LSMEM2
LSMEM2 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | LSMEM2, C3orf45, leucine rich single-pass membrane protein 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | MGI: 3612240; HomoloGene: 45163; GeneCards: LSMEM2; OMA:LSMEM2 - orthologs | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Leucine rich single-pass membrane protein 2 is a single-pass membrane protein rich in leucine, that in humans is encoded by the LSMEM2 gene (also known as c3orf45).[4] The LSMEM2 protein is conserved in mammals, birds, and reptiles.[5] In humans, LSMEM2 is found to be highly expressed in the heart, skeletal muscle and tongue.[6][4]
Gene
[edit]LSMEM2 is also known as c3orf45.[4] It is found at human chromosome loci 3p21 on the plus strand from bases 50,277,907-50,288,116.[4] This gene is 1,434 base pairs long and has four exon regions.[4] Nearby genes include SEMA3B and IFRD2.[4]
mRNA
[edit]LSMEM2 has two different isoforms, isoform 1 and 2.[4] These two isoforms encode the same protein. Isoform 2 uses an alternate in-frame splice-site in the 5' coding region in comparison to isoform 1.[4] Isoform 1 is three base pairs and one amino acid longer than isoform 2 at the exon 2 and exon 3 junction.[7]
Protein
[edit]The LSMEM2 protein has two isoforms.[8] Isoform 1 has an alanine added after amino acid 57, otherwise the two isoforms are identical.[7] It has a predicted MW of 17.8 kDa and isoelectric point of 5.7 pI.[9] LSMEM2 is predicted to have one transmembrane region which is composed of 50% leucine and considered leucine rich.[10] The N-terminus is predicted to be the cytosolic/intracellular region of the protein, while the C-terminus is predicted as the lumenal/extracellular region.[11] It is found to have one domain, Domain of unknown function 4714 (DUF4714), spanning from amino acid 13 to 161.[12]
Post-translational Modifications
[edit]LSMEM2 is predicted to have an acetylation and palmitoylation site near the N-terminus of the protein.[15][16] It is also predicted to have various phosphorylation and O-GlcNAc sites throughout the predicted intracellular/cytosolic region of the protein.[17][18] LSMEM2 has a predicted N-glycosylation site at amino acids 155,156, and 157 in the probable extracellular/lumenal region. [19]
Structure
[edit]The secondary and tertiary structure of LSMEM2 are currently unknown. The secondary structure is predicted as largely alpha-helices for the transmembrane and lumenal/extracellular region.[22] The cytoplasmic/intracellular region structure still remains relatively unclear. To the right is a predicted tertiary structure of the human LSMEM2 protein by the I-TASSER software.[23]
Homology
[edit]Paralogs
LSMEM2 has no known paralogs.[25]
LSMEM2 has 168 orthologs total, 131 of them being mammals, the other orthologs consist of aves and reptiles[5] The LSMEM2 protein is conserved in mammals with 71.3% chemically-similar sequences.[25] The table below displays features of select orthologs of LSMEM2 of varying evolutionary distance. The predicted transmembrane domain of LSMEM2 is found to be highly conserved in its orthologs.[26]
Genus and Species | Common Name | Accession Number[27] | Length (amino acids) | Sequence Identity[28] | Sequence Similarity[25] | Date of Divergence (million years ago)[29] |
---|---|---|---|---|---|---|
Homo sapiens | Human | NP_001291314.1 | 163 | 100% | 100% | 0 |
Acinonyx jubatus | Cheetah | XP_014932576 | 149 | 84.11% | 85.30% | 105 |
Ornithorhynchus anatinus | Platypus | XP_028906032 | 172 | 67.97% | 71.30% | 177 |
Gallus gallus | Chicken | XP_015148980.1 | 159 | 50.00% | 41.20% | 312 |
Chrysemys picta | Painted turtle | XP_005308817 | 172 | 39.53% | 44.10% | 312 |
Evolution
[edit]LSMEM2 was found to emerge about 312 million years ago (MYA).[29] It has been found to evolve at an intermediate rate when compared to a quickly evolving protein, Fibronectin, and a slowly evolving protein, Cytochrome C.[30] LSMEM2 is predicted to change 1% every 3.9 million years.[28][29]
Expression
[edit]LSMEM2 is found to be highly expressed in the human heart and skeletal muscle with RNA Sequencing and Microarray data.[4][31] It is also found to be highly expressed in the heart during human fetal development.[4]
Regulation of Expression
[edit]The promoter region for LSMEM2 is predicted by El Dorado to be the 2,328 basepairs directly upstream from the LSMEM2 gene.[32] A notable transcription factor predicted to bind to this promoter is the Brachyury gene, mesoderm developmental factor.[33] This transcription factor is involved in regulating the development of the notochord.[34]
Function
[edit]LSMEM2 has been predicted to be involved in Mitochondrial ATP synthesis coupled proton transport.[35] However, the function of LSMEM2 is still not fully understood by the scientific community.
Interacting Proteins
[edit]LSMEM2 has been found to potentially interact with MEP1B, DEFA6, CYP3A43, TBC1D29, KLHL23, ZNF551, c5orf24, CWH43, and PDIA2.[36]
Clinical Significance
[edit]LSMEM2 was discovered to be down-regulated in the myotubes of patients with FSHD, a form of muscular dystrophy.[37] LSMEM2 was also predicted to be involved in the pathway for sepsis-induced myopathy, although more research is required to determine its exact role[38]
References
[edit]- ^ a b c GRCh38: Ensembl release 89: ENSG00000179564 – Ensembl, May 2017
- ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ a b c d e f g h i j "LSMEM2 leucine rich single-pass membrane protein 2 [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2020-04-30.
- ^ a b "LSMEM2 orthologs". NCBI. Retrieved 2020-05-01.
- ^ "LSMEM2 protein expression summary - The Human Protein Atlas". www.proteinatlas.org. Retrieved 24 August 2021.
- ^ a b "leucine-rich single-pass membrane protein 2 isoform 1 [Homo sapiens] - Protein - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2020-04-30.
- ^ "leucine-rich single-pass membrane protein 2 isoform 2 [Homo sapiens] - Protein - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2020-04-30.
- ^ "ExPASy - Compute pI/Mw tool". web.expasy.org. Retrieved 2020-04-30.
- ^ "SAPS < Sequence Statistics < EMBL-EBI". www.ebi.ac.uk. Retrieved 2020-04-30.
- ^ "TMpred Server". embnet.vital-it.ch. Archived from the original on 2019-03-05. Retrieved 2020-04-30.
- ^ "MOTIF: Searching Protein Sequence Motifs". www.genome.jp. Retrieved 2020-04-30.
- ^ "Homo sapiens leucine rich single-pass membrane protein 2 (LSMEM2), transcript variant 2, mRNA". 2019-05-31.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ "Protter - interactive protein feature visualization". wlab.ethz.ch. Retrieved 2020-05-03.
- ^ "CSS-Palm - Palmitoylation Site Prediction". csspalm.biocuckoo.org. Archived from the original on 2009-02-15. Retrieved 2020-05-03.
- ^ "NetAcet 1.0 Server". www.cbs.dtu.dk. Retrieved 2020-05-03.
- ^ "YinOYang 1.2 Server". www.cbs.dtu.dk. Retrieved 2020-05-03.
- ^ "NetPhos 3.1 Server". www.cbs.dtu.dk. Retrieved 2020-05-03.
- ^ "NetNGlyc 1.0 Server". www.cbs.dtu.dk. Retrieved 2020-05-01.
- ^ "leucine-rich single-pass membrane protein 2 isoform 2 [Homo sapiens] - Protein - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2020-05-03.
- ^ "ExPASy: SIB Bioinformatics Resource Portal - Categories". www.expasy.org. Retrieved 2020-05-03.
- ^ "PHYRE2 Protein Fold Recognition Server". www.sbg.bio.ic.ac.uk. Retrieved 2020-04-30.
- ^ "I-TASSER server for protein structure and function prediction". zhanglab.ccmb.med.umich.edu. Retrieved 2020-05-03.
- ^ "I-TASSER server for protein structure and function prediction". zhanglab.ccmb.med.umich.edu. Retrieved 2020-05-03.
- ^ a b c "BLAST: Basic Local Alignment Search Tool". blast.ncbi.nlm.nih.gov. Retrieved 2020-05-01.
- ^ "Clustal Omega < Multiple Sequence Alignment < EMBL-EBI". www.ebi.ac.uk. Retrieved 2020-05-01.
- ^ "Home - Protein - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2020-04-30.
- ^ a b "EMBOSS Needle < Pairwise Sequence Alignment < EMBL-EBI". www.ebi.ac.uk. Retrieved 2020-05-01.
- ^ a b c "TimeTree :: The Timescale of Life". www.timetree.org. Retrieved 2020-05-01.
- ^ "Home - HomoloGene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2020-05-01.
- ^ "GEO Profile Links for Gene (Select 132228) - GEO Profiles - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2020-05-01.
- ^ "Genomatix: Annotation & Analysis". www.genomatix.de. Retrieved 2020-05-01.
- ^ "Genomatix: MatInspector Input". www.genomatix.de. Retrieved 2020-05-03.
- ^ Reference, Genetics Home. "TBXT gene". Genetics Home Reference. Retrieved 2020-05-03.
- ^ "ARCHS4". amp.pharm.mssm.edu. Retrieved 2020-05-03.
- ^ "LSMEM2 protein (human) - STRING interaction network". string-db.org. Retrieved 2020-05-03.
- ^ Dmitriev P, Bou Saada Y, Dib C, Ansseau E, Barat A, Hamade A, et al. (October 2016). "DUX4-induced constitutive DNA damage and oxidative stress contribute to aberrant differentiation of myoblasts from FSHD patients" (PDF). Free Radical Biology & Medicine. 99: 244–258. doi:10.1016/j.freeradbiomed.2016.08.007. PMID 27519269. S2CID 24609856.
- ^ Ning YL, Yang ZQ, Xian SX, Lin JZ, Lin XF, Chen WT (February 2020). "Bioinformatics Analysis Identifies Hub Genes and Molecular Pathways Involved in Sepsis-Induced Myopathy". Medical Science Monitor. 26: e919665. doi:10.12659/MSM.919665. PMC 7009723. PMID 32008037.