Air conditioner: Difference between revisions
→Refrigeration cycle: Grammar fix, inserted 'and' |
|||
Line 28: | Line 28: | ||
=== Refrigeration cycle === |
=== Refrigeration cycle === |
||
[[Image:Heatpump.svg|thumb|300px|A simple stylized diagram of the refrigeration cycle: 1) [[condensing coil]], 2) [[expansion valve]], 3) [[evaporator coil]], 4) [[Gas compressor|compressor]].]] |
[[Image:Heatpump.svg|thumb|300px|A simple stylized diagram of the chode refrigeration cycle: 1) [[condensing coil]], 2) [[expansion valve]], 3) [[evaporator coil]], 4) [[Gas compressor|compressor]].]] |
||
In the refrigeration cycle, a [[heat pump]] transfers heat from a lower-[[temperature]] heat source into a higher-temperature [[heat sink]]. Heat would naturally flow in the opposite direction. This is the most common type of air conditioning. A [[refrigerator]] works in much the same way, as it pumps the heat out of the interior and into the room in which it stands. |
In the refrigeration cycle, a [[heat pump]] transfers heat from a lower-[[temperature]] heat source into a higher-temperature [[heat sink]]. Heat would naturally flow in the opposite direction. This is the most common type of air conditioning. A [[refrigerator]] works in much the same way, as it pumps the heat out of the interior and into the room in which it stands. |
Revision as of 16:51, 13 April 2009
This article needs additional citations for verification. (April 2008) |
An air conditioner is an appliance, system, or mechanism designed to extract heat from an area via a refrigeration cycle. In construction, a complete system of heating, ventilation, and air conditioning is referred to as "HVAC." Its purpose, in a building or an automobile, is to provide comfort during either hot or cold weather.
History
In 1820, British scientist and inventor Michael Faraday discovered that compressing and liquefying ammonia could chill air when the liquefied ammonia was allowed to evaporate. In 1842, Florida physician John Gorrie used compressor technology to create ice, which he used to cool air for his patients in his hospital in Apalachicola, Florida.[1] He hoped eventually to use his ice-making machine to regulate the temperature of buildings. He even envisioned centralized air conditioning that could cool entire cities. Though his prototype leaked and performed irregularly, Gorrie was granted a patent in 1851 for his ice-making machine. His hopes for its success vanished soon afterward when his chief financial backer died; Gorrie did not get the money he needed to develop the machine. According to his biographer Vivian M. Sherlock, he blamed the "Ice King", Frederic Tudor, for his failure, suspecting that Tudor had launched a smear campaign against his invention. Dr. Gorrie died impoverished in 1855 and the idea of air conditioning faded away for 50 years.
Early commercial applications of air conditioning were manufactured to cool air for industrial processing rather than personal comfort. In 1902 the first modern electrical air conditioning was invented by Willis Haviland Carrier in Syracuse, NY. Designed to improve manufacturing process control in a printing plant, his invention controlled not only temperature but also humidity. The low heat and humidity were to help maintain consistent paper dimensions and ink alignment. Later Carrier's technology was applied to increase productivity in the workplace, and The Carrier Air Conditioning Company of America was formed to meet rising demand. Over time air conditioning came to be used to improve comfort in homes and automobiles. Residential sales expanded dramatically in the 1950s.
In 1906, Stuart W. Cramer of Charlotte, North Carolina, was exploring ways to add moisture to the air in his textile mill. Cramer coined the term "air conditioning", using it in a patent claim he filed that year as an analogue to "water conditioning", then a well-known process for making textiles easier to process. He combined moisture with ventilation to "condition" and change the air in the factories, controlling the humidity so necessary in textile plants. Willis Carrier adopted the term and incorporated it into the name of his company. This evaporation of water in air, to provide a cooling effect, is now known as evaporative cooling.
The first air conditioners and refrigerators employed toxic or flammable gases like ammonia, methyl chloride, and propane which could result in fatal accidents when they leaked. Thomas Midgley, Jr. created the first chlorofluorocarbon gas, Freon, in 1928. The refrigerant was much safer for humans but was later found to be harmful to the atmosphere's ozone layer. Freon is a trademark name of DuPont for any Chlorofluorocarbon (CFC), Hydrogenated CFC (HCFC), or Hydrofluorocarbon (HFC) refrigerant, the name of each including a number indicating molecular composition (R-11, R-12, R-22, R-134A). The blend most used in direct-expansion home and building comfort cooling is an HCFC known as R-22. It is to be phased out for use in new equipment by 2010 and completely discontinued by 2020. R-12 was the most common blend used in automobiles in the US until 1994 when most changed to R-134A. R-11 and R-12 are no longer manufactured in the US, the only source for purchase being the cleaned and purified gas recovered from other air conditioner systems. Several non-ozone depleting refrigerants have been developed as alternatives, including R-410A, known by the brand name Puron.
Innovation in air conditioning technologies continue, with much recent emphasis placed on energy efficiency and improving indoor air quality. As an alternative to conventional refrigerants, natural alternatives like CO2 (R-744) have been proposed.[2]
Air conditioning applications
This section needs expansion. You can help by adding to it. (September 2008) |
Air conditioning system basics and theories
Refrigeration cycle
In the refrigeration cycle, a heat pump transfers heat from a lower-temperature heat source into a higher-temperature heat sink. Heat would naturally flow in the opposite direction. This is the most common type of air conditioning. A refrigerator works in much the same way, as it pumps the heat out of the interior and into the room in which it stands.
This cycle takes advantage of the way phase changes work, where latent heat is released at a constant temperature during a liquid/gas phase change, and where varying the pressure of a pure substance also varies its condensation/boiling point.
The most common refrigeration cycle uses an electric motor to drive a compressor. In an automobile, the compressor is driven by a belt over a pulley, the belt being driven by the engine's crankshaft (similar to the driving of the pulleys for the alternator, power steering, etc.). Whether in a car or building, both use electric fan motors for air circulation. Since evaporation occurs when heat is absorbed, and condensation occurs when heat is released, air conditioners use a compressor to cause pressure changes between two compartments, and actively condense and pump a refrigerant around. A refrigerant is pumped into the cooled compartment (the evaporator coil), where the low pressure causes the refrigerant to evaporate into a vapor, taking heat with it. In the other compartment (the condenser), the refrigerant vapor is compressed and forced through another heat exchange coil, condensing into a liquid, rejecting the heat previously absorbed from the cooled space.
Humidity
Air conditioning equipment usually reduces the humidity of the air processed by the system. The relatively cold (below the dew point) evaporator coil condenses water vapor from the processed air, much like a cold drink will condense water on the outside of a glass. The water is drained, removing water vapor from the cooled space and thereby lowering its relative humidity. Since humans perspire to provide natural cooling by the evaporation of perspiration from the skin, drier air (up to a point) improves the comfort provided. The comfort air conditioner is designed to create a 40% to 60% relative humidity in the occupied space. In food retail establishments, large, open chiller cabinets act as highly effective dehumidifiers.
Some air conditioning units dry the air without cooling it. These work like a normal air conditioner, except that a heat exchanger is placed between the intake and exhaust. In combination with convection fans, they achieve a similar level of comfort as an air cooler in humid tropical climates, but only consume about one-third the energy. They are also preferred by those who find the draft created by air coolers uncomfortable.
Refrigerants
"Freon" is a trade name for a family of haloalkane refrigerants manufactured by DuPont and other companies. These refrigerants were commonly used due to their superior stability and safety properties. Unfortunately, evidence has accumulated that these chlorine-bearing refrigerants reach the upper atmosphere when they escape. Once the refrigerant reaches the stratosphere, UV radiation from the Sun cleaves the chlorine-carbon bond, yielding a chlorine radical. These chlorine atoms catalyze the breakdown of ozone into diatomic oxygen, depleting the ozone layer that shields the Earth's surface from strong UV radiation. Each chlorine radical remains active as a catalyst unless it binds with another chlorine radical, forming a stable molecule and breaking the chain reaction. CFC refrigerants in common but decreasing usage include R-11 and R-12. Newer and more environmentally-safe refrigerants such as HCFCs (R-22, used in most homes today) and HFCs (R-134a, used in most cars) have replaced most CFC use. HCFCs in turn are being phased out under the Montreal Protocol and replaced by hydrofluorocarbons (HFCs) such as R-410A, which lack chlorine.
Types of air conditioner equipment
Window and through-wall units
Room air conditioners come in two forms: unitary and split or packaged terminal PTAC systems. Unitary systems, the common one room air conditioners, sit in a window or wall opening, with interior controls. Interior air is cooled as a fan blows it over the evaporator. On the exterior the air is heated as a second fan blows it over the condenser. In this process, heat is drawn from the room and discharged to the environment. A large house or building may have several such units, permitting each room be cooled separately. A PTAC system, frequently used in hotels, has two separate units (terminal packages), the evaportive unit on the exterior and the condensing unit on the interior, with tubing passing through the wall and connecting them. This minimizes the interior system footprint and allows each room to be adjusted independently. PTAC systems may adapted to provide heating in cold weather, either directly by using an electric strip, gas or other heater, or by reversing the refrigerant flow to heat the interior and draw heat from the exterior air, converting the air conditioner into a heat pump. While room air conditioning provides maximum flexibility, when cooling many rooms it is generally more expensive than central air conditioning.
Evaporative coolers
In very dry climates, evaporative coolers are popular for improving comfort during hot weather. This type of cooler is the dominant cooler used in Iran, which has the largest number of these units of any country in the world, causing some to referring to these units as "Persian coolers."[3] An evaporative cooler is a device that draws outside air through a wet pad, such as a large sponge soaked with water. The sensible heat of the incoming air, as measured by a dry bulb thermometer, is reduced. The total heat (sensible heat plus latent heat) of the entering air is unchanged. Some of the sensible heat of the entering air is converted to latent heat by the evaporation of water in the wet cooler pads. If the entering air is dry enough, the results can be quite comfortable. These coolers cost less and are mechanically simple to understand and maintain.
An early type of cooler, using ice for a further effect, was patented by John Gorrie of Apalachicola, Florida in 1842. He used the device to cool the patients in his malaria hospital.
Absorptive chillers
Central air conditioning
Central air conditioning, commonly referred to as central air (U.S.) or air-con (UK), is an air conditioning system which uses ducts to distribute cooled and/or dehumidified air to more than one room, or uses pipes to distribute chilled water to heat exchangers in more than one room, and which is not plugged into a standard electrical outlet.
With a typical split system, the condenser and compressor are located in an outdoor unit; the evaporator is mounted in the air handler unit. With a package system, all components are located in a single outdoor unit that may be located on the ground or roof.
Central air conditioning performs like a regular air conditioner but has several added benefits:
- When the air handling unit turns on, room air is drawn in from various parts of the building through return-air ducts. This air is pulled through a filter where airborne particles such as dust and lint are removed. Sophisticated filters may remove microscopic pollutants as well. The filtered air is routed to air supply ductwork that carries it back to rooms. Whenever the air conditioner is running, this cycle repeats continually.
- Because the central air conditioning unit is located outside the home, it offers a lower level of indoor noise than a free-standing air conditioning unit.
Virus washer technology
A disinfectant technology that drops electrolyzed water in an element, passing air through it, purifying the air in the process. The virus washer function suppresses airborne viruses and pollen. The technology is used in home air purification systems and humidifiers, portable air purifiers as well as commercial-grade air purification systems. [4]
Thermostats
Thermostats control the operation of HVAC systems, turning on the heating or cooling systems to bring the building to the set temperature. Typically the heating and cooling systems have separate control systems (even though they may share a thermostat) so that the temperature is only controlled "one-way." That is, in cold weather, a building that is too hot will not be cooled by the thermostat. Thermostats may also be incorporated into facility energy management systems in which the power utility customer may control the overall energy expenditure. In addition, a growing number of power utilities have made available a device which, when professionally installed, will control or limit the power to an HVAC system during peak use times in order to avoid necessitating the use of rolling blackouts. The customer is given a credit of some sort in exchange, so it is often to the advantage of the consumer to buy the most efficient[citation needed] thermostat possible.
Equipment capacity
Air conditioner equipment power in the U.S. is often described in terms of "tons of refrigeration." A "ton of refrigeration" is defined as the cooling power of one short ton (2000 pounds or 907 kilograms) of ice melting in a 24-hour period. This is equal to 12,000 BTU per hour, or 3517 watts.[5] Residential central air systems are usually from 1 to 5 tons (3 to 20 kilowatts (kW)) in capacity.
The use of electric/compressive air conditioning puts a major demand on the electrical power grid in hot weather, when most units are operating under heavy load. In the aftermath of the 2003 North America blackout locals were asked to keep their air conditioning off. During peak demand, additional power plants must often be brought online, usually expensive peaker plants. A 1995 meta-analysis of various utility studies concluded that the average air conditioner wasted 40% of the input energy. This energy is lost in the form of heat, which must be pumped out. There is a huge opportunity to reduce the need for new power plants and to conserve energy.
In an automobile, the A/C system will use around 5 horsepower (4 kW) of the engine's power.
Seasonal Energy Efficiency Rating (SEER)
For residential homes, some countries set minimum requirements for energy efficiency. In the United States, the efficiency of air conditioners is often (but not always) rated by the Seasonal Energy Efficiency Ratio (SEER). The higher the SEER rating, the more energy efficient is the air conditioner. The SEER rating is the BTU of cooling output during its normal annual usage divided by the total electric energy input in watt hours (W·h) during the same period. [6]
- SEER = BTU ÷ W·h
For example, a 5000 BTU/h air-conditioning unit, with a SEER of 10, operating for a total of 1000 hours during an annual cooling season (i.e., 8 hours per day for 125 days) would provide an annual total cooling output of:
- 5000 BTU/h × 1000 h = 5,000,000 BTU
which, for a SEER of 10, would be an annual electrical energy usage of:
- 5,000,000 BTU ÷ 10 = 500,000 W·h
and that is equivalent to an average power usage during the cooling season of:
- 500,000 W·h ÷ 1000 h = 500 W
SEER is related to the coefficient of performance (COP) commonly used in thermodynamics and also to the Energy Efficiency Ratio (EER). The EER is the efficiency rating for the equipment at a particular pair of external and internal temperatures, while SEER is calculated over a whole range of external temperatures (i.e., the temperature distribution for the geographical location of the SEER test). SEER is unusual in that it is composed of an Imperial unit divided by an SI unit. The COP is a ratio with the same metric units of energy (joules) in both the numerator and denominator. They cancel out, leaving a dimensionless quantity. Formulas for the approximate conversion between SEER and EER or COP are available from the Pacific Gas and Electric Company:[7][dead link]
- (1) SEER = EER ÷ 0.9
- (2) SEER = COP x 3.792
- (3) EER = COP x 3.413
From equation (2) above, a SEER of 13 is equivalent to a COP of 3.43, which means that 3.43 units of heat energy are pumped per unit of work energy.
Today, it is rare to see systems rated below SEER 9 in the United States, since older units are being replaced with higher-efficiency units. The United States now requires that residential systems manufactured in 2006 have a minimum SEER rating of 13 (although window-box systems are exempt from this law, so their SEER is still around 10).[8] Substantial energy savings can be obtained from more efficient systems. For example by upgrading from SEER 9 to SEER 13, the power consumption is reduced by 30% (equal to 1 - 9/13). It is claimed that this can result in an energy savings valued at up to US$300 per year (depending on the usage rate and the cost of electricity). In many cases, the lifetime energy savings are likely to surpass the higher initial cost of a high-efficiency unit.
As an example, the annual cost of electric power consumed by a 72,000 BTU/h air conditioning unit operating for 1000 hours per year with a SEER rating of 10 and a power cost of $0.08 per kilowatt hour (kW·h) may be calculated as follows:
- unit size, BTU/h × hours per year, h × power cost, $/kW·h ÷ (SEER, BTU/W·h × 1000 W/kW)
- (72,000 BTU/h) × (1000 h) × ($0.08/kW·h) ÷ [(10 BTU/W·h) × (1000 W/kW)] = $576.00 annual cost
A common misconception is that the SEER rating system also applies to heating systems. However, SEER ratings only apply to air conditioning.
Air conditioners (for cooling) and heat pumps (for heating) both work similarly in that heat is transferred or "pumped" from a cooler heat source to a warmer "heat sink". Air conditioners and heat pumps usually operate most effectively at temperatures around 10 to 13 degrees Celsius (°C) (50 to 55 degrees Fahrenheit (°F)). A balance point is reached when the heat source temperature falls below about 4 °C (40 °F), and the system is not able to pull any more heat from the heat source (this point varies from heat pump to heat pump). Similarly, when the heat sink temperature rises to about 49 °C (120 °F), the system will operate less effectively, and will not be able to "push" out any more heat. Geothermal heat pumps do not have this problem of reaching a balance point because they use the ground as a heat source/heat sink and the ground's thermal inertia prevents it from becoming too cold or too warm when moving heat from or to it. The ground's temperature does not vary nearly as much over a year as that of the air above it.
Insulation
This section needs expansion. You can help by adding to it. (September 2008) |
Insulation reduces the required power of the air conditioning system. Thick building walls, reflective roofing, curtains, and trees next to buildings also cut down on system and energy requirements.
Home air conditioning systems around the world
Domestic air conditioning is most prevalent and ubiquitous in developed Asian and Middle Eastern nations and territories, such as Japan, Taiwan, South Korea, Singapore, Hong Kong, Israel and the Gulf States such as Bahrain, Kuwait, and the United Arab Emirates. This especially applies to Singapore and Hong Kong due to most of the population living in small high-rise flats. In these areas, with high summer temperatures and a high standard of living, air conditioning is considered a necessity and not a luxury. Japanese-made domestic air conditioners are usually window or split types, the latter being more modern and expensive. In Israel, vitually all residential systems are split types. Air conditioning is also increasing in popularity with the rising standard of living in tropical Asian nations such as Thailand, India, Pakistan, Malaysia, and the Philippines. In Indonesia, an air-conditioning unit is considered a must in every home due to the high temperature.[citation needed]
In the United States, home air conditioning is most prevalent in the South/Southwest and on the East Coast, areas in which it has reached the ubiquity it enjoys in East Asia.[citation needed] Central air systems are most common in the United States, and are virtually standard in all new dwellings in most states.[citation needed]
In Europe, home air conditioning is generally less common in part due to higher energy costs and moderate summer temperatures. Some European countries like Switzerland even forbid installation without permission[citation needed], as these devices use lots of energy and are considered environmentally unfriendly. Southern European countries such as Greece, on the other hand, have seen a wide proliferation of home air-conditioning units in recent years[9]. The lack of air conditioning in residences, residential care homes, and medical facilities was identified as a contributing factor to the estimated 35,000 deaths—mostly in Germany, France and Italy—left in the wake of the 2003 heat wave.
References
- ^ History of Air Conditioning Source: Jones Jr., Malcolm. "Air Conditioning". Newsweek. Winter 1997 v130 n24-A p42(2). Retrieved 1 January 2007.
- ^ The current status in Air Conditioning - papers & presentations
- ^ Dahlgren, Derek. "History of Air Conditioning". Bucknell University. Retrieved 2007-09-15.
{{cite web}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ Virus washer technology in Warner Cinemas, Sanyo news release.
- ^ "NIST Guide to the SI". National Institute of Standards and Technology. Retrieved 2007-05-18.
- ^ "Energy Glossary - S". Energy Glossary. Energy Information Administration. Retrieved 2006-07-02.
- ^ SEER conversion formulas from Pacific Gas and Electric
- ^ "Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today" (Press release). United States Department of Energy. 2006-01-23. Retrieved 2006-07-02.
- ^ "«Χρυσές» δουλειές για τις εταιρείες κλιματιστικών έφερε το κύμα καύσωνα". news in.gr (in Greek). Athens: Lambrakis Press. 2007-07-25. Retrieved 2008-06-30.
{{cite news}}
: CS1 maint: unrecognized language (link)
See also
- Air filter
- Dehumidifier
- EcoCute
- Energy
- Energy conservation
- Heat pump
- Heating
- HVAC
- Hydronics
- Inverter
- Noise mitigation
- Renewable energy
- Refrigeration
- Trigeneration
- Whole house fan
External links
- "DENSO Develops World's First CO2 Car Air Conditioner". The Auto Channel. 2002-12-04. Retrieved 2008-07-19.
{{cite news}}
: Check date values in:|date=
(help)
Energy efficiency
- Consumer Guide to Home Energy Savings - Central Air Conditioners from the American Council for an Energy Efficient Economy (ACEEE)
- Energy Efficiency Program Database from the ACEEE
- Space heating and cooling from the U.S. Department of Energy's Energy Efficiency and Renewable Energy
- UK Enhanced Capital Allowance Scheme (ECA), a UK Government scheme to provide tax rebates for companies who use products which are ECA approved.
- International Energy Agency - Energy Conservation In Buildings And Community Systems
- Top-Rated Energy-Efficient Central Air Conditioners