Jump to content

Timeline of atomic and subatomic physics

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Monkbot (talk | contribs) at 21:58, 26 December 2020 (Task 18 (cosmetic): eval 8 templates: hyphenate params (1×);). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

A timeline of atomic and subatomic physics.

Early beginnings

  • In 6th century BCE, Acharya Kanada proposed that all matter must consist of indivisible particles and called them "anu". He proposes examples like ripening of fruit as the change in the number and types of atoms to create newer units.
  • 430 BCE[1] Democritus speculates about fundamental indivisible particles—calls them "atoms"

The beginning of chemistry

The age of quantum mechanics

The formation and successes of the Standard Model

Quantum field theories beyond the Standard Model

  • 2000 Steven Weinberg. Supersymmetry and Quantum Gravity.[19][23]
  • 2003 Leonid Vainerman. Quantum groups, Hopf algebras and quantum field applications.[24]
  • Noncommutative quantum field theory
  • M.R. Douglas and N. A. Nekrasov (2001) "Noncommutative field theory," Rev. Mod. Phys. 73: 977–1029.
  • Szabo, R. J. (2003) "Quantum Field Theory on Noncommutative Spaces," Physics Reports 378: 207–99. An expository article on noncommutative quantum field theories.
  • Noncommutative quantum field theory, see statistics on arxiv.org
  • Seiberg, N. and E. Witten (1999) "String Theory and Noncommutative Geometry," Journal of High Energy Physics
  • Sergio Doplicher, Klaus Fredenhagen and John Roberts, Sergio Doplicher, Klaus Fredenhagen, John E. Roberts (1995) The quantum structure of spacetime at the Planck scale and quantum fields," Commun. Math. Phys. 172: 187–220.
  • Alain Connes (1994) Noncommutative geometry. Academic Press. ISBN 0-12-185860-X.
  • -------- (1995) "Noncommutative geometry and reality", J. Math. Phys. 36: 6194.
  • -------- (1996) "Gravity coupled with matter and the foundation of noncommutative geometry," Comm. Math. Phys. 155: 109.
  • -------- (2006) "Noncommutative geometry and physics,"
  • -------- and M. Marcolli, Noncommutative Geometry: Quantum Fields and Motives. American Mathematical Society (2007).
  • Chamseddine, A., A. Connes (1996) "The spectral action principle," Comm. Math. Phys. 182: 155.
  • Chamseddine, A., A. Connes, M. Marcolli (2007) "Gravity and the Standard Model with neutrino mixing," Adv. Theor. Math. Phys. 11: 991.
  • Jureit, Jan-H., Thomas Krajewski, Thomas Schücker, and Christoph A. Stephan (2007) "On the noncommutative standard model," Acta Phys. Polon. B38: 3181–3202.
  • Schücker, Thomas (2005) Forces from Connes's geometry. Lecture Notes in Physics 659, Springer.
  • Noncommutative standard model
  • Noncommutative geometry

See also

References

  1. ^ Teresi, Dick (2010). Lost Discoveries: The Ancient Roots of Modern Science. Simon and Schuster. pp. 213–214. ISBN 978-1-4391-2860-2.
  2. ^ Jammer, Max (1966), The conceptual development of quantum mechanics, New York: McGraw-Hill, OCLC 534562
  3. ^ Tivel, David E. (September 2012). Evolution: The Universe, Life, Cultures, Ethnicity, Religion, Science, and Technology. Dorrance Publishing. ISBN 9781434929747.
  4. ^ Gilbert N. Lewis. Letter to the editor of Nature (Vol. 118, Part 2, December 18, 1926, pp. 874–875).
  5. ^ The origin of the word "photon"
  6. ^ The Davisson–Germer experiment, which demonstrates the wave nature of the electron
  7. ^ A. Abragam and B. Bleaney. 1970. Electron Parmagnetic Resonance of Transition Ions, Oxford University Press: Oxford, U.K., p. 911
  8. ^ Feynman, R.P. (2006) [1985]. QED: The Strange Theory of Light and Matter. Princeton University Press. ISBN 0-691-12575-9.
  9. ^ Richard Feynman; QED. Princeton University Press: Princeton, (1982)
  10. ^ Richard Feynman; Lecture Notes in Physics. Princeton University Press: Princeton, (1986)
  11. ^ Feynman, R.P. (2001) [1964]. The Character of Physical Law. MIT Press. ISBN 0-262-56003-8.
  12. ^ Feynman, R.P. (2006) [1985]. QED: The Strange Theory of Light and Matter. Princeton University Press. ISBN 0-691-12575-9.
  13. ^ Schweber, Silvan S. ; Q.E.D. and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga, Princeton University Press (1994) ISBN 0-691-03327-7
  14. ^ Schwinger, Julian ; Selected Papers on Quantum Electrodynamics, Dover Publications, Inc. (1958) ISBN 0-486-60444-6
  15. ^ *Kleinert, H. (2008). Multivalued Fields in Condensed Matter, Electrodynamics, and Gravitation (PDF). World Scientific. ISBN 978-981-279-170-2.
  16. ^ Yndurain, Francisco Jose ; Quantum Chromodynamics: An Introduction to the Theory of Quarks and Gluons, Springer Verlag, New York, 1983. ISBN 0-387-11752-0
  17. ^ Jump up to: a b Frank Wilczek (1999) "Quantum field theory", Reviews of Modern Physics 71: S83–S95. Also doi=10.1103/Rev. Mod. Phys. 71.
  18. ^ Weinberg, Steven ; The Quantum Theory of Fields: Foundations (vol. I), Cambridge University Press (1995) ISBN 0-521-55001-7. The first chapter (pp. 1–40) of Weinberg's monumental treatise gives a brief history of Q.F.T., pp. 608.
  19. ^ Jump up to: a b Weinberg, Steven; The Quantum Theory of Fields: Modern Applications (vol. II), Cambridge University Press:Cambridge, U.K. (1996) ISBN 0-521-55001-7, pp. 489.
  20. ^ * Gerard 't Hooft (2007) "The Conceptual Basis of Quantum Field Theory" in Butterfield, J., and John Earman, eds., Philosophy of Physics, Part A. Elsevier: 661-730.
  21. ^ Pais, Abraham ; Inward Bound: Of Matter & Forces in the Physical World, Oxford University Press (1986) ISBN 0-19-851997-4 Written by a former Einstein assistant at Princeton, this is a beautiful detailed history of modern fundamental physics, from 1895 (discovery of X-rays) to 1983 (discovery of vectors bosons at C.E.R.N.)
  22. ^ "Press Release: The 1999 Nobel Prize in Chemistry". 12 October 1999. Retrieved 30 June 2013.
  23. ^ Weinberg, Steven; The Quantum Theory of Fields: Supersymmetry (vol. III), Cambridge University Press:Cambridge, U.K. (2000) ISBN 0-521-55002-5, pp. 419.
  24. ^ Leonid Vainerman, editor. 2003. Locally Compact Quantum Groups and Groupoids. Proceed. Theor. Phys. Strassbourg in 2002, Walter de Gruyter: Berlin and New York