which is apply force` and test charge or force is that which test charge

k vs. 1/4*pi*Enaught

I've read that the reason k is replaced with 1/4*pi*Enaught is to simplify other formulas and for historical reasons. Can anyone elaborate on this point in the article? I'm interested as to why this is true.

The inclusion of 4pi as a separate factor rather than conflating it with the SI value of epsilon-nought is a characteristic which distinguished the rationalised MKS system from the original MKS system. It is in fact the eponymous rationalisation. The rationalised MKS later evolved into the SI. The reason for separating out the factor 4pi was so that a factor of 4pi or pi would be present in applications which have spherical or circuilar symmetry (as in the present topic of discussion, the force between isolated charges being independent of the direction of r) and absent from those without such symmetries. For example the formula for the capacitance of a coaxial capacitor includes a factor of pi, whereas that for a parallel plate capacitor does not. A factor of pi appears in places where it seems appropriate, and is absent when intuition suggests it is inappropriate. —Preceding unsigned comment added by 82.32.49.157 (talk) 18:10, 26 March 2011 (UTC)[reply]

Trying to figure out electrostatic force without a recursive definition....

I was reading the overview for Coulomb's law, and the first sentance describes how it indicates 'electrostatic force', which is an article that redirects itself to Coulomb's law. Is it just me or is that a little recursive? Or am I way over my head and it is like when the dictionary says that 'redness' is something which exhibits the characteristic of red, for example? Rhetth 16:28, 28 December 2006 (UTC)[reply]

Analogous to huh?

This may be nitpicking, but in the third paragraph, I don't see how Coulomb's law is 'analogous' to Newton's third law. Perhaps in the sense that the force on charge A by charge B is equal and opposite to the force on charge B by charge A. But this is not analogous to Newton's third, it's due to Newton's third. I'd say the analogy would be between Coulomb's law and Newton's law of gravitation. --Chetvorno 23:20, 17 July 2007 (UTC)[reply]

newton

for my point of view it is absolutely not necessary to state anything about "newton" here, esp. not in the introduction. the said about "photons" is also useless. all this following:

" This is analogous to Newton's third law of motion in mechanics. The formula of Coulomb's law is of the same form as Newton's gravitational law: The electrical force of one body exerted on the second body is equal to the force exerted by the second body on the first. Coulomb's law is the mathematical consequence of law of conservation of linear momentum in exchange by virtual photons in 3-dimensional space (see quantum electrodynamics). "

can be deleted without loosing any information. --Pediadeep 13:07, 29 August 2007 (UTC)[reply]

Extra info in "Electrostatic Approximation"

The statement about the accuracy being accurate to within one part in a billion is nice, but it really doesn't go here, and I'm not sure where else it would fit. It's also not sourced. I favor deleting it. Any other opinions? Peppergrower 06:47, 17 October 2007 (UTC)[reply]

I am pretty certain that it is essentially correct, and this test of the exponent in the equation should be somewhere in the article. /Pieter Kuiper 07:49, 17 October 2007 (UTC)[reply]
Here is the reference: William, Faller, Hill (1971) /Pieter Kuiper 08:05, 17 October 2007 (UTC)[reply]

superconduction re BCS theory

There's nothing here about the exceptions that allow superconductivity. 24.68.233.40 (talk) 01:06, 4 May 2008 (UTC)[reply]

I don't know much about BCS theory, but I don't think it has exceptions to Coulomb's law. I believe it adds additional forces between electrons, but leaves the standard electrical repulsion. Foobaz·o< 04:07, 4 May 2008 (UTC)[reply]

error?

I believe there is an error in the integral under "continuous charge distribution". The integral should be multiplied by. I'm not 100% sure if i'm right, so I'm going to leave it to someone else to fix it.Sghatch (talk) 16:24, 17 June 2009 (UTC)[reply]

Coulomb's Law and Newton's Law

Does anyone else notice a rather large similarity between and ?

Both are to the inverse of the square of the radius (by virtue of three-dimensional space), both are the products of a constant (I'll get to that in a moment) and the values of the two "attributes", and the constant is reflective of the strengths of the forces? And that the sign of the attributes (mass or charge) affects the directionality of the force? Is this not rather good evidence for unification? -RadicalOneContact MeChase My Tail 05:24, 28 January 2010 (UTC)[reply]

Technically, to be consistent, there should be a minus sign on the right-hand side of the second equation (Newton's law of gravity), so that in both equations a negative force indicates attraction. The difference in signs of the two equations reflects the fact that two positive masses attract, while two positive charges repel. SimpsonDG (talk) 04:26, 31 January 2011 (UTC)[reply]