Heptagonal bipyramid

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Heptagonal bipyramid
Heptagonal bipyramid.png
Typebipyramid
Faces14 triangles
Edges21
Vertices9
Schläfli symbol{ } + {7}
Coxeter diagramCDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 7.pngCDel node.png
Symmetry groupD7h, [7,2], (*227), order 28
Rotation groupD7, [7,2]+, (227), order 14
Dual polyhedronheptagonal prism
Face configurationV4.4.7
Propertiesconvex, face-transitive

The heptagonal bipyramid is one of the infinite set of bipyramids, dual to the infinite prisms. If an heptagonal bipyramid is to be face-transitive, all faces must be isosceles triangles.The resulting solid has 14 triangular faces, 9 vertices and 21 edges.[1][2]

Related polyhedra[edit]

Family of bipyramids
Polyhedron Triangular bipyramid.png Square bipyramid.png Pentagonale bipiramide.png Hexagonale bipiramide.png Heptagonal bipyramid.png Octagonal bipyramid.png Enneagonal bipyramid.png Decagonal bipyramid.png
Coxeter CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 2x.pngCDel node.png CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 5.pngCDel node.png CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 6.pngCDel node.png CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 7.pngCDel node.png CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 8.pngCDel node.png CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 9.pngCDel node.png CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 10.pngCDel node.png
Tiling Spherical digonal bipyramid.svg Spherical trigonal bipyramid.png Spherical square bipyramid.svg Spherical pentagonal bipyramid.png Spherical hexagonal bipyramid.png Spherical heptagonal bipyramid.png Spherical octagonal bipyramid.png Spherical enneagonal bipyramid.png Spherical decagonal bipyramid.png
Config. V2.4.4 V3.4.4 V4.4.4 V5.4.4 V6.4.4 V7.4.4 V8.4.4 V9.4.4 V10.4.4

References[edit]

  1. ^ Heptagonal Dipyramid dmccooey.com [2014-6-23]
  2. ^ Pugh, Anthony (1976), Polyhedra: A Visual Approach, University of California Press, pp. 21, 27, 62, ISBN 9780520030565.

External links[edit]