Jump to content

HAT-P-17

Coordinates: Sky map 21h 38m 09s, +30° 29′ 19″
From Wikipedia, the free encyclopedia
(Redirected from HAT-P-17c)
HAT-P-17
Observation data
Epoch J2000      Equinox J2000
Constellation Cygnus[1]
Right ascension 21h 38m 08.7310s[2]
Declination +30° 29′ 19.446″[2]
Apparent magnitude (V) 10.38[3]
Characteristics
Spectral type early K[4]
Astrometry
Proper motion (μ) RA: −80.280(16) mas/yr[2]
Dec.: −127.037(15) mas/yr[2]
Parallax (π)10.8195 ± 0.0182 mas[2]
Distance301.5 ± 0.5 ly
(92.4 ± 0.2 pc)
Details
Mass0.857±0.039 M
Radius0.837 R
Luminosity0.48±0.04 L
Surface gravity (log g)4.53±0.02[5] cgs
Temperature5345±70[5] K
Metallicity0.06±0.08[5]
Rotational velocity (v sin i)0.56+0.12
−0.14
[6] km/s
Age7.8±3.3 Gyr
Other designations
TYC 2717-417-1, GSC 02717-00417, 2MASS J21380873+3029193[7]
Database references
SIMBADdata
Comparison of the exoplanet HAT-P-17 b with the planet Jupiter

HAT-P-17 is a K-type main-sequence star about 92.4 parsecs (301 ly) away. It has a mass of about 0.857 ± 0.039 M. It is the host of two planets, HAT-P-17b and HAT-P-17c, both discovered in 2010.[4][8] A search for a binary companion star using adaptive optics at the MMT Observatory was negative.[9] A candidate companion was detected by a spectroscopic search of high-resolution K band infrared spectra taken at the Keck observatory.[10]

Planetary system

[edit]

In 2010 a multi-planet system consisting of a transiting hot Saturn in an eccentric orbit and a Jupiter like planet in an outer orbit was detected. The transiting planet HAT-P-17b was detected by the HATNet Project using telescopes located in Hawaii, Arizona and at Wise Observatory in Israel. It was confirmed with radial velocity measurements taken at the Keck telescope which also led to the discovery of the second planet on a much wider orbit.[4] In 2013 radial velocity measurements of the Rossiter-McLaughlin effect showed that the sky-projected angle between the stellar spin axis and the orbit of planet b was approximately 19°.[6] The measurement in 2022 have resulted in slightly larger misalignment of 26.3±6.7°[11]

The HAT-P-17 planetary system[4][12]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 0.537±0.017 MJ 0.0882+0.0013
−0.0014
10.338523+0.000088
−0.000089
0.3417±0.0036 89.20+0.20
−0.10
°
1.010±0.029 RJ
c > 2.88±0.10 MJ 4.67±0.14 3972+185
−146
0.295±0.021

References

[edit]
  1. ^ Roman, Nancy G. (1987). "Identification of a Constellation From a Position". Publications of the Astronomical Society of the Pacific. 99 (617): 695–699. Bibcode:1987PASP...99..695R. doi:10.1086/132034. Vizier query form
  2. ^ a b c d Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  3. ^ Høg, E.; et al. (2000). "The Tycho-2 catalogue of the 2.5 million brightest stars". Astronomy and Astrophysics. 355: L27–L30. Bibcode:2000A&A...355L..27H.
  4. ^ a b c d Howard, A. W.; et al. (2012). "HAT-P-17b,c: A Transiting, Eccentric, Hot Saturn and a Long-period, Cold Jupiter". The Astrophysical Journal. 749 (2). 134. arXiv:1008.3898. Bibcode:2012ApJ...749..134H. doi:10.1088/0004-637X/749/2/134. S2CID 119309100.
  5. ^ a b c Torres, Guillermo; et al. (2012). "Improved Spectroscopic Parameters for Transiting Planet Hosts". The Astrophysical Journal. 757 (2). 161. arXiv:1208.1268. Bibcode:2012ApJ...757..161T. doi:10.1088/0004-637X/757/2/161. S2CID 16580774.
  6. ^ a b Fulton, Benjamin J.; et al. (2013). "The Stellar Obliquity and the Long-period Planet in the HAT-P-17 Exoplanetary System". The Astrophysical Journal. 772 (2). 80. arXiv:1301.6289. Bibcode:2013ApJ...772...80F. doi:10.1088/0004-637X/772/2/80. S2CID 7836597.
  7. ^ "HAT-P-17". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2019-01-24.
  8. ^ "Open Exoplanet Catalogue - HAT-P-17 b". www.openexoplanetcatalogue.com. Retrieved 2020-01-10.
  9. ^ Adams, E. R.; et al. (2013). "Adaptive Optics Images. II. 12 Kepler Objects of Interest and 15 Confirmed Transiting Planets". The Astronomical Journal. 146 (1). 9. arXiv:1305.6548. Bibcode:2013AJ....146....9A. doi:10.1088/0004-6256/146/1/9. S2CID 119117620.
  10. ^ Piskorz, Danielle; et al. (2015). "Friends of Hot Jupiters. III. An Infrared Spectroscopic Search for Low-mass Stellar Companions". The Astrophysical Journal. 814 (2). 148. arXiv:1510.08062. Bibcode:2015ApJ...814..148P. doi:10.1088/0004-637X/814/2/148. S2CID 11525988.
  11. ^ Mancini, L.; et al. (2022), "The GAPS Programme at TNG", Astronomy & Astrophysics, 664: A162, arXiv:2205.10549, doi:10.1051/0004-6361/202243742, S2CID 248986121
  12. ^ Bonomo, A. S.; et al. (2017). "The GAPS Programme with HARPS-N at TNG . XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets". Astronomy and Astrophysics. 602. A107. arXiv:1704.00373. Bibcode:2017A&A...602A.107B. doi:10.1051/0004-6361/201629882. S2CID 118923163.