Jump to content

Carbide bromide

From Wikipedia, the free encyclopedia
(Redirected from Bromide carbide)

Carbide bromides are mixed anion compounds containing bromide and carbide anions. Many carbide bromides are cluster compounds, containing on, two or more carbon atoms in a core, surrounded by a layer of metal atoms, encased in a shell of bromide ions. These ions may be shared between clusters to form chains, double chains or layers.[1]

The great majority of these carbide bromide compounds contain rare earth elements. Since these elements have similar properties, similar structures can be made by substituting the elements. R2CBr2 forms a structure with layers of R6C clusters that contain one carbon atom. Each layer has bromide coating the top and bottom. Very similar is R2CBr2 which has layers of R6C2 clusters containing pairs of carbon atoms. This dicarbon is an ethenide (C24−), and contains a double bond. Layers have bromide on both sides, and so they are only weakly held together by van der Waals forces. If these layers are aligned with each other a 1T- form results with a small c measurement on the unit cell. In some compounds the layers are not quite aligned, but repeat after three layers giving a 3R form, with a larger c unit cell height. Where the layers align, the crystal system is trigonal. But if the layers never quite align at any height, a monoclinic crystal results. The C2 unit sits at an angle to the layers, and thus reduces symmetry compared to compounds with single carbon atoms in the cluster.[1]

In R2CBr there are layers of R6C that share bromide between layers.[1]

List

[edit]
formula system space group unit cell volume density comment reference
Sc7CBr12 trigonal R3 a=13.628, c=9.203 4.33 [2]
Y2CBr2 trigonal R3m a=3.7545, c=29.125 4.90 bronze [2]
Y2C2Br2 monoclinic C12/m1 a=6.953, b=3.764, c=9.938, β=99.98 3.85 superconductor Tc=5.04K [2][3]
Y2C0.7Br2 trigonal P3m1 a=3.73 c=9.864 4.83 grey [2]
Y10Br18(C2)2 monoclinic P21/n a=9.729 b=16.323 c=13.229 β =121.131° Z=24 1798.3 black [4]
Na0.23Y2C2Br2 monoclinic C2/m a=7.061, b=3.724, c=10.464, β=92.96 4.43 copper red [5]
Zr6CBr14 orthorhombic Cmce a=14.69 b=13.229 c=11.991 [2]
NaZr6CBr14 orthorhombic Cmca a=14.6876, b=13.2266, c=11.9864 [5]
K4Zr6Br18C triclinic P1 a=10.114, b=10.283, c=10.374, α=118.54, β=99.98, γ=104.08, Z=1 [6]
RbZr6CBr14 orthorhombic Cmca a=14.719, b=13.287, c=12.043 [5]
Cs2Zr6Br10C trigonal R3c a=13.0862 c=35.823 Z=6 5312.8 [7]
CsZr6Br9C trigonal R3c a=13.1031 c=35.800 Z=6 5321.5 [7]
Cs3Zr6Br15C trigonal R3c a=13.116 c=35.980 Z=6 [7]
Cs4Zr6Br15C trigonal R3c a=13.098 c=35.756 Z=6 5312 [7]
La2C2Br monoclinic C12/c1 a=15.313, b=4.193, c=6.842, β=100.53,90 5.87 [8]
La3CBr5 monoclinic C12/c1 a=14.234, b=10.858, c=14.588, β =106.8 5.10 yellow [8]
La3C2Br3 orthorhombic C2221 a=11.533, b=17.0698, c=17.054 5.38 bronze [8]
La4C2Br5 orthorhombic Immm a = 3.9950, b = 8.277, c = 18.101 5.43 black [9]
La5C2Br9 orthorhombic Pnma a=11.309, b=9.9477, c=16.4911 5.15 red [2]
La5C6Br3 monoclinic C12/m1 a=22.809, b=3.9855, c=16.599, β=123.32 5.30 bronze [2]
La6C2Br9 monoclinic C2/c a=14,234 b=10.858 c=14.588 β=106.80 Z=4 2158.4 4.85 yellow insulator [10]
La10(C2)6Br6 monoclinic C2/m a = 22.809, b = 3.9855, c = 16.599, β = 123.32° Z=2 1260.9 5.301 bronze; air sensitive [11]
La3Br2C2B Pnma f =15.323, b = 3.973, c =11.567 black [12]
Ce2C2Br monoclinic C2/c a = 15.120, b = 4.179, c = 6.743, β = 101.09 ° [13]
Ce4CBr5 monoclinic C2/m a = 18.306, b = 3.9735, c = 8.378, β=104.91° [14]
Ce4C1.5Br5 monoclinic C2/m a = 18.996, b = 3.9310, c = 8.282, β = 106.74° [14]
Ce4C2Br5 orthorhombic Immm a = 3.9835, b = 8.186, c = 18.017 5.54 violet [9]
Ce4Br3C4 triclinic P 1 a = 4.227, b = 11.034, c = 11.268, α = 77.15°, β = 90.13° and γ = 84.42° [15]
Ce10(C2)6Br6 monoclinic C2/m a = 22.483, b = 3.9253, c = 16.375, β = 123.15° Z=2 1209.9 5.558 bronze; air sensitive [11]
Ce6Br3C3B2 monoclinic P21/m a = 8.602, b = 3.829, c = 10.220, β = 112.53 black [12]
Pr2CBr hexagonal P63/mmc a=3.8071, c=14.7787 6.69 black [2]
Pr2C2Br monoclinic C12/c1 a=15.054, b=4.139, c=6.713, β=101.08 6.24 [2]
Pr3CBr3 cubic I4131 a=11.61 5.73 [2]
Pr3CBr5 triclinic P1 a=7.571, b=9.004, c=9.062, α=108.57, β=97.77, γ=106.28 5.09 black [2]
Pr4C1.3Br5 monoclinic C2/m a = 18.467, b = 3.911, c = 8.258, β = 105.25° [14]
Pr4C1.5Br5 monoclinic C2/m a = 19.044, b = 3.9368, c = 8.254, β = 106.48° [14]
Pr5C2Br8 triclinic P1 a=9.096, b=12.185, c=16.688, α=79.57, β=89.86, γ=84.38 5.02 black [2]
Pr5C2Br9 monoclinic P21/n a = 10.069; b = 18.861; c = 10.459; β = 108.130° Z = 4 5.09 dark red [2]
Pr5C6Br3 monoclinic C12/m1 a=22.36, b=3.895, c=16.269, β=90,123.44 5,71 [2]
Pr6C2Br10 triclinic P1 a=7.571 b=9.004 c=9.062 α=108.57° β=97.77° γ=106.28° Z=1 544.8 5.09 black [16]
Pr7C3Br10 a=9.054, b=11.1265, c=13.352, α=79.641, β=72.57, γ=64.67 5.22 black [2]
Pr10C4Br15 triclinic P1 a=9.098 b=10.127 c=10.965 α=70.38° β=66.31° γ=70.84° Z=1 849.3 5.19 silver [16]
Pr10(C2)2Br16 triclinic P1 a = 9.096, b = 12.185, c = 16.688, α = 79.57°, β = 89.86°, γ = 84.38° metallic black [17]
Pr10(C2)6Br6 monoclinic C2/m a = 22.36, b = 3.895, c = 16.269, β = 123.44° Z=2 bronze; air sensitive [11]
Pr14C6Br20 triclinic P1 a=9.098 b=10.935 c=13.352 α=86.27° β=75.57° γ=66.88° Z=1 1157.8 5.23 black [16]
Pr6C2Cl5Br5 monoclinic C2/c a = 13.689(1) Å, b = 10.383(1) Å, c = 14.089(1) Å, β = 106.49(1)° yellow to green [18]
Gd2CBr hexagonal P63/mmc a=3.7858, c=14.209 7.65 dark grey [8]
Gd2Br2C trigonal P3m1 a=3.8209, c=9.824 black [19]
3s-Gd2C2Br2 monoclinic C2/m a = 7.066, b = 3.827, c = 9.967, β = 99.95° 5.69 black; contains C24− [20][21][22]
Gd2C2Br2 monoclinic C2/m a=7.025, b=3.8361, c=9.868, β =94.47 6.24 gold [8]
Gd4C2Br3 orthorhombic Pnma a = 10.844, b = 3.730, c = 20.361 6.58 bronze [23]
Gd10C4Br18 monoclinic P21/n a=9.7406 b=16.4817 c=11.8604 β =104.394° Z=24 contains C24− [4]
Gd10(C2)6Br6 monoclinic C2/m a = 21.507, b = 3.7193, c = 15.331, β = 123.34° Z=2 1024.5 6.254 bronze; air sensitive [11]
Gd4Br3C2B monoclinic P21/m a=9.547, b=3.693, c=12.44,5, β=106.68 black [12]
K2[Gd10(C2)2]Br19 orthorhombic Pbcn a=12.751, b=23.17, c=14.423 5.01 black [24]
K2[Gd10(C2)2]Br20 orthorhombic Pbca a=1.2751, b=2.317, c=1.4423 4.70 black [24]
Rb2[Gd10(C2)2]Br19 orthorhombic Pbcn a=1.2737, b=2.325, c=1.4412 5.15 black [24]
Cs2[Gd10(C2)2]Br19 orthorhombic [24]
TbCBr monolinic C12/m1 a=7.015, b=3.801, c=9.948, β=100.05 6.28 [2]
Tb2CBr hexagonal P63/mmc a=3.6915, c=14.043 8.21 [2]
Tb2CBrH hexagonal P63mc a=3.7376, c=14.315 7.88 [5]
Tb4C2Br3 orthorhombic Pnma a = 10.743, b = 3.706, c = 20.194 7.31 bronze [23]
Tb10Br18(C2)2 monolinic P121/c1 a=9.7562 b=16.4254 c=13.3043 β =120.675° 1833.7 5.57 dark red [4][2]
Rb2[Tb10(C2)2]Br19 orthorhombic a=1.2664, b=2.3105, c=1.4303 black [24]
Dy10Br18(C2)2 monolinic P21/c a = 9.740 b = 16.340 c = 13.247 β = 120.869° Z = 2 1809.6 black [25]
Ho10Br18(C2)2 monolinic P21/n a=9.6838 b=16.2436 c=11.6374 β =104.427° Z=24 1772.8 [4]
[Er10(C2)2]Br18 monoclinic P21/n a = 9.718, b = 16.234, c = 11.638, β = 104.00°; Z = 2 5.89 black [26]
Lu2CBr2 trigonal R3m a= 3.6663, c=28.799 7.75 gold [2]
La0.9Lu0.1CBr monoclinic C2/m a=7.434, b=4.0568, c=10.046, β=93.7 5.15 [5]
W30C2(Cl,Br)68 triclinic P1 a = 12.003, b = 14.862, c = 15.792, α = 88.75°, β = 68.85°, γ = 71.19° Z=1 2472.9 6.35 black [27]
Th6CBr15 orthorhombic Cmce a=15.764, b=14.16, c=13.124 5.72 green [28]
Y0.8Th0.2CBr monoclinic C2/m a=7.061, b=3.776, c=9.983, β=100.36 5.31 [5]

References

[edit]
  1. ^ a b c Handbook on the physics and chemistry of rare earths. Amsterdam: North-Holland. 1978. pp. 221–225. ISBN 9780444889669.
  2. ^ a b c d e f g h i j k l m n o p q r s Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 341. ISBN 978-3-11-031174-7.
  3. ^ Henn, R. W.; Schnelle, W.; Kremer, R. K.; Simon, A. (1996-07-08). "Bulk Superconductivity at 10 K in the Layered Compounds Y 2 C 2 I 2 and Y 2 C 2 Br 2". Physical Review Letters. 77 (2): 374–377. Bibcode:1996PhRvL..77..374H. doi:10.1103/PhysRevLett.77.374. ISSN 0031-9007. PMID 10062435.
  4. ^ a b c d Cruz, Escobedo (2016-06-13). Compounds Comprising Lanthanide Clusters and Their Potential as Molecular Magnets: Synthesis, Structure and Magnetic Properties (Thesis thesis).
  5. ^ a b c d e f Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 924. ISBN 978-3-11-031174-7.
  6. ^ Qi, Ru-Yi; Corbett, John D (August 1998). "Comparative Zirconium Bromide Cluster Chemistry. A New Structure in K4Zr6Br18C". Journal of Solid State Chemistry. 139 (1): 85–92. Bibcode:1998JSSCh.139...85Q. doi:10.1006/jssc.1998.7814.
  7. ^ a b c d Qi, Ru-Yi; Corbett, John D. (March 1995). "Cs3Zr6Br15Z (Z = C, B): A Stuffed Rhombohedral Perovskite Structure of Linked Clusters". Inorganic Chemistry. 34 (7): 1657–1662. doi:10.1021/ic00111a009. ISSN 0020-1669.
  8. ^ a b c d e Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 340. ISBN 978-3-11-031174-7.
  9. ^ a b Mattausch, Hansjürgen; Schaloske, Manuel C.; Hoch, Constantin; Simon, Arndt (March 2008). "Halogenide der Seltenerdmetalle Ln4X5Z. Teil 2: Eine orthorhombische Verknüpfungsvarianteo-Ln4X5Z". Zeitschrift für anorganische und allgemeine Chemie. 634 (3): 498–502. doi:10.1002/zaac.200700478.
  10. ^ Mattausch, Hansjürgen; Hoch, Constantin; Simon, Arndt (2007-02-01). "La 6 C 2 Br 9 : La-Tetraederdoppel mit endohedralen C 4– -Ionen / La 6 C 2 Br 9 : La Bitetrahedral Clusters with Endohedral C 4− Ions". Zeitschrift für Naturforschung B. 62 (2): 143–147. doi:10.1515/znb-2007-0201. ISSN 1865-7117. S2CID 98503059.
  11. ^ a b c d Mattausch, Hansjürgen; Kienle, Lorenz; Duppel, Viola; Hoch, Constantin; Simon, Arndt (September 2009). "Seltenerdethenidhalogenide Ln 2 n +6(C 2 ) n +4 X 2 n +2: Darstellung, Struktur, Verwachsung und Verzwilligung". Zeitschrift für anorganische und allgemeine Chemie. 635 (11): 1527–1535. doi:10.1002/zaac.200900289.
  12. ^ a b c Mattausch, Hansjürgen; Simon, Arndt (1995-08-18). "Bromides of Rare Earth Metal Boride Carbides—A System of Building Blocks". Angewandte Chemie International Edition in English. 34 (15): 1633–1635. doi:10.1002/anie.199516331. ISSN 0570-0833.
  13. ^ Mattausch, Hansjürgen; Simon, Arndt (July 2011). "Variationen modulo 4-4+, 4+3-3+4-, 4-5+, 5-4+4-5+4-4+ bei Seltenerdcarbidhalogeniden". Zeitschrift für anorganische und allgemeine Chemie. 637 (9): 1093–1100. doi:10.1002/zaac.201100055.
  14. ^ a b c d Mattausch, Hansjürgen; Schaloske, Manuel C.; Hoch, Constantin; Zheng, Chong; Simon, Arndt (March 2008). "Seltenerdhalogenide Ln4X5Z. Teil 1: C und/oder C2 in Ln4X5Z". Zeitschrift für anorganische und allgemeine Chemie (in German). 634 (3): 491–497. doi:10.1002/zaac.200700500.
  15. ^ Mattausch, Hansjürgen; Oeckler, Oliver; Kremer, Reinhard K.; Simon, Arndt (2000). "Struktur, Verzwillingung und Eigenschaften von Ce4Br3C4". Zeitschrift für Anorganische und Allgemeine Chemie. 626 (2): 518–523. doi:10.1002/(SICI)1521-3749(200002)626:2<518::AID-ZAAC518>3.0.CO;2-2.
  16. ^ a b c Schaloske, Manuel Christian; Mattausch, Hansjürgen; Duppel, Viola; Kienle, Lorenz; Simon, Arndt (2009-08-01). "The Starting Members of the Series Pr 4n+2 (C 2 ) n Br 5n+5 (n = 1, 2, 3)". Zeitschrift für Naturforschung B. 64 (8): 922–928. doi:10.1515/znb-2009-0808. ISSN 1865-7117. S2CID 197260171.
  17. ^ Schaloske, Manuel Christian; Mattausch, Hansjürgen; Kienle, Lorenz; Simon, Arndt (October 2008). "Pr 10 (C 2 ) 2 Br 16 : Eine neue Struktur mit diskreten Pr 10 -Doppeloktaedern". Zeitschrift für anorganische und allgemeine Chemie. 634 (12–13): 2246–2254. doi:10.1002/zaac.200800204.
  18. ^ Schaloske, Manuel C.; Mattausch, Hansjürgen; Kienle, Lorenz; Simon, Arndt (August 2008). "Pr6C2-Doppeltetraeder in Pr6C2Cl10 und Pr6C2Cl5Br5". Zeitschrift für anorganische und allgemeine Chemie. 634 (9): 1493–1500. doi:10.1002/zaac.200800026.
  19. ^ Simon, Arndt (March 1985). "Empty, filled, and condensed metal clusters". Journal of Solid State Chemistry. 57 (1): 2–16. Bibcode:1985JSSCh..57....2S. doi:10.1016/S0022-4596(85)80055-4.
  20. ^ Miller, Gordon J.; Burdett, Jeremy K.; Schwarz, Christine; Simon, Arndt (November 1986). "Molecular interstitials: an analysis of the gadolinium carbide chloride, Gd2C2Cl2". Inorganic Chemistry. 25 (24): 4437–4444. doi:10.1021/ic00244a031. ISSN 0020-1669.
  21. ^ Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 353. ISBN 978-3-11-031174-7.
  22. ^ Mattausch, Hj.; Kremer, R. K.; Eger, R.; Simon, A. (March 1992). "3s-Gd2C2Br2: Eine neue Stapelvariante". Zeitschrift für anorganische und allgemeine Chemie (in German). 609 (3): 7–11. doi:10.1002/zaac.19926090302. ISSN 0044-2313.
  23. ^ a b Bauhofer, Christine; Mattausch, Hansjürgen; Kremer, Reinhard K.; Simon, Arndt (September 1995). "Die Gadoliniumcarbidhalogenide Gd4C2X3 (X = Cl, Br)". Zeitschrift für anorganische und allgemeine Chemie (in German). 621 (9): 1501–1507. doi:10.1002/zaac.19956210911. ISSN 0044-2313.
  24. ^ a b c d e Ließ, Henning; Steffen, Frank; Meyer, Gerd (January 1997). "Quaternary chlorides and bromides with interstitially stabilized double octahedra, A2[Gd10(C2)2]Cl19 (A = Rb, Cs), A2[Gd10(C2)2]Br19 (A = K,Rb), Rb2[Tb10(C2)2]Br19, and K2[Gd10(C2)2]Br20". Journal of Alloys and Compounds. 246 (1–2): 242–247. doi:10.1016/S0925-8388(96)02476-0.
  25. ^ Daub, Kathrin; Meyer, Gerd (2008-01-15). "Octadecabromidobis(dicarbido)decadysprosium, [Dy 10 Br 18 (C 2 ) 2 ]". Acta Crystallographica E. 64 (1): i4. doi:10.1107/S1600536807066111. ISSN 1600-5368. PMC 2914882. PMID 21200454.
  26. ^ Uhrlandt, Stefan; Meyer, Gerd; Artelt, Holger M. (September 1994). "Cs[Er10(C2)2]I18 und [Er10(C2)2]Br18: zwei neue Beispiele für "reduzierte" Halogenide der Lanthanide mit isolierten [M10(C2)2]-Clustern". Zeitschrift für anorganische und allgemeine Chemie (in German). 620 (9): 1532–1536. doi:10.1002/zaac.19946200907. ISSN 0044-2313.
  27. ^ Ströbele, Markus; Meyer, H.-Jürgen (2010-07-05). "The Trigonal Prismatic Cluster Compound W 6 CCl 15 and a Carambolage of Tungsten Clusters in the Structure of the Heteroleptic Cluster Compound W 30 C 2 (Cl,Br) 68". Inorganic Chemistry. 49 (13): 5986–5991. doi:10.1021/ic100516t. ISSN 0020-1669. PMID 20521794.
  28. ^ Simon, Arndt; Böttcher, Fred; Cockcroft, Jeremy Karl (January 1991). "Th6Br15H7—Stabilization of a Th6Br12 Cluster by Seven Hydrogen Atoms". Angewandte Chemie International Edition in English. 30 (1): 101–102. doi:10.1002/anie.199101011. ISSN 0570-0833.