Jump to content

RR Centauri

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by OAbot (talk | contribs) at 01:12, 13 April 2020 (Open access bot: doi added to citation with #oabot.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

RR Centauri

Light curve of RR Cen.
Observation data
Epoch J2000      Equinox J2000
Constellation Centaurus
Right ascension 14h 16m 57.22s[1]
Declination −57° 51′ 15.6″[1]
Apparent magnitude (V) 7.29[2] (7.27 - 7.68[3])
Characteristics
Spectral type F0 V[4]
U−B color index +0.05[2]
B−V color index +0.36[2]
Variable type W Uma[3]
Astrometry
Radial velocity (Rv)-16.0 [5] km/s
Proper motion (μ) RA: -52.00[6] mas/yr
Dec.: -22.63[6] mas/yr
Parallax (π)10.16 ± 0.61 mas[6]
Distance320 ± 20 ly
(98 ± 6 pc)
Absolute magnitude (MV)+1.882[4]
Orbit[7]
PrimaryRR Cen1
CompanionRR Cen2
Period (P)0.60569 days
Semi-major axis (a)3.92 ± 0.19 R
Eccentricity (e)0
Inclination (i)81.00 ± 0.44°
Details[7]
RR Cen1
Mass1.82 ± 0.26 M
Radius2.1 ± 0.01 R
Luminosity8.89 L
Temperature6,912 K
RR Cen2
Mass0.38 ± 0.06 M
Radius1.05 ± 0.03 R
Luminosity2.2 L
Temperature6,891 ± 13 K
Other designations
RR Cen, 2MASS J14165721-5751156, HD 124689, HIP 69779, SAO 241587, TYC 8686-210-1.[1]
Database references
SIMBADdata

RR Centauri is a variable star of apparent magnitude maximum +7.29. It is located in the constellation of Centaurus, approximately 320 light years distant from the solar system.[6]

The system is a contact binary of the W UMa type - two stars in physical contact whose two components share a gaseous envelope. Its spectral type is A9V or F0V.[1] The binary nature of the star was discovered in 1896 by the Scottish-South African astronomer Alexander Roberts, so the system has been well observed for over a century.[8] The primary component has a mass of 1.82 solar masses, an effective temperature of around 6900 K, and a radius somewhat larger than twice the solar radius.[7] The secondary component is 0.39 solar masses, giving a mass ratio of the system (q) of 0.210. the secondary has a temperature of about 6890 K and a radius is almost equal to the solar radius.

The orbital period of this system is 0.6057 days (14.53 hours). Recent calculations by astronomers from the Chinese Academy of Sciences show a possible cyclic variation in orbital period over 65.1 ± 0.4 years whose amplitude is 0.0124 ± 0.0007 days.[7] The origin of this periodic variation could be due to the gravitational influence of a third object yet observed. Superimposed on this variation seems to be a secular increase in the period of 1.21 x 10 –7 days per year, suggesting that there is transfer of stellar mass from secondary to primary component. If this increase is confirmed, RR Centauri may evolve into a single rapidly rotating star.

RR Centauri is also an eclipsing binary, whose apparent brightness varies by around 0.41 magnitudes.[7]

References

  1. ^ a b c d "V* RR Cen -- Eclipsing binary of W UMa type (contact binary)". SIMBAD. Centre de Données astronomiques de Strasbourg. Retrieved 2016-02-27.
  2. ^ a b c Loden, L.O. (1979). "Continued studies of loose clusterings in the Southern Milky Way". Astronomy and Astrophysics Supplement. 38: 355. Bibcode:1979A&AS...38..355L.
  3. ^ a b Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+ 2007-2013)". VizieR On-line Data Catalog: B/gcvs. Originally Published in: 2009yCat....102025S. 1. Bibcode:2009yCat....102025S.
  4. ^ a b Eker, Z.; Bilir, S.; Yaz, E.; Demircan, O.; Helvaci, M. (2009). "New absolute magnitude calibrations for W Ursa Majoris type binaries". Astronomische Nachrichten. 330: 68. arXiv:0807.4989. Bibcode:2009AN....330...68E. doi:10.1002/asna.200811041.
  5. ^ Bilir, S; Karatas, Y; Demircan, O; Eker, Z (2005). "Kinematics of W Ursae Majoris type binaries and evidence of the two types of formation". Monthly Notices of the Royal Astronomical Society. 357 (2): 497–517. arXiv:astro-ph/0411291. Bibcode:2005MNRAS.357..497B. doi:10.1111/j.1365-2966.2005.08609.x.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  6. ^ a b c d van Leeuwen, F. (November 2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics. 474 (2): 653–664. arXiv:0708.1752. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357.
  7. ^ a b c d e Yuan-Gui, Y.; Sheng-Bang, Q.; Li-Ying, Z.; Jia-Jia, H.; Jin-Zhao, Y (2005). "Photometric Investigations of Three Short-Period Binary Systems: GSC 0763–0572, RR Centauri, and Epsilon Coronae Australis". Publications of the Astronomical Society of Japan. 57 (6): 983–993. Bibcode:2005PASJ...57..983Y. doi:10.1093/pasj/57.6.983.
  8. ^ Roberts, Alexander (1903). "Determination of the Orbital Elements of RR Centauri from the Observed Light Curve". Monthly Notices of the Royal Astronomical Society. 63 (8): 540–549. Bibcode:1903MNRAS..63..536R. doi:10.1093/mnras/63.8.527.