Jump to content

Aspartame

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 50.132.82.51 (talk) at 02:56, 14 November 2011. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Aspartame[1]
Aspartame
Ball-and-stick model of aspartame
Names
IUPAC names
N-(L-α-Aspartyl)-L-phenylalanine,
1-methyl ester
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.041.132 Edit this at Wikidata
E number E951 (glazing agents, ...)
KEGG
UNII
  • InChI=1S/C14H18N2O5/c1-21-14(20)11(7-9-5-3-2-4-6-9)16-13(19)10(15)8-12(17)18/h2-6,10-11H,7-8,15H2,1H3,(H,16,19)(H,17,18)/t10-,11-/m0/s1 checkY
    Key: IAOZJIPTCAWIRG-QWRGUYRKSA-N checkY
  • InChI=1/C14H18N2O5/c1-21-14(20)11(7-9-5-3-2-4-6-9)16-13(19)10(15)8-12(17)18/h2-6,10-11H,7-8,15H2,1H3,(H,16,19)(H,17,18)/t10-,11-/m0/s1
    Key: IAOZJIPTCAWIRG-QWRGUYRKBV
  • O=C(O)C[C@H](N)C(=O)N[C@H](C(=O)OC)Cc1ccccc1
Properties
C14H18N2O5
Molar mass 294.307 g·mol−1
Density 1.347 g/cm3
Melting point 246–247 °C
Boiling point decomposes
sparingly soluble
Solubility slightly soluble in ethanol
Acidity (pKa) 4.5-6.0 [2]
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
1
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Aspartame (APM; /ˈæspərtm/ or /əˈspɑːrtm/) is an artificial, non-saccharide sweetener used as a sugar substitute in some foods and beverages. In the European Union, it is codified as E951. Aspartame is a methyl ester of the aspartic acid/phenylalanine dipeptide. It was first sold under the brand name NutraSweet; since 2009 it also has been sold under the brand name AminoSweet. It was first synthesized in 1965 and the patent expired in 1992.

The safety of aspartame has been the subject of several political and medical controversies, congressional hearings and internet hoaxes[3][4][5] since its initial approval for use in food products by the U.S. Food and Drug Administration (FDA) in 1974. A 2007 medical review on the subject concluded that "the weight of existing scientific evidence indicates that aspartame is safe at current levels of consumption as a non-nutritive sweetener".[6] However, because its breakdown products include phenylalanine, aspartame must be avoided by people with the genetic condition phenylketonuria (PKU). Aspartame is the technical name for the brand names NutraSweet, Equal, Spoonful, and Equal-Measure. It was discovered by accident in 1965 when James Schlatter, a chemist of G.D. Searle Company, was testing an anti-ulcer drug. What you don't know WILL hurt you. Find out the dangerous effects of artificial sweeteners to your health.

Aspartame was approved for dry goods in 1981 and for carbonated beverages in 1983. It was originally approved for dry goods on July 26, 1974, but objections filed by neuroscience researcher Dr John W. Olney and Consumer attorney James Turner in August 1974 as well as investigations of G.D. Searle's research practices caused the U.S. Food and Drug Administration (FDA) to put approval of aspartame on hold (December 5, 1974). In 1985, Monsanto purchased G.D. Searle and made Searle Pharmaceuticals and The NutraSweet Company separate subsidiaries.

Aspartame accounts for over 75 percent of the adverse reactions to food additives reported to the FDA. Many of these reactions are very serious including seizures and death. A few of the 90 different documented symptoms listed in the report as being caused by aspartame include: Headaches/migraines, dizziness, seizures, nausea, numbness, muscle spasms, weight gain, rashes, depression, fatigue, irritability, tachycardia, insomnia, vision problems, hearing loss, heart palpitations, breathing difficulties, anxiety attacks, slurred speech, loss of taste, tinnitus, vertigo, memory loss, and joint pain.

According to researchers and physicians studying the adverse effects of aspartame, the following chronic illnesses can be triggered or worsened by ingesting of aspartame: Brain tumors, multiple sclerosis, epilepsy, chronic fatigue syndrome, parkinson's disease, alzheimer's, mental retardation, lymphoma, birth defects, fibromyalgia, and diabetes.

Aspartame is made up of three chemicals: aspartic acid, phenylalanine, and methanol. The book "Prescription for Nutritional Healing," by James and Phyllis Balch, lists aspartame under the category of "chemical poison." As you shall see, that is exactly what it is. What Is Aspartame Made Of? Aspartic Acid (40 percent of Aspartame)

Dr. Russell L. Blaylock, a professor of neurosurgery at the Medical University of Mississippi, recently published a book thoroughly detailing the damage that is caused by the ingestion of excessive aspartic acid from aspartame. Blaylock makes use of almost 500 scientific references to show how excess free excitatory amino acids such as aspartic acid and glutamic acid (about 99 percent of monosodium glutamate (MSG) is glutamic acid) in our food supply are causing serious chronic neurological disorders and a myriad of other acute symptoms. How Aspartate (and Glutamate) Cause Damage

aspartateAspartate and glutamate act as neurotransmitters in the brain by facilitating the transmission of information from neuron to neuron. Too much aspartate or glutamate in the brain kills certain neurons by allowing the influx of too much calcium into the cells. This influx triggers excessive amounts of free radicals, which kill the cells. The neural cell damage that can be caused by excessive aspartate and glutamate is why they are referred to as "excitotoxins." They "excite" or stimulate the neural cells to death.

Aspartic acid is an amino acid. Taken in its free form (unbound to proteins) it significantly raises the blood plasma level of aspartate and glutamate. The excess aspartate and glutamate in the blood plasma shortly after ingesting aspartame or products with free glutamic acid (glutamate precursor) leads to a high level of those neurotransmitters in certain areas of the brain.

The blood brain barrier (BBB), which normally protects the brain from excess glutamate and aspartate as well as toxins, 1) is not fully developed during childhood, 2) does not fully protect all areas of the brain, 3) is damaged by numerous chronic and acute conditions, and 4) allows seepage of excess glutamate and aspartate into the brain even when intact.

The excess glutamate and aspartate slowly begin to destroy neurons. The large majority (75 percent or more) of neural cells in a particular area of the brain are killed before any clinical symptoms of a chronic illness are noticed. A few of the many chronic illnesses that have been shown to be contributed to by long-term exposure to excitatory amino acid damage include:

   Multiple sclerosis (MS)
   ALS
   Memory loss
   Hormonal problems
   Hearing loss
   Epilepsy
   Alzheimer's disease


   Parkinson's disease
   Hypoglycemia
   AIDS
   Dementia
   Brain lesions
   Neuroendocrine disorders

The risk to infants, children, pregnant women, the elderly and persons with certain chronic health problems from excitotoxins are great. Even the Federation of American Societies for Experimental Biology (FASEB), which usually understates problems and mimics the FDA party-line, recently stated in a review that:

"It is prudent to avoid the use of dietary supplements of L-glutamic acid by pregnant women, infants, and children. The existence of evidence of potential endocrine responses, i.e., elevated cortisol and prolactin, and differential responses between males and females, would also suggest a neuroendocrine link and that supplemental L-glutamic acid should be avoided by women of childbearing age and individuals with affective disorders."

Aspartic acid from aspartame has the same deleterious effects on the body as glutamic acid.

The exact mechanism of acute reactions to excess free glutamate and aspartate is currently being debated. As reported to the FDA, those reactions include: aspartame effect

   Headaches/migraines
   Nausea
   Abdominal pains
   Fatigue (blocks sufficient glucose entry into brain)
   Sleep problems
   Vision problems
   Anxiety attacks
   Depression
   Asthma/chest tigShtness.

One common complaint of persons suffering from the effect of aspartame is memory loss. Ironically, in 1987, G.D. Searle, the manufacturer of aspartame, undertook a search for a drug to combat memory loss caused by excitatory amino acid damage. Blaylock is one of many scientists and physicians who are concerned about excitatory amino acid damage caused by ingestion of aspartame and MSG.

A few of the many experts who have spoken out against the damage being caused by aspartate and glutamate include Adrienne Samuels, Ph.D., an experimental psychologist specializing in research design. Another is Olney, a professor in the department of psychiatry, School of Medicine, Washington University, a neuroscientist and researcher, and one of the world's foremost authorities on excitotoxins. (He informed Searle in 1971 that aspartic acid caused holes in the brains of mice.) Phenylalanine (50 percent of aspartame) Don't let artificial sweeteners fool you! Order now and find out the risks of using aspartame.

Phenylalanine is an amino acid normally found in the brain. Persons with the genetic disorder phenylketonuria (PKU) cannot metabolize phenylalanine. This leads to dangerously high levels of phenylalanine in the brain (sometimes lethal). It has been shown that ingesting aspartame, especially along with carbohydrates, can lead to excess levels of phenylalanine in the brain even in persons who do not have PKU.

This is not just a theory, as many people who have eaten large amounts of aspartame over a long period of time and do not have PKU have been shown to have excessive levels of phenylalanine in the blood. Excessive levels of phenylalanine in the brain can cause the levels of seratonin in the brain to decrease, leading to emotional disorders such as depression. It was shown in human testing that phenylalanine levels of the blood were increased significantly in human subjects who chronically used aspartame.

Even a single use of aspartame raised the blood phenylalanine levels. In his testimony before the U.S. Congress, Dr. Louis J. Elsas showed that high blood phenylalanine can be concentrated in parts of the brain and is especially dangerous for infants and fetuses. He also showed that phenylalanine is metabolised much more effeciently by rodents than by humans.

One account of a case of extremely high phenylalanine levels caused by aspartame was recently published the "Wednesday Journal" in an article titled "An Aspartame Nightmare." John Cook began drinking six to eight diet drinks every day. His symptoms started out as memory loss and frequent headaches. He began to crave more aspartame-sweetened drinks. His condition deteriorated so much that he experienced wide mood swings and violent rages. Even though he did not suffer from PKU, a blood test revealed a phenylalanine level of 80 mg/dl. He also showed abnormal brain function and brain damage. After he kicked his aspartame habit, his symptoms improved dramatically.

As Blaylock points out in his book, early studies measuring phenylalanine buildup in the brain were flawed. Investigators who measured specific brain regions and not the average throughout the brain notice significant rises in phenylalanine levels. Specifically the hypothalamus, medulla oblongata, and corpus striatum areas of the brain had the largest increases in phenylalanine. Blaylock goes on to point out that excessive buildup of phenylalanine in the brain can cause schizophrenia or make one more susceptible to seizures.

Therefore, long-term, excessive use of aspartame may provid a boost to sales of seratonin reuptake inhibitors such as Prozac and drugs to control schizophrenia and seizures. Methanol (aka wood alcohol/poison) (10 percent of aspartame)

Methanol/wood alcohol is a deadly poison. Some people may remember methanol as the poison that has caused some "skid row" alcoholics to end up blind or dead. Methanol is gradually released in the small intestine when the methyl group of aspartame encounter the enzyme chymotrypsin.

The absorption of methanol into the body is sped up considerably when free methanol is ingested. Free methanol is created from aspartame when it is heated to above 86 Fahrenheit (30 Centigrade). This would occur when aspartame-containing product is improperly stored or when it is heated (e.g., as part of a "food" product such as Jello).

methanolMethanol breaks down into formic acid and formaldehyde in the body. Formaldehyde is a deadly neurotoxin. An EPA assessment of methanol states that methanol "is considered a cumulative poison due to the low rate of excretion once it is absorbed. In the body, methanol is oxidized to formaldehyde and formic acid; both of these metabolites are toxic." They recommend a limit of consumption of 7.8 mg/day. A one-liter (approx. 1 quart) aspartame-sweetened beverage contains about 56 mg of methanol. Heavy users of aspartame-containing products consume as much as 250 mg of methanol daily or 32 times the EPA limit.

Symptoms from methanol poisoning include headaches, ear buzzing, dizziness, nausea, gastrointestinal disturbances, weakness, vertigo, chills, memory lapses, numbness and shooting pains in the extremities, behavioral disturbances, and neuritis. The most well known problems from methanol poisoning are vision problems including misty vision, progressive contraction of visual fields, blurring of vision, obscuration of vision, retinal damage, and blindness. Formaldehyde is a known carcinogen, causes retinal damage, interferes with DNA replication and causes birth defects.

Due to the lack of a couple of key enzymes, humans are many times more sensitive to the toxic effects of methanol than animals. Therefore, tests of aspartame or methanol on animals do not accurately reflect the danger for humans. As pointed out by Dr. Woodrow C. Monte, director of the food science and nutrition laboratory at Arizona State University, "There are no human or mammalian studies to evaluate the possible mutagenic, teratogenic or carcinogenic effects of chronic administration of methyl alcohol."

He was so concerned about the unresolved safety issues that he filed suit with the FDA requesting a hearing to address these issues. He asked the FDA to "slow down on this soft drink issue long enough to answer some of the important questions. It's not fair that you are leaving the full burden of proof on the few of us who are concerned and have such limited resources. You must remember that you are the American public's last defense. Once you allow usage (of aspartame) there is literally nothing I or my colleagues can do to reverse the course. Aspartame will then join saccharin, the sulfiting agents, and God knows how many other questionable compounds enjoined to insult the human constitution with governmental approval." Shortly thereafter, the Commissioner of the FDA, Arthur Hull Hayes, Jr., approved the use of aspartame in carbonated beverages, he then left for a position with G.D. Searle's public relations firm.

It has been pointed out that some fruit juices and alcoholic beverages contain small amounts of methanol. It is important to remember, however, that methanol never appears alone. In every case, ethanol is present, usually in much higher amounts. Ethanol is an antidote for methanol toxicity in humans. The troops of Desert Storm were "treated" to large amounts of aspartame-sweetened beverages, which had been heated to over 86 degrees F in the Saudi Arabian sun. Many of them returned home with numerous disorders similar to what has been seen in persons who have been chemically poisoned by formaldehyde. The free methanol in the beverages may have been a contributing factor in these illnesses. Other breakdown products of aspartame such as DKP (discussed below) may also have been a factor.

In a 1993 act that can only be described as "unconscionable," the FDA approved aspartame as an ingredient in numerous food items that would always be heated to above 86 degree F (30 degree C). Diketopiperazine (DKP)

DKP is a byproduct of aspartame metabolism. DKP has been implicated in the occurrence of brain tumors. Olney noticed that DKP, when nitrosated in the gut, produced a compound that was similar to N-nitrosourea, a powerful brain tumor causing chemical. Some authors have said that DKP is produced after aspartame ingestion. I am not sure if that is correct. It is definitely true that DKP is formed in liquid aspartame-containing products during prolonged storage.

G.D. Searle conducted animal experiments on the safety of DKP. The FDA found numerous experimental errors occurred, including "clerical errors, mixed-up animals, animals not getting drugs they were supposed to get, pathological specimens lost because of improper handling," and many other errors. These sloppy laboratory procedures may explain why both the test and control animals had sixteen times more brain tumors than would be expected in experiments of this length.

In an ironic twist, shortly after these experimental errors were discovered, the FDA used guidelines recommended by G.D. Searle to develop the industry-wide FDA standards for good laboratory practices.

DKP has also been implicated as a cause of uterine polyps and changes in blood cholesterol by FDA Toxicologist Dr. Jacqueline Verrett in her testimony before the U.S. Senate. Aspartame Free Report


Chemistry

Aspartame is a methyl ester of the dipeptide of the natural amino acids L-aspartic acid and L-phenylalanine. Under strongly acidic or alkaline conditions, aspartame may generate methanol by hydrolysis. Under more severe conditions, the peptide bonds are also hydrolyzed, resulting in the free amino acids.[7]

While known aspects of synthesis are covered by patents, many details are proprietary.[8] Two approaches to synthesis are used commercially. In the chemical synthesis, the two carboxyl groups of aspartic acid are joined into an anhydride, and the amino group is protected by a compound that will prevent further reactions of that group. Phenylalanine is methylated and combined with the N-protected aspartic anhydride, then the blocking group is removed from aspartic acid by acid hydrolysis. The drawback of this technique is that a byproduct, the bitter tasting β-form, is produced when the wrong carboxyl group from aspartic acid links to phenylalanine. A process using an enzyme from Bacillus thermoproteolyticus to catalyze the condensation of the chemically altered amino acids will produce high yields without the β-form byproduct. A variant of this method, which has not been used commercially, uses unmodified aspartic acid, but produces low yields. Methods for directly producing aspartyl-phenylalanine by enzymatic means, followed by chemical methylation, have also been tried, but not scaled for industrial production.[9]

Properties and use

Beta aspartame differs from aspartame based on which carboxyl group binds to phenylalanine
Beta-aspartame differs from aspartame based upon which carboxyl group of aspartate binds to the nitrogen of phenylalanine.

Aspartame, an artificial sweetener, is approximately 200 times sweeter than sucrose, or table sugar. Due to this property, even though aspartame produces four kilocalories of energy per gram when metabolized, the quantity of aspartame needed to produce a sweet taste is so small that its caloric contribution is negligible.[6] The taste of aspartame and other artificial sweeteners differs from that of table sugar in the times of onset and how long the sweetness lasts, though aspartame comes closest to sugar's taste profile among approved artificial sweeteners.[8] The sweetness of aspartame lasts longer than sucrose, so it is often blended with other artificial sweeteners such as acesulfame potassium to produce an overall taste more like sugar.[10] Aspartame can be synthesized from its constituent amino acids, L-phenylalanine and L-aspartate.

Like many other peptides, aspartame may hydrolyze (break down) into its constituent amino acids under conditions of elevated temperature or high pH. This makes aspartame undesirable as a baking sweetener, and prone to degradation in products hosting a high pH, as required for a long shelf life. The stability of aspartame under heating can be improved to some extent by encasing it in fats or in maltodextrin. The stability when dissolved in water depends markedly on pH. At room temperature, it is most stable at pH 4.3, where its half-life is nearly 300 days. At pH 7, however, its half-life is only a few days. Most soft-drinks have a pH between 3 and 5, where aspartame is reasonably stable. In products that may require a longer shelf life, such as syrups for fountain beverages, aspartame is sometimes blended with a more stable sweetener, such as saccharin.[11]

Aspartame's major decomposition products are its cyclic dipeptide (diketopiperazine form), the de-esterified dipeptide (aspartyl-phenylalanine), and its constituent components, phenylalanine,[12] aspartic acid,[13] and methanol.[14] At 180°C, aspartame undergoes decomposition to form a diketopiperazine (DKP) derivative.[15]

In products such as powdered beverages, the amine in aspartame can undergo a Maillard reaction with the aldehyde groups present in certain aroma compounds. The ensuing loss of both flavor and sweetness can be prevented by protecting the aldehyde as an acetal.

Descriptive analyses of solutions containing aspartame report a sweet aftertaste as well as bitter and off-flavour aftertastes.[16]

Discovery and approval

Aspartame was discovered in 1965 by James M. Schlatter, a chemist working for G.D. Searle & Company. Schlatter had synthesized aspartame in the course of producing an antiulcer drug candidate. He accidentally discovered its sweet taste when he licked his finger, which had become contaminated with aspartame, to lift up a piece of paper.[17][18]

In 1975, prompted by issues regarding Flagyl and Aldactone, a U.S. FDA task force team reviewed 25 studies submitted by the manufacturer, including 11 on aspartame. The team reported “serious deficiencies in Searle’s operations and practices".[19] The FDA sought to authenticate 15 of the submitted studies against the supporting data. In 1979, the Center for Food Safety and Applied Nutrition (CFSAN) concluded, since many problems with the aspartame studies were minor and did not affect the conclusions, the studies could be used to assess aspartame's safety.[19]

In 1980, the FDA convened a Public Board of Inquiry (PBOI) consisting of independent advisors charged with examining the purported relationship between aspartame and brain cancer. The PBOI concluded aspartame does not cause brain damage, but it recommended against approving aspartame at that time, citing unanswered questions about cancer in laboratory rats.[19][20]

Citing data from a Japanese study that had not been available to the members of the PBOI,[21] and after seeking advice from an expert panel that found fault with statistical analyses underlying the PBOI's hesitation, yet argued against approval,[22] FDA commissioner Hayes approved aspartame for use in dry goods.[23] In 1983, the FDA further approved aspartame for use in carbonated beverages, and for use in other beverages, baked goods, and confections in 1993. In 1996, the FDA removed all restrictions from aspartame, allowing it to be used in all foods.

Several European Union countries approved aspartame in the 1980s, with EU-wide approval in 1994. The European Commission Scientific Committee on Food reviewed subsequent safety studies and reaffirmed the approval in 2002. The European Food Safety Authority reported in 2006 that the previously established Acceptable Daily Intake was appropriate, after reviewing yet another set of studies.[24]

Metabolism and phenylketonuria

Upon ingestion, aspartame breaks down into natural residual components, including aspartic acid, phenylalanine, methanol,[25] and further breakdown products including formaldehyde[26] and formic acid, accumulation of the latter being suspected as the major cause of injury in methanol poisoning. Human studies show that formic acid is excreted faster than it is formed after ingestion of aspartate. In some fruit juices, higher concentrations of methanol can be found than the amount produced from aspartame in beverages.[13]

High levels of the naturally-occurring essential amino acid phenylalanine are a health hazard to those born with phenylketonuria (PKU), a rare inherited disease that prevents phenylalanine from being properly metabolized. Since individuals with PKU must consider aspartame as an additional source of phenylalanine, foods containing aspartame sold in the United States must state "Phenylketonurics: Contains Phenylalanine" on their product labels.[27]

In the UK, foods that contain aspartame are legally required by the country's Food Standards Agency to list the chemical among the product's ingredients and carry the warning "Contains a source of phenylalanine" – this is usually at the foot of the list of ingredients. Manufacturers are also required to print '"with sweetener(s)" on the label close to the main product name' on foods that contain "sweeteners such as aspartame" or "with sugar and sweetener(s)" on "foods that contain both sugar and sweetener".[28]

In Canada, foods that contain aspartame are legally required by the country to list the chemical among the product's ingredients and include a measure of the amount of aspartame per serving. As well, labels must state that the product contains phenylalanine – this is usually in the order of ingredients, contained in brackets.[29]

Economics

Equal, NutraSweet, and Canderel are ingredients of approximately 6,000 consumer foods and beverages sold worldwide, including (but not limited to) diet sodas and other soft drinks, instant breakfasts, breath mints, cereals, sugar-free chewing gum, cocoa mixes, frozen desserts, gelatin desserts, juices, laxatives, chewable vitamin supplements, milk drinks, pharmaceutical drugs and supplements, shake mixes, tabletop sweeteners, teas, instant coffees, topping mixes, wine coolers and yogurt. It is provided as a table condiment in some countries. Aspartame is less suitable for baking than other sweeteners, because it breaks down when heated and loses much of its sweetness. Aspartame is also one of the main sugar substitutes used by people with diabetes.

NutraSweet Company

In 1984, Monsanto Company bought G.D. Searle, and the aspartame business became a separate Monsanto subsidiary, the NutraSweet Company. On May 25, 2000, Monsanto sold it to J.W. Childs Equity Partners II L.P.[30] European use patents on aspartame expired starting in 1987,[31] and the U.S. patent expired in 1992. Since then, the company has competed for market share with other manufacturers, including Ajinomoto, Merisant and the Holland Sweetener Company.

Ajinomoto

Many aspects of industrial synthesis of aspartame were established by Ajinomoto.[8] In 2004, the market for aspartame, in which Ajinomoto, the world's largest aspartame manufacturer, had a 40 percent share, was 14,000 metric tons a year, and consumption of the product was rising by 2 percent a year.[32] Ajinomoto acquired its aspartame business in 2000 from Monsanto for $67M.[33]

In 2008, Ajinomoto sued British supermarket chain Asda, part of Wal-Mart, for a malicious falsehood action concerning its aspartame product when the chemical was listed as excluded from the chain's product line, along with other "nasties".[34] In July 2009, a British court found in favour of Asda.[35] In June 2010, an appeals court reversed the decision, allowing Ajinomoto to pursue a case against Asda to protect aspartame's reputation.[36] Asda said that it would continue to use the term "no nasties" on its own-label products,[37] but the suit was settled in 2011 with ASDA choosing to remove references to aspartame from its packaging.[38]

In November 2009, Ajinomoto announced a new brand name for its aspartame sweetener — AminoSweet.[39]

Holland Sweetener Company

A joint venture of DSM and Tosoh, the Holland Sweetener Company manufactured aspartame using the enzymatic process developed by Toyo Soda (Tosoh) and sold as the brand Sanecta.[40] Additionally, they developed a combination aspartame-acesulfame salt was developed under the brand name Twinsweet.[41] They left the sweetener industry in late 2006, because "global aspartame markets are facing structural oversupply, which has caused worldwide strong price erosion over the last five years", making the business "persistently unprofitable".[42]

Competing products

Because sucralose, unlike aspartame, retains its sweetness after being heated, and has at least twice the shelf life of aspartame, it has become more popular as an ingredient.[43] This, along with differences in marketing and changing consumer preferences, caused aspartame to lose market share to sucralose.[44][45] In 2004, aspartame traded at about $30/kg and sucralose, which is roughly three times sweeter by weight, at around $300/kg.[46]

Safety controversy

Aspartame has been the subject of several controversies, hoaxes[3] and health scares[47] since its initial approval by the U.S. Food and Drug Administration (FDA) in 1974. Critics allege that conflicts of interest marred the FDA's approval of aspartame, question the quality of the initial research supporting its safety,[48][49][50] and postulate that numerous health risks may be associated with aspartame.

The validity of these claims has been examined and dismissed.[6][48][51] In 1987, the U.S. Government Accountability Office concluded the food additive approval process had been followed properly for aspartame.[48][52] Aspartame has been found to be safe for human consumption by more than ninety countries worldwide,[53][54] with FDA officials describing aspartame as "one of the most thoroughly tested and studied food additives the agency has ever approved" and its safety as "clear cut".[55] The weight of existing scientific evidence indicates that aspartame is safe at current levels of consumption as a non-nutritive sweetener.[6]

Compendial status

References

  1. ^ Budavari, Susan, ed. (1989). "861. Aspartame". The Merck Index (11th ed.). Rahway, NJ: Merck & Co. p. 859. ISBN 91191028X. {{cite book}}: Check |isbn= value: length (help)
  2. ^ Rowe, Raymond C. (2009). "Aspartame". Handbook of Pharmaceutical Excipients. pp. 11–12. ISBN 1582120587.
  3. ^ a b Aspartame on Snopes.com
  4. ^ ACSH Debunks Internet Health Hoax
  5. ^ A Web of Deceit
  6. ^ a b c d Magnuson BA; Burdock GA; Doull J; et al. (2007). "Aspartame: a safety evaluation based on current use levels, regulations, and toxicological and epidemiological studies". Critical Reviews in Toxicology. 37 (8): 629–727. doi:10.1080/10408440701516184. PMID 17828671. {{cite journal}}: Unknown parameter |author-separator= ignored (help) Cite error: The named reference "CritReview" was defined multiple times with different content (see the help page).
  7. ^ David J. Ager, David P. Pantaleone, Scott A. Henderson, Alan R. Katritzky, Indra Prakash, D. Eric Walters (1998). "Commercial, Synthetic Non-nutritive Sweeteners". Angewandte Chemie International Edition. 37 (13–24): 1802–1817. doi:10.1002/(SICI)1521-3773(19980803)37:13/14<1802::AID-ANIE1802>3.0.CO;2-9.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ a b c O'Donnell, Kay (2006). "6 Aspartame and Neotame". In Mitchell, Helen Lucy (ed.). Sweeteners and sugar alternatives in food technology. Blackwell. pp. 86–95. ISBN 1405134348. Retrieved July 26, 2011. {{cite book}}: External link in |chapterurl= (help); Unknown parameter |chapterurl= ignored (|chapter-url= suggested) (help)
  9. ^ Yagasaki, Makoto (2008). "Synthesis and application of dipeptides; current status and perspectives". Applied Microbiology and Biotechnology. 81 (1): 13–22. doi:10.1007/s00253-008-1590-3. PMID 18795289. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  10. ^ "New Products Weigh In". www.foodproductdesign.com. Retrieved 2010-06-19.
  11. ^ "Fountain Beverages in the US" (PDF). The Coca-Cola Company. 2007. {{cite web}}: Unknown parameter |month= ignored (help)
  12. ^ Prodolliet, J.; Bruelhart, M. (1993). "Determination of aspartame and its major decomposition products in foods". J AOAC Int. 76 (2): 275–82. PMID 8471853. {{cite journal}}: Cite has empty unknown parameter: |month= (help)
  13. ^ a b Stegink, Lewis D. (1987). "The aspartame story: a model for the clinical testing of a food additive". American Journal of Clinical Nutrition. 46 (1): 204–15. PMID 3300262. {{cite journal}}: Unknown parameter |month= ignored (help)
  14. ^ Lin, SY.; Cheng, YD. (2000). "Simultaneous formation and detection of the reaction product of solid-state aspartame sweetener by FT-IR/DSC microscopic system". Food Addit Contam. 17 (10): 821–7. doi:10.1080/026520300420385. PMID 11103265. {{cite journal}}: Unknown parameter |month= ignored (help)
  15. ^ Rastogi, S.; Zakrzewski, M.; Suryanarayanan, R. (2001). "Investigation of solid-state reactions using variable temperature X-ray powder diffractrometry. I. Aspartame hemihydrate". Pharm Res. 18 (3): 267–73. doi:10.1023/A:1011086409967. PMID 11442263. {{cite journal}}: Unknown parameter |month= ignored (help)
  16. ^ F. Nahon, Denise (1998). "Sensory Evaluation of Mixtures of Maltitol or Aspartame, Sucrose and an Orange Aroma". Chem. Senses. 23 (1): 59–66. doi:10.1093/chemse/23.1.59. PMID 9530970. Retrieved 29 July 2010. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  17. ^ Lewis, Ricki (2001). Discovery: windows on the life sciences. Oxford: Blackwell Science. p. 4. ISBN 0-632-04452-7.
  18. ^ Magnuson BA, Burdock GA, Doull J (2007). "Aspartame: a safety evaluation based on current use levels, regulations, and toxicological and epidemiological studies". Crit. Rev. Toxicol. 37 (8): 629–727. doi:10.1080/10408440701516184. PMID 17828671.{{cite journal}}: CS1 maint: multiple names: authors list (link) Citing: Mazur, R.H. (1984). Discovery of aspartame. In Aspartame: Physiology and Biochemistry (L. D. Stegink and L. J. Filer Jr., Eds.). Marcel Dekker, New York, pp. 3–9.
  19. ^ a b c "U.S. GAO - HRD-87-46 Food and Drug Administration: Food Additive Approval Process Followed for Aspartame, June 18, 1987". pp. 94–96. Retrieved 2008-09-05.
  20. ^ Testimony of Dr. Adrian Gross, Former FDA Investigator to the U.S. Senate Committee on Labor and Human Resources, November 3, 1987. Hearing title: "NutraSweet Health and Safety Concerns." Document # Y 4.L 11/4:S.HR6.100, page 430-439.
  21. ^ FDA Statement on Aspartame, November 18, 1996
  22. ^ "U.S. GAO - HRD-87-46 Food and Drug Administration: Food Additive Approval Process Followed for Aspartame, June 18, 1987". p. 53. Retrieved 2008-09-05.
  23. ^ Food Additive Approval Process Followed for Aspartame, Food and Drug Administration, June 1987
  24. ^ EFSA ::. Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to a new long-term carcinogenicity study on aspartame
  25. ^ Roberts HJ (2004). "Aspartame disease: a possible cause for concomitant Graves' disease and pulmonary hypertension". Texas Heart Institute Journal. 31 (1): 105, author reply 105–6. PMC 387446. PMID 15061638.
  26. ^ Trocho C; Pardo R; Rafecas I; et al. (1998). "Formaldehyde derived from dietary aspartame binds to tissue components in vivo". Life Sciences. 63 (5): 337–49. doi:10.1016/S0024-3205(98)00282-3. PMID 9714421. {{cite journal}}: Unknown parameter |author-separator= ignored (help)
  27. ^ Code of Federal Regulations Title 21
  28. ^ Aspartame - Labelling, UK Food Standards Agency, 18 July 2006. Retrieved on 2007-07-22.
  29. ^ http://www.nutrasweet.com/articles/sendfile.asp?Id=161&filename=AF-TB-03-005.pdf
  30. ^ J.W. Childs Equity Partners II, L.P, Food & Drink Weekly, June 5, 2000
  31. ^ Shapiro, Eben (November 19, 1989). "Nutrasweet's Bitter Fight". New York Times.
  32. ^ "Ajinomoto May Exceed Full-Year Forecasts on Amino Acid Products - Bloomberg". www.bloomberg.com. Retrieved 2010-06-23.
  33. ^ "Sweetener sale-05/06/2000-ECN". www.icis.com. Retrieved 2010-07-09.
  34. ^ "Asda gears up for additives battle/ aspartame". www.thisismoney.co.uk. Retrieved 2010-06-23. {{cite web}}: Unknown parameter |unused_data= ignored (help)
  35. ^ "Asda claims victory in aspartame 'nasty' case". www.foodanddrinkeurope.com. Retrieved 2010-06-23.
  36. ^ "FoodBev.com". www.foodbev.com. Retrieved 2010-06-23. {{cite web}}: Unknown parameter |unused_data= ignored (help)
  37. ^ "Radical new twist in Ajinomoto vs Asda 'nasty' battle". www.foodnavigator.com. Retrieved 2010-06-23.
  38. ^ Bouckley, Ben (May 18, 2011). "Asda settles 'nasty' aspartame legal battle with Ajinomoto". William Reed Business Media SAS. AP-FoodTechnongy.com. Retrieved July 18, 2011.
  39. ^ "Ajinomoto brands aspartame AminoSweet". Foodnavigator.com. Retrieved 2010-07-07.
  40. ^ Lee, Thomas D. (2007). "Sweetners". Kirk-Othmer Encyclopedia of Chemical Technology. Vol. 24 (5th ed.). Wiley. pp. 224–252. doi:10.1002/0471238961.19230505120505.a01.pub2. ISBN 0471484962.
  41. ^ "Holland Sweetener rolls out Twinsweet". BakeryAndSnacks.com. William Reed Business Media. November 19, 2003. Retrieved July 29, 2011.
  42. ^ html b1?release id=115447
  43. ^ Warner, Melanie (2004-12-22). "A Something Among the Sweet Nothings; Splenda Is Leaving Other Sugar Substitutes With That Empty Feeling - New York Times". query.nytimes.com. Retrieved 2010-06-18.
  44. ^ John Schmeltzer (2004-12-02). "Equal fights to get even as Splenda looks sweet]" (subscription required). Chicago Tribune. Retrieved 2007-07-04.
  45. ^ Carney, By Beth (2005-01-19). "It's Not All Sweetness for Splenda". BusinessWeek: Daily Briefing. Retrieved 2008-09-05.
  46. ^ "Aspartame defence courts reaction". www.beveragedaily.com. Retrieved 2010-07-07.
  47. ^ Flaherty, Megan (1999-04-12). "Harvesting Kidneys and other Urban Legends". NurseWeek. Retrieved 2011-02-12.
  48. ^ a b c GAO 1987. "Food Additive Approval Process Followed for Aspartame" Full GAO Report United States General Accounting Office, GAO/HRD-87-46, June 18, 1987
  49. ^ Sugarman, Carole (1983-07-03). "Controversy Surrounds Sweetener". Washington Post. pp. D1–2. Retrieved 2008-11-25. {{cite news}}: Italic or bold markup not allowed in: |publisher= (help)
  50. ^ Henkel J (1999). "Sugar substitutes. Americans opt for sweetness and lite". FDA Consumer Magazine. 33 (6). DIANE Publishing: 12–6. ISBN 9781422326909. PMID 10628311.
  51. ^ "Aspartame Warning". About.com. - the Nancy Markle chain email.
  52. ^ GAO 1986. "Six Former HHS Employees' Involvement in Aspartame's Approval." United States General Accounting Office, GAO/HRD-86-109BR, July 1986.
  53. ^ Health Canada: "Aspartame - Artificial Sweeteners". Retrieved 2008-11-08.
  54. ^ Food Standards Australia New Zealand: "Food Standards Australia New Zealand: Aspartame (September 2007)". Retrieved 2008-11-08.
  55. ^ Henkel, John (November–December 1999). "Sugar Substitutes: Americans Opt for Sweetness and Lite". FDA Consumer. Retrieved January 29, 2009. {{cite news}}: Check date values in: |date= (help)
  56. ^ British Pharmacopoeia Commission Secretariat. "Index (BP)" (PDF). Retrieved 16 January 2010. {{cite web}}: Cite has empty unknown parameter: |coauthors= (help)
  57. ^ United States Pharmacopeia. "Food Ingredient Reference Standards" (PDF). Retrieved 16 January 2010. {{cite web}}: Cite has empty unknown parameter: |coauthors= (help)