Jump to content

Abundance of elements in Earth's crust: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Reverted 2 edits by 106.79.207.8 (talk): Revert test, restore correct formatting (TW)
Scythe33 (talk | contribs)
correct position of tungsten re: apparent error in Barbalace
Line 239: Line 239:
|-
|-
| 19
| 19
| 74
| [[tungsten]]
| W
|
| 160.6
| 1.1
|
| 1.25
|86,400
|-
| 20
| 23
| 23
| [[vanadium]]
| [[vanadium]]
Line 260: Line 249:
|76,000
|76,000
|-
|-
| 21
| 20
| 17
| 17
| [[chlorine]]
| [[chlorine]]
Line 271: Line 260:
|
|
|-
|-
| 22
| 21
| 24
| 24
| [[chromium]]
| [[chromium]]
Line 282: Line 271:
|26,000,000
|26,000,000
|-
|-
| 23
| 22
| 37
| 37
| [[rubidium]]
| [[rubidium]]
Line 293: Line 282:
|
|
|-
|-
| 24
| 23
| 28
| 28
| [[nickel]]
| [[nickel]]
Line 304: Line 293:
|2,250,000
|2,250,000
|-
|-
| 25
| 24
| 30
| 30
| [[zinc]]
| [[zinc]]
Line 315: Line 304:
|11,900,000
|11,900,000
|-
|-
| 26
| 25
| 29
| 29
| [[copper]]
| [[copper]]
Line 326: Line 315:
|19,400,000
|19,400,000
|-
|-
| 27
| 26
| 58
| 58
| [[cerium]]
| [[cerium]]
Line 337: Line 326:
|
|
|-
|-
| 28
| 27
| 60
| 60
| [[neodymium]]
| [[neodymium]]
Line 348: Line 337:
|
|
|-
|-
| 29
| 28
| 57
| 57
| [[lanthanum]]
| [[lanthanum]]
Line 359: Line 348:
|
|
|-
|-
| 30
| 29
| 39
| 39
| [[yttrium]]
| [[yttrium]]
Line 370: Line 359:
|6,000
|6,000
|-
|-
| 31
| 30
| 7
| 7
| [[nitrogen]]
| [[nitrogen]]
Line 381: Line 370:
|140,000,000
|140,000,000
|-
|-
| 32
| 31
| 27
| 27
| [[cobalt]]
| [[cobalt]]
Line 392: Line 381:
|123,000
|123,000
|-
|-
| 33
| 32
| 3
| 3
| [[lithium]]
| [[lithium]]
Line 403: Line 392:
|35,000
|35,000
|-
|-
| 34
| 33
| 41
| 41
| [[niobium]]
| [[niobium]]
Line 414: Line 403:
|64,000
|64,000
|-
|-
| 35
| 34
| 31
| 31
| [[gallium]]
| [[gallium]]
Line 425: Line 414:
|
|
|-
|-
| 36
| 35
| 21
| 21
| [[scandium]]
| [[scandium]]
Line 436: Line 425:
|
|
|-
|-
| 37
| 36
| 82
| 82
| [[lead]]
| [[lead]]
Line 447: Line 436:
|4,820,000
|4,820,000
|-
|-
| 38
| 37
| 62
| 62
| [[samarium]]
| [[samarium]]
Line 458: Line 447:
|
|
|-
|-
| 39
| 38
| 90
| 90
| [[thorium]]
| [[thorium]]
Line 469: Line 458:
|
|
|-
|-
| 40
| 39
| 59
| 59
| [[praseodymium]]
| [[praseodymium]]
Line 480: Line 469:
|
|
|-
|-
| 41
| 40
| 5
| 5
| [[boron]]
| [[boron]]
| B
| B
|
|
| 950
| 950 {{dubious}}
| 8.7
| 8.7
|
|
Line 491: Line 480:
|9,400,000
|9,400,000
|-
|-
| 42
| 41
| 64
| 64
| [[gadolinium]]
| [[gadolinium]]
Line 502: Line 491:
|
|
|-
|-
| 43
| 42
| 66
| 66
| [[dysprosium]]
| [[dysprosium]]
Line 513: Line 502:
|
|
|-
|-
| 44
| 43
| 72
| 72
| [[hafnium]]
| [[hafnium]]
Line 524: Line 513:
|
|
|-
|-
| 45
| 44
| 68
| 68
| [[erbium]]
| [[erbium]]
Line 535: Line 524:
|
|
|-
|-
| 46
| 45
| 70
| 70
| [[ytterbium]]
| [[ytterbium]]
Line 546: Line 535:
|
|
|-
|-
| 47
| 46
| 55
| 55
| [[caesium]]
| [[caesium]]
Line 557: Line 546:
|
|
|-
|-
| 48
| 47
| 4
| 4
| [[beryllium]]
| [[beryllium]]
Line 568: Line 557:
|220
|220
|-
|-
| 49
| 48
| 50
| 50
| [[tin]]
| [[tin]]
Line 579: Line 568:
|280,000
|280,000
|-
|-
| 50
| 49
| 63
| 63
| [[europium]]
| [[europium]]
Line 590: Line 579:
|
|
|-
|-
| 51
| 50
| 92
| 92
| [[uranium]]
| [[uranium]]
Line 601: Line 590:
|74,119
|74,119
|-
|-
| 52
| 51
| 73
| 73
| [[tantalum]]
| [[tantalum]]
Line 612: Line 601:
|1,100
|1,100
|-
|-
| 53
| 52
| 32
| 32
| [[germanium]]
| [[germanium]]
Line 622: Line 611:
| 1.5
| 1.5
|155
|155
|-
| 53
| 74
| [[tungsten]]
| W
|
| 160.6 {{dubious}}
| 1.1
|
| 1.25
|86,400
|-
|-
| 54
| 54

Revision as of 22:17, 29 May 2019

Abundance (atom fraction) of the chemical elements in Earth's upper continental crust as a function of atomic number. The rarest elements in the crust (shown in yellow) are not the heaviest, but are rather the siderophile (iron-loving) elements in the Goldschmidt classification of elements. These have been depleted by being relocated deeper into the Earth's core. Their abundance in meteoroids is higher. Tellurium and selenium are concentrated as sulfides in the core and have also been depleted by preaccretional sorting in the nebula that caused them to form volatile hydrogen selenide and hydrogen telluride.[1].

The abundance of elements in Earth's crust is shown in tabulated form with the estimated crustal abundance for each chemical element shown as parts per million (ppm) by mass (10,000 ppm = 1%). Note that the noble gases are not included, as they form no part of the solid crust. Also not included are certain elements with extremely low crustal concentrations: technetium (atomic number 43), promethium (61), and all elements with atomic numbers greater than 83 except thorium (90) and uranium (92).

Abundance of chemical elements in Earth's crust, from various sources
Rank Z Element Symbol Abundance in crust (ppm) by source Annual production
Darling[2] Barbalace[3] WebElements[4] Israel Science and Technology[5] Jefferson Lab[6] (2016, tonnes)[7]
1 8 oxygen O 466,000 474,000 460,000 467,100 461,000
2 14 silicon Si 277,200 277,100 270,000 276,900 282,000 7,200,000
3 13 aluminium Al 81,300 82,000 82,000 80,700 82,300 57,600,000
4 26 iron Fe 50,000 41,000 63,000 50,500 56,300 1,150,000,000
5 20 calcium Ca 36,300 41,000 50,000 36,500 41,500
6 11 sodium Na 28,300 23,000 23,000 27,500 23,600 255,000,000
7 12 magnesium Mg 20,900 23,000 29,000 20,800 23,300 1,010,000
8 19 potassium K 25,900 21,000 15,000 25,800 20,900
9 22 titanium Ti 4,400 5,600 6,600 6,200 5,600 6,600,000
10 1 hydrogen H 1,400 1,500 1,400 1,400
11 15 phosphorus P 1,200 1,000 1,000 1,300 1,050
12 25 manganese Mn 1,000 950 1,100 900 950 16,000,000
13 9 fluorine F 800 950 540 290 585
14 56 barium Ba 500 340 340 500 425
15 6 carbon C 300 480 1,800 940 200
16 38 strontium Sr 370 360 370 350,000
17 16 sulfur S 500 260 420 520 350 69,300,000
18 40 zirconium Zr 190 130 250 165 1,460,000
19 23 vanadium V 100 160 190 120 76,000
20 17 chlorine Cl 500 130 170 450 145
21 24 chromium Cr 100 100 140 350 102 26,000,000
22 37 rubidium Rb 300 90 60 90
23 28 nickel Ni 80 90 190 84 2,250,000
24 30 zinc Zn 75 79 70 11,900,000
25 29 copper Cu 100 50 68 60 19,400,000
26 58 cerium Ce 68 60 66.5
27 60 neodymium Nd 38 33 41.5
28 57 lanthanum La 32 34 39
29 39 yttrium Y 30 29 33 6,000
30 7 nitrogen N 50 25 20 19 140,000,000
31 27 cobalt Co 20 30 25 123,000
32 3 lithium Li 20 17 20 35,000
33 41 niobium Nb 20 17 20 64,000
34 31 gallium Ga 18 19 19
35 21 scandium Sc 16 26 22
36 82 lead Pb 14 10 14 4,820,000
37 62 samarium Sm 7.9 6 7.05
38 90 thorium Th 12 6 9.6
39 59 praseodymium Pr 9.5 8.7 9.2
40 5 boron B 950 [dubiousdiscuss] 8.7 10 9,400,000
41 64 gadolinium Gd 7.7 5.2 6.2
42 66 dysprosium Dy 6 6.2 5.2
43 72 hafnium Hf 5.3 3.3 3.0
44 68 erbium Er 3.8 3.0 3.5
45 70 ytterbium Yb 3.3 2.8 3.2
46 55 caesium Cs 3 1.9 3
47 4 beryllium Be 2.6 1.9 2.8 220
48 50 tin Sn 0 2.2 2.2 2.3 280,000
49 63 europium Eu 2.1 1.8 2.0
50 92 uranium U 0 1.8 2.7 74,119
51 73 tantalum Ta 2 1.7 2.0 1,100
52 32 germanium Ge 1.8 1.4 1.5 155
53 74 tungsten W 160.6 [dubiousdiscuss] 1.1 1.25 86,400
54 42 molybdenum Mo 1.5 1.1 1.2 227,000
55 33 arsenic As 1.5 2.1 1.8 36,500
56 67 holmium Ho 1.4 1.2 1.3
57 65 terbium Tb 1.1 0.9400 1.2
58 69 thulium Tm 0.4800 0.4500 0.52
59 35 bromine Br 0.3700 3 2.4 391,000
60 81 thallium Tl 0.6000 0.5300 0.850 10
61 71 lutetium[8] Lu 0.5
62 51 antimony Sb 0.2000 0.2000 0.2 130,000
63 53 iodine I 0.1400 0.4900 0.450 31,600
64 48 cadmium Cd 0.1100 0.1500 0.15 23,000
65 47 silver Ag 0.0700 0.0800 0.075 27,000
66 80 mercury Hg 0.0500 0.0670 0.085 4,500
67 34 selenium Se 0.0500 0.0500 0.05 2,200
68 49 indium In 0.0490 0.1600 0.250 655
69 83 bismuth Bi 0.0480 0.0250 0.0085 10,200
70 52 tellurium Te 0.0050 0.0010 0.001 2,200
71 78 platinum Pt 0.0030 0.0037 0.005 172
72 79 gold Au 0.0011 0.0031 0.004 3,100
73 44 ruthenium Ru 0.0010 0.0010 0.001
74 46 palladium Pd 0.0006 0.0063 0.015 208
75 75 rhenium Re 0.0004 0.0026 0.0007 47.2
76 77 iridium Ir 0.0003 0.0004 0.001
77 45 rhodium Rh 0.0002 0.0007 0.001
78 76 osmium Os 0.0001 0.0018 0.0015

See also

References

  1. ^ Anderson, Don L.; ‘Chemical Composition of the Mantle’ in Theory of the Earth, pp. 147-175 ISBN 0865421234
  2. ^ "Elements, Terrestrial Abundance". www.daviddarling.info. Archived from the original on 10 April 2007. Retrieved 2007-04-14. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  3. ^ Barbalace, Kenneth. "Periodic Table of Elements". Environmental Chemistry.com. Retrieved 2007-04-14.
  4. ^ "Abundance in Earth's Crust". WebElements.com. Archived from the original on 9 March 2007. Retrieved 2007-04-14. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  5. ^ "List of Periodic Table Elements Sorted by Abundance in Earth's crust". Israel Science and Technology Homepage. Retrieved 2007-04-15.
  6. ^ "It's Elemental — The Periodic Table of Elements". Jefferson Lab. Archived from the original on 29 April 2007. Retrieved 2007-04-14. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  7. ^ Commodity Statistics and Information. USGS. All production numbers are for mines, except for Al, Cd, Fe, Ge, In, N, Se (plants, refineries), S (all forms) and As, Br, Mg, Si (unspecified). Data for B, K, Ti, Y are given not for the pure element but for the most common oxide, data for Na and Cl are for NaCl. For many elements like Si, Al, data are ambiguous (many forms produced) and are taken for the pure element. U data is pure element required for consumption by current reactor fleet [1]. WNA.
  8. ^ Emsley, John (2001). Nature's building blocks: an A-Z guide to the elements. Oxford University Press. pp. 240–242. ISBN 0-19-850341-5.
  • BookRags, Periodic Table.
  • World Book Encyclopedia, Exploring Earth.
  • HyperPhysics, Georgia State University, Abundance of Elements in Earth's Crust.
  • Data Series 140, Historical Statistics for Mineral and Material Commodities in the United States, Version 2011, USGS [2].
  • Eric Scerri, The Periodic Table, Its Story and Its Significance, Oxford University Press, 2007