Weyl equation

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In physics, particularly quantum field theory, the Weyl Equation is a relativistic wave equation for describing massless spin-1/2 particles. It is named after the German physicist Hermann Weyl.

Equation[edit]

The general equation can be written: [1][2]

 \sigma^\mu\partial_\mu \psi=0

explicitly in SI units:

 I_2 \frac{1}{c}\frac{\partial \psi}{\partial t} + \sigma_x\frac{\partial \psi}{\partial x} + \sigma_y\frac{\partial \psi}{\partial y} + \sigma_z\frac{\partial \psi}{\partial z}=0

where

 \sigma_\mu = (\sigma_0,\sigma_1,\sigma_2,\sigma_3)= (I_2,\sigma_x,\sigma_y,\sigma_z)

is a vector whose components are the 2 × 2 identity matrix for μ = 0 and the Pauli matrices for μ = 1,2,3, and ψ is the wavefunction - one of the Weyl spinors.

Weyl spinors[edit]

The elements ψL and ψR are respectively the left and right handed Weyl spinors, each with two components. Both have the form

 \psi = \begin{pmatrix}
\psi_1 \\
\psi_2 \\ 
\end{pmatrix} = \chi e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)}= \chi e^{-i(\mathbf{p}\cdot\mathbf{r}-Et)/\hbar}

where

 \chi = \begin{pmatrix}
\chi_1 \\
\chi_2 \\ 
\end{pmatrix}

is a constant two-component spinor.

Since the particles are massless, i.e. m = 0, the magnitude of momentum p relates directly to the wave-vector k by the De Broglie relations as:

 |\mathbf{p}| = \hbar |\mathbf{k}| = \hbar \omega /c \, \rightarrow \, |\mathbf{k}| = \omega /c

The equation can be written in terms of left and right handed spinors as:

\begin{align} & \sigma^\mu \partial_\mu \psi_R = 0 \\
& \bar{\sigma}^\mu \partial_\mu \psi_L = 0 
\end{align}

Helicity[edit]

The left and right components correspond to the helicity λ of the particles, the projection of angular momentum operator J onto the linear momentum p:

\mathbf{p}\cdot\mathbf{J}\left|\mathbf{p},\lambda\right\rangle=\lambda |\mathbf{p}|\left|\mathbf{p},\lambda\right\rangle

Here \lambda=\pm 1/2.

Derivation[edit]

The equations are obtained from the Lagrangian densities

 \mathcal L = i \psi_R^\dagger \sigma^\mu \partial_\mu \psi_R
 \mathcal L = i \psi_L^\dagger \bar\sigma^\mu \partial_\mu \psi_L

By treating the spinor and its conjugate (denoted by  \dagger ) as independent variables, the relevant Weyl equation is obtained.

See also[edit]

References[edit]

  1. ^ Quantum Mechanics, E. Abers, Pearson Ed., Addison Wesley, Prentice Hall Inc, 2004, ISBN 978-0-13-146100-0
  2. ^ The Cambridge Handbook of Physics Formulas, G. Woan, Cambridge University Press, 2010, ISBN 978-0-521-57507-2.

Further reading[edit]

External links[edit]