Jump to content

Nickel compounds: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 169: Line 169:


===Oxo acid salts===
===Oxo acid salts===
{{main|Nickel_oxo_acid_salts}}
[[File:Annabergite-20960.jpg|thumb|right|alt=bright green crystals in two clusters on a white and grey rock|Mint green Annabergite, a nickel arsenite]]
[[File:Annabergite-20960.jpg|thumb|right|alt=bright green crystals in two clusters on a white and grey rock|Mint green Annabergite, a nickel arsenite]]
Nickel(II) sulfate can crystallise with six water molecules yielding [[Retgersite]] or with seven making [[Morenosite]] which is isomorphic to Epsom salts. These contain the hexaquanickel(II) ion.<ref name=caw>{{cite book
Important nickel oxo acid salts include [[nickel(II) sulfate]] can crystallise with six water molecules yielding [[Retgersite]] or with seven making [[Morenosite]] which is isomorphic to Epsom salts. These contain the hexaquanickel(II) ion.<ref name=caw>{{cite book
|title=Advanced Inorganic Chemistry: A Comprehensive Treatise
|title=Advanced Inorganic Chemistry: A Comprehensive Treatise
|author=Cotton and Wilkinson |year=1966 |pages=878–893 |publisher=John Wiley & Sons}}</ref>
|author=Cotton and Wilkinson |year=1966 |pages=878–893 |publisher=John Wiley & Sons}}</ref>
There is also an anhydrous form, a dihydrate and a tetrahydrate, the last two crystallised from sulfuric acid. The hexahydrate has two forms, a blue tetragonal form, and a green monoclinic form, with a transition temperature around 53&nbsp;°C.<ref>Mellor pp462-465</ref> The heptahydrate crystallises from water below 31.5 above this blue hexhydrate forms, and above 53.3 the green form.<ref>Mellor p 466-467</ref> Heating nickel sulfate dehydrates it, and then 700° it loses sulfur trioxide, sulfur dioxide and oxygen.
There is also an anhydrous form, a dihydrate and a tetrahydrate, the last two crystallised from sulfuric acid. The hexahydrate has two forms, a blue tetragonal form, and a green monoclinic form, with a transition temperature around 53&nbsp;°C.<ref>Mellor pp462-465</ref> The heptahydrate crystallises from water below 31.5 above this blue hexhydrate forms, and above 53.3 the green form.<ref>Mellor p 466-467</ref> Heating nickel sulfate dehydrates it, and then 700° it loses sulfur trioxide, sulfur dioxide and oxygen.

Nickel sulfite can be formed by bubbling sulfur dioxide through nickel carbonate suspended in water. A solution is formed that slowly loses sulfur dioxide, and which crystallises nickel sulfite hexahydrate. Crystals are frequently in the shape of stars, caused by the two opposite triangular [[enantiomorph]]s growing base to base. nickel sulfite hexahydrate is highly piezoelectric. Optically it is uniaxial negative with refractive indexes ω=1.552 ε=1.509.<ref name=Klasens/> When heated it dehydrates and then ends up making nickel oxide and nickel sulfate.<ref name="budk"/>

Nickel thiosulfate NiS<sub>2</sub>O<sub>3</sub> has the same structure as the magnesium salt. It has alternating layers of octahedral shaped nickel<sup>2+</sup> hexahydrate, and tetrahedral shaped S<sub>2</sub>O<sub>3</sub><sup>2−</sup> perpendicular to the β direction.<ref name=elerman/> When heated to 90&nbsp;°C it decomposes to form NiS. NiS<sub>2</sub>O<sub>3</sub> can be made from BaS<sub>2</sub>O<sub>3</sub> and NiSO<sub>4</sub>.<ref>{{cite journal |last1=Elerman |first1=Y. |last2=Aydin Uraz |first2=A. |last3=Armagˇan |first3=N. |last4=Aka |first4=Y.
|title=Crystal data for calcium and nickel thiosulphate hexahydrates: <math chem>\ce{CaS2O3.6H2O}</math> and <math chem>\ce{NiS2O3.6H2O}</math>
|journal=Journal of Applied Crystallography
|date=1 August 1977 |volume=10 |issue=4 |pages=362–363 |doi=10.1107/S0021889877013673}}</ref> Nickel sulfamate can be used for nickel or mixed nickel-tungsten plating.<ref>{{cite journal |last1=Eliaz |first1=N. |last2=Sridhar |first2=T.M. |last3=Gileadi |first3=E.
|title=Synthesis and characterization of nickel tungsten alloys by electrodeposition
|journal=Electrochimica Acta
|date=May 2005 |volume=50 |issue=14 |pages=2893–2904 |doi=10.1016/j.electacta.2004.11.038}}</ref> It can be formed by the action of sulfamic acid on nickel carbonate.<ref name=anger/>

[[Nickel selenite]] NiSeO<sub>3</sub> has many different hydrates, anhydrous NiSeO<sub>3</sub>{{hydrate|{{1/3}}}}, NiSeO<sub>3</sub>{{hydrate}}, NiSeO<sub>3</sub>{{hydrate|2}} (which is also a mineral called [[ahlfeldite]]), and NiSeO<sub>3</sub>{{hydrate|4}}.<ref name=Vlaev>{{cite journal |last1=Vlaev |first1=L. T. |last2=Genieva |first2=Svetlana D. |last3=Georgieva |first3=Velyana G.
|title=Study of the crystallization fields of nickel(II) selenites in the system <math chem>\ce{NiSeO3-SeO2-H2O}</math>
|journal=Journal of Thermal Analysis and Calorimetry
|date=16 May 2006 |volume=86 |issue=2 |pages=449–456 |doi=10.1007/s10973-005-7397-x}}</ref>

[[Nickel nitrate]] commonly crystallises with six water molecules,<ref name=caw/> but can also be anhydrous, or with two, four or nine waters.<ref name=Ullmann>Keith Lascelles, Lindsay G. Morgan, David Nicholls, Detmar Beyersmann, "Nickel Compounds" in Ullmann's Encyclopedia of Industrial Chemistry Wiley-VCH, Weinheim, 2005. {{DOI|10.1002/14356007.a17_235.pub2}}</ref>
triphenylphosphine oxide nickel nitrate [(C<sub>6</sub>H<sub>6</sub>)<sub>3</sub>PO]<sub>2</sub>Ni(NO<sub>3</sub>)<sub>2</sub> is non ionic, with nitrato as a ligand. It can be made from nickel perchlorate. It is yellow and melts at 266&nbsp;°C.<ref>{{cite journal |last1=Bannister |first1=E. |last2=Cotton |first2=F. A.
|title=456. Phosphine oxide complexes. Part III. Bis(triphenylphosphine oxide)dinitrato-complexes of cobalt(II), nickel(II), copper(II), and zinc(II)
|journal=Journal of the Chemical Society (Resumed)
|date=1960 |pages=2276 |doi=10.1039/JR9600002276}}</ref>

[[Nickel carbonate]] NiCO<sub>3</sub>{{hydrate|6}}, [[hellyerite]],<ref>{{cite journal |last1=Isaacs |first1=T.
|title=The mineralogy and chemistry of the nickel carbonates
|journal=Mineralogical Magazine
|date=7 November 1963 |volume=33 |issue=263 |pages=663–678
|url=http://www.minersoc.org/pages/Archive-MM/Volume_33/33-263-663.pdf |accessdate=10 June 2016|bibcode=1963MinM...33..663I |doi=10.1180/minmag.1963.033.263.04 }}</ref> crystallising with six water molecules, precipitates when an alkali bicarbonate is added to a Ni aqueous solution.<ref name=caw/> Basic nickel carbonate, [[zaratite]], with the formula Ni<sub>4</sub>CO<sub>3</sub>(OH)<sub>6</sub>(H<sub>2</sub>O)<sub>4</sub>, is produced when alkali carbonates are added to a nickel solution. [[Nickel phosphate]], Ni<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>{{hydrate|7}} is also insoluble.<ref name=caw/> A number of other phosphates have been made, including [[nanoporous]] substances resembling [[zeolites]] named with "Versailles Santa Barbara" or VSB.<ref name="CheethamVSB5">{{cite journal |last1=Jhung |first1=Sung Hwa |last2=Chang |first2=Jong-San |last3=Park |first3=Sang-Eon |last4=Forster |first4=Paul M. |last5=Férey |first5=Gérard |last6=Cheetham |first6=Anthony K.
|title=Template-Free Synthesis of the Nanoporous Nickel Phosphate VSB-5 under Microwave Irradiation
|journal=Chemistry of Materials
|date=April 2004 |volume=16 |issue=8 |pages=1394–1396 |doi=10.1021/cm035173c}}</ref> The nanoporous nickel phosphates can accommodate sufficiently small molecules and selectively catalyze reactions on them.<ref name="Timofeeva"/> A [[nickel arsenate]], Ni<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>·8H<sub>2</sub>O occurs as the mineral [[annabergite]].<ref name=MindatAnnabergite>{{cite web
|title=Annabergite: Mineral information, data and localities.
|url=https://www.mindat.org/min-240.html |website=www.mindat.org |accessdate=17 January 2019}}</ref><ref name=HBM />

Nickel perchlorate, Ni(ClO<sub>4</sub>)<sub>2</sub>{{hydrate|6}},<ref name=caw/> nickel chlorate, Ni(ClO<sub>3</sub>)<sub>2</sub>{{hydrate|6}},<ref>{{cite journal |last1=Lutz |first1=H.D |last2=Suchanek |first2=E
|title=Intramolecular coupling of BrO stretching vibrations in solid bromates, infrared and Raman spectroscopic studies on <math chem>\ce{M(BrO3)2.6H2O}</math> (M=Mg, Co, Ni, Zn) and <math chem>\ce{Ni(ClO3)2.6H2O}</math>
|journal=Spectrochimica Acta Part A
|date=December 2000 |volume=56 |issue=14 |pages=2707–2713 |doi=10.1016/S1386-1425(00)00310-3|bibcode=2000AcSpA..56.2707L }}</ref> [[nickel chromate]] (NiCrO<sub>4</sub>), nickel chromite (NiCr<sub>2</sub>O<sub>4</sub>), [[nickel(II) titanate]], [[nickel bromate]] Ni(BrO<sub>3</sub>)<sub>2</sub>{{hydrate|6}},<ref>{{cite journal |last1=Blackburn |first1=AC |last2=Gallucci |first2=JC |last3=Gerkin |first3=RE
|title=Structure of hexaaquanickel(II) bromate.
|journal=Acta Crystallographica Section C
|date=15 September 1991 |volume=47 |pages=1786–1789 |pmid=1786165 |issue=9 |doi=10.1107/s0108270191002196}}</ref> nickel iodate (Ni(IO<sub>3</sub>)<sub>2</sub>{{hydrate|4}}), nickel stannate (NiSnO<sub>3</sub>{{hydrate|2}})<ref name="CRC"/> are some other oxy-salts.

The [[uranate]]s include NiU<sub>2</sub>O<sub>6</sub>,<ref>{{cite book |last1=Pies |first1=W.
|title=Key Elements: d9-, d10-, d1_d3-, f-Elements |volume=7e |last2=Weiss |first2=A.
|date=1976 |pages=91–94 |doi=10.1007/10201569_22|chapter=e517, XVI.4.3.1 Simple oxo-compounds of uranium (oxouranates), XVI.4.3.2 Simple oxo-compounds of uranium with H2O (oxouranates with H2O) |series=Landolt-Börnstein - Group III Condensed Matter |isbn=3-540-07334-5 }}</ref> NiUO<sub>4</sub> α and β forms (orthorhombic a=6.415 Å; b=6.435 Å; c=6.835 Å),<ref name=niu>{{cite journal |last1=Young |first1=A. P.
|title=Nickel Orthouronate: High-Pressure Synthesis
|journal=Science
|date=16 September 1966 |volume=153 |issue=3742 |pages=1380–1381 |doi=10.1126/science.153.3742.1380|bibcode=1966Sci...153.1380Y }}</ref> and NiU<sub>3</sub>O<sub>10.</sub><ref name=niu/>

{|class="wikitable"
!formula
!name
!mol
!struct
!colspan=3|cell Å
!V
!Z
!density
!colour
!refs
|-
!
!
!wt
!
!a
!b
!c
!Å<sup>3</sup>
!
!g/cm<sup>3</sup>
!
!
|-
|NiSO<sub>3</sub>{{hydrate|6}}
|[[nickel sulfite]] hexahydrate
|
|hexagonal
|8.794
|
|9.002
|
|603
|
|2.04
|emerald green
|<ref name=Klasens>{{cite journal |last1=Klasens |first1=H. A. |last2=Perdok |first2=W. G. |last3=Terpstra |first3=P.
|title=Crystallography of Magnesium-Sulphite, Cobalt-Sulphite and Nickel-Sulphite
|journal=Zeitschrift für Kristallographie - Crystalline Materials
|date=1 January 1936 |volume=94 |issue=1–6 |pages=1–6 |doi=10.1524/zkri.1936.94.1.1}}</ref><ref>{{cite journal |last1=Baggio |first1=S. |last2=Becka |first2=L. N.
|title=A reinvestigation of the structure of nickel sulphite hexahydrate, <math chem>\ce{NiSO3.6H2O}</math>
|journal=Acta Crystallographica Section B
|date=15 June 1969 |volume=25 |issue=6 |pages=1150–1155 |doi=10.1107/S0567740869003657}}</ref>
|-
|NiSO<sub>3</sub>{{hydrate|3}}
|nickel sulfite trihydrate
|
|
|
|
|
|
|
|
|
|light green
|<ref>{{cite journal |last1=Salib |first1=Kamal A. R. |last2=El-Maraghy |first2=Salah B. |last3=El-Wafa |first3=Samy M. Abu |last4=El-Sayed |first4=Saied M.
|title=Normal sulphites of metals
|journal=Transition Metal Chemistry
|date=August 1989 |volume=14 |issue=4 |pages=306–308 |doi=10.1007/BF01098236}}</ref>
|-
|NiSO<sub>3</sub>•3N<sub>2</sub>H<sub>4</sub>{{hydrate}}
|nickel sulfite trihydrazine hydrate
|
|
|
|
|
|
|
|
|
|rose
|<ref name="budk">{{cite journal |last1=Budkuley |first1=Jayant S. |last2=Patil |first2=K. C.
|title=Synthesis, infrared spectra and thermoanalytical properties of transition metal sulfite hydrazine hydrates
|journal=Journal of Thermal Analysis
|date=November 1990 |volume=36 |issue=7–8 |pages=2583–2592 |doi=10.1007/BF01913655}}</ref>
|-
|NiSO<sub>3</sub>•2N<sub>2</sub>H<sub>4</sub>{{hydrate}}
|nickel sulfite dihydrazine hydrate
|
|
|
|
|
|
|
|
|
|blue
|<ref name="budk"/>
|-
|{{chem2|NiS2O3*6H2O}}
|[[Nickel thiosulfate]] hexahydrate
|463.03
|orthorhombic
|9.282
|14.44
|6.803
|
|912.1
|4
|2.03
|green
|<ref name=elerman>{{cite journal |last1=Elerman |first1=Y. |last2=Uraz |first2=A. A. |last3=Armağan |first3=N.
|title=An X-ray diffraction study of nickel thiosulphate hexahydrate
|journal=Acta Crystallographica Section B
|date=15 November 1978 |volume=34 |issue=11 |pages=3330–3332 |doi=10.1107/S0567740878010808}}</ref>
|-
|
|diaqua (4,4´-dimethylbipyridine- N,N´)(methanol) thiosulfato(S) nickel(II)
|
|triclinic
|8.157
|9.685
|11.714
|α=76.73 β=73.56 γ=78.23
|854.2
|2
|
|
|<ref name="Freire1">{{cite journal |last1=Freire |first1=Eleonora |last2=Baggio |first2=Sergio |last3=Goeta |first3=Andrés |last4=Baggio |first4=Ricardo
|title=X-Ray Structural Study of Three New Nickel Thiosulfate Complexes
|journal=Australian Journal of Chemistry
|date=2001 |volume=54 |issue=5 |pages=329 |doi=10.1071/CH01074}}</ref>
|-
|
|aqua terpyridine(N,N´,N´´) thiosulfato(S,O) nickel(II) hemihydrate
|
|monoclinic,C2/c
|27.866
|9.274
|14.216
|114.24˚
|3350.
|8
|
|
|<ref name="Freire1"/>
|-
|
|bis(dipyridylamine) thiosulfato(S,O) nickel(II) hemihydrate
|
|orthorhombic, Iba2
|12.986
|16.821
|19.479
|
|4254.9
|8
|
|
|<ref name="Freire1"/>
|-
|NiS<sub>2</sub>O<sub>3</sub>(2,9-dimethyl-1,10-phenanthroline)(H<sub>2</sub>O)·H<sub>2</sub>O·CH<sub>3</sub>OH
|
|
|monoclinic, C2/c
|26.269
|7.641
|18.381
|97.00
|3662
|8
|
|
|<ref name="Freire2">{{cite journal |last1=Freire |first1=Eleonora |last2=Baggio |first2=Sergio |last3=Suescun |first3=Leopoldo |last4=Baggio |first4=Ricardo
|title=X-Ray Study of Two Novel Nickel(II)–Thiosulfate Compounds
|journal=Australian Journal of Chemistry
|date=2000 |volume=53 |issue=9 |pages=785 |doi=10.1071/CH00108}}</ref>
|-
|NiS<sub>2</sub>O<sub>3</sub>(2,9-dimethyl-1,10-phenanthroline)
|
|
|monoclinic, P21/n
|11.108
|10.955
|11.666
|103.32˚
|1381.4
|4
|
|
|<ref name="Freire2"/>
|-
|Ni(NH<sub>2</sub>SO<sub>3</sub>)<sub>2</sub>{{hydrate|4}}
|[[Nickel sulfamate]] tetrahydrate
|322.95
|triclinic ''P''{{overbar|1}}
|6.33
|6.73
|6.78
|α= 88.9 β=67.87 γ=67.76
|245.27
|1
|2.19
|green
|<ref name=anger>{{cite journal |last1=Angerer |first1=Paul |last2=Tillmanns |first2=Ekkehart |last3=Wildner |first3=Manfred
|title=Crystal Structure Investigations of Amide Sulfate Tetrahydrates with Divalent Cations
|journal=Croatica Chemica Acta
|date=1999 |volume=72 |issue=2–3 |pages=295–310
|url=http://hrcak.srce.hr/132168 |accessdate=26 June 2016}}</ref>
|-
|Ni(SO<sub>3</sub>F)<sub>2</sub>
|[[nickel fluorosulfate]]
|
|
|
|
|
|
|
|
|
|yellow
|<ref name="mall87">{{cite journal |last1=Mallela |first1=S.P. |last2=Lee |first2=K. |last3=Gehrs |first3=P.F. |last4=Christensen |first4=J.I. |last5=Sams |first5=J.R. |last6=Aubke |first6=F.
|title=The synthesis and characterisation of hetero-bimetallic sulfonate bridged coordination polymers of the type M<sup>II</sup>Sn<sup>IV</sup>(SO<sub>3</sub>X)<sub>6</sub> with X=F or CF<sub>3</sub>
|journal=Canadian Journal of Chemistry
|date=1987 |volume=65 |issue=11 |pages=2649–2655 |doi=10.1139/v87-438}}</ref>
|-
|NiSeO<sub>3</sub>
|anhydrous [[nickel selenite]]
|742.68
|C2/c
|15.4915
|9.9355
|14.8416
|111.173
|2130.15
|32
|4.630
|yellow brown
|<ref name=Vlaev/>
|-
|NiSeO<sub>3</sub>
|anhydrous [[nickel selenite]]
|742.68
|Orthorhombic
|5.8803
|7.5235
|4.9394
|
|218.52
|
|
|yellow green high pressure
|<ref name=kohn>{{cite journal |last1=Kohn |first1=Kay |last2=Inoue |first2=Katsuhiko |last3=Horie |first3=Osamu |last4=Akimoto |first4=Syun-Iti
|title=Crystal chemistry of <math chem>\ce{MSeO3}</math> and <math chem>\ce{MTeO3}</math> (M=Mg, Mn, Co, Ni, Cu, and Zn)
|journal=Journal of Solid State Chemistry
|date=May 1976 |volume=18 |issue=1 |pages=27–37 |doi=10.1016/0022-4596(76)90075-X|bibcode=1976JSSCh..18...27K }}</ref>
|-
|NiSeO<sub>3</sub>{{hydrate|{{1/3}}}}
|alpha nickel selenite one third hydrate
|
|triclinic ''P''{{overbar|1}}
|8.1383
|8.4034
|8.5724
|α=123.713 β=90.174 γ=111.823
|435.83
|2
|1.429
|citron yellow
|<ref name=Vlaev/>
|-
|NiSeO<sub>3</sub>{{hydrate|{{1/3}}}}
|beta nickel selenite one third hydrate
|
|triclinic ''P''{{overbar|1}}
|8.0222
|8.2133
|8.4364
|α=68.654 β=61.782 γ=66.363
|438.11
|2
|1.422
|citron yellow
|<ref name=Vlaev/>
|-
|NiSeO<sub>3</sub>{{hydrate|2}}
|nickel selenite dihydrate
|
|monoclinic
|6.3782
|8.7734
|7.5467
|81.451
|417.61
|4
|3.524
|yellow brown
|<ref name=Vlaev/>
|-
|NiSeO<sub>3</sub>{{hydrate|4}}
|nickel selenite tetrahydrate
|
|
|
|
|
|
|
|
|
|light green
|<ref name=Vlaev/>
|-
|NiSe<sub>2</sub>O<sub>5</sub>
|anhydrous [[nickel pyroselenite]]
|
|Pnab Orthorhombic
|60754
|10.3662
|6.7913
|
|427.71
|4
|4.605
|light yellow
|<ref name=Vlaev/>
|-
|Ni<sub>12</sub>F<sub>2</sub>(SeO<sub>3</sub>)<sub>8</sub>(OH)<sub>6</sub>
|nickel hydroxo fluoro selenite Dumortierite structure
|
|hexagonal ''P''6<sub>3</sub>''mc''
|12.702
|
|4.922
|
|
|1
|
|
|<ref name="Amor"/>
|-
|Ni<sub>12</sub>(SeO<sub>3</sub>)<sub>8</sub>(OH)<sub>8</sub>
|nickel hydroxy selenite Dumortierite structure
|
|hexagonal ''P''6<sub>3</sub>''mc''
|12.7004
|
|4.9201
|
|687.28
|1
|
|pale green
|<ref name="Amor">{{cite journal |last1=Amorós |first1=Pedro |last2=Marcos |first2=M.Dolores |last3=Roca |first3=Manuel |last4=Beltrán-Porter |first4=Aurelio |last5=Beltrán-Porter |first5=Daniel
|title=Synthetic Pathways for New Tubular Transition Metal Hydroxo- and Fluoro-Selenites: Crystal Structures of <math chem>\ce{M12(X)2(SeO3)8(OH)6 (M = Co2+, Ni2+; X=OH^-)}</math>
|journal=Journal of Solid State Chemistry
|date=November 1996 |volume=126 |issue=2 |pages=169–176 |doi=10.1006/jssc.1996.0325|bibcode=1996JSSCh.126..169A }}</ref>
|-
|NiTeO<sub>3</sub>
|anhydrous [[nickel tellurite]]
|
|Orthorhombic
|5.9564
|7.4986
|5.2128
|
|232.83
|
|
|yellow green high pressure
|<ref name=kohn/>
|-
|Ni<sub>3</sub>TeO<sub>6</sub>
|trinickel tellurate
|
|Hexagonal
|5.103
|5.103
|13.781
|
|
|
|4.272
|
|<ref name="krish">{{cite journal |last1=Krishnan |first1=K. |last2=Rama Rao |first2=G.A. |last3=Singh Mudher |first3=K.D. |last4=Venugopal |first4=V.
|title=Vaporization behaviour and Gibbs energy of formation of <math chem>\ce{Ni2Te3O8, NiTe2O5}</math> and <math chem>\ce{Ni3TeO6}</math>
|journal=Journal of Alloys and Compounds
|date=June 1999 |volume=288 |issue=1–2 |pages=96–101 |doi=10.1016/S0925-8388(99)00079-1}}</ref>
|-
|NiTe<sub>2</sub>O<sub>5</sub>
|nickel pyrotellurite
|
|Orthorhombic
|8.869
|8.441
|12.126
|
|
|
|5.042
|
|<ref name="krish"/>
|-
|Ni<sub>2</sub>Te<sub>3</sub>O<sub>8</sub>
|
|
|Monoclinic
|12.392
|5.207
|11.496
|98.6
|
|
|5.702
|
|<ref name="krish"/>
|-
|Ni<sub>6</sub>(TeO<sub>3</sub>)<sub>4</sub>(OH)<sub>4</sub>
|nickel hydroxy tellurite
|
|hexagonal
|12.993
|
|4.958
|
|
|2
|
|light green
|<ref name="marcos93">{{cite journal |last1=MARCOS |first1=M |last2=AMOROS |first2=P |last3=BELTRAN |first3=A |last4=BELTRAN |first4=D
|title=New tubular transition metal oxoanionic derivatives: a systematic approach to condensed phases of the dumortierite family
|journal=Solid State Ionics
|date=September 1993 |volume=63–65 |pages=87–95 |doi=10.1016/0167-2738(93)90090-P}}</ref>
|-
|Ni<sub>5</sub>Te<sub>4</sub>O<sub>12</sub>Cl<sub>2</sub>
|nickel tellurium oxychloride
|1066.585
|Monoclinic
|19.5674
|5.2457
|16.3084
|125.289
|1366.38
|4
|5.186
|orange
|<ref name="johnss">{{cite journal |last1=Johnsson |first1=Mats |last2=Törnroos |first2=Karl W. |last3=Lemmens |first3=Peter |last4=Millet |first4=Patrice
|title=Crystal Structure and Magnetic Properties of a New Two-Dimensional S=1 Quantum Spin System <math chem>\ce{Ni6(TeO3)4X2}</math> (X=Cl, Br)
|journal=Chemistry of Materials
|date=January 2003 |volume=15 |issue=1 |pages=68–73 |doi=10.1021/cm0206587|arxiv=cond-mat/0301359 }}</ref>
|-
|Ni<sub>5</sub>Te<sub>4</sub>O<sub>12</sub>Br<sub>2</sub>
|nickel tellurium oxybromide
|1155.77
|Monoclinic
|20.255
|5.2498
|16.3005
|124.937
|1421.0
|4
|5.403
|orange
|<ref name="johnss"/>
|-
|Ni<sub>5</sub>Te<sub>4</sub>O<sub>12</sub>I<sub>2</sub>
|nickel tellurium oxyiodide
|
|Monoclinic
|20.766
|5.230
|16.464
|125.79
|1451.1
|4
|
|brown
|<ref name="johnss"/>
|-
|Ni<sub>11</sub>(HPO<sub>3</sub>)<sub>8</sub>(OH)<sub>6</sub>
|nickel hydroxyphosphite
|
|hexagonal
|12.6329
|
|4.9040
|
|677.77
|1
|
|light green
|<ref>{{cite journal |last1=Marcos |first1=M. Dolores |last2=Amoros |first2=Pedro |last3=Beltran-Porter |first3=Aurelio |last4=Martinez-Manez |first4=Ramon |last5=Attfield |first5=J. Paul
|title=Novel crystalline microporous transition-metal phosphites <math chem>\ce{M11(HPO3)8(OH)6}</math> (M=Zn, Co, Ni). X-ray powder diffraction structure determination of the cobalt and nickel derivatives
|journal=Chemistry of Materials
|date=January 1993 |volume=5 |issue=1 |pages=121–128 |doi=10.1021/cm00025a023}}</ref>
|-
|{{chem2|NiMoO4*xH2O}}(hydrate)
|[[nickel molybdate]]
|
|monoclinic
|11.923
|8.220
|14.007
|113.01
|1264
|
|
|
|<ref name=eleven>{{cite web
|title=Кристаллические структуры соединений Ni
|url=http://www.kipt.kharkov.ua/kipt_sites/isspmst/crystal/ni/ni11-14.html |website=www.kipt.kharkov.ua}}</ref>
|-
|Ni(NO<sub>3</sub>)<sub>2</sub>{{hydrate|2}}
|[[nickel nitrate]] dihydrate
|
|triclinic
|5.09465
|7.10410
|8.42881
|γ=78.698 β=102.7640 α=83.1985
|287.5
|
|
|
|<ref name=eleven/>
|-
|Ni(NO<sub>3</sub>)<sub>2</sub>{{hydrate|4}}
|nickel nitrate tetrahydrate
|
|triclinic
|7.5710
|6.623
|16.26
|γ=97.26 β= 90.015 α=82.57
|802.3
|
|
|
|<ref name=eleven/>
|-
|NiN<sub>2</sub>O<sub>2</sub>
|nickel hyponitrite
|
|
|
|
|
|
|
|
|
|light green
|<ref>{{cite journal |last1=Polydoropoulos |first1=C. N. |last2=Yannakopoulos |first2=Th.
|title=Heavy metal hyponitrites
|journal=Chimika Chronika
|date=1961 |volume=26A |pages=70–73
|url=http://jupiter.chem.uoa.gr/pchem/lab/pubs/XX_26A(1961)70.pdf |language=en}}</ref>
|-
|NiP<sub>2</sub>O<sub>6</sub>{{hydrate|12}}
|nickel hypodiphosphate
|
|orthorhombic Pnmm
|11.2418
|18.5245
|7.3188
|
|1523.1
|4
|2.142
|
|<ref>{{cite journal |last1=Haag |first1=J.M. |last2=LeBret |first2=G.C. |last3=Cleary |first3=D.A. |last4=Twamley |first4=B.
|title=Room temperature synthesis and solid-state structure of <math chem>\ce{Ni2P2O6.12H2O}</math>
|journal=Journal of Solid State Chemistry
|date=April 2005 |volume=178 |issue=4 |pages=1308–1311 |doi=10.1016/j.jssc.2004.12.005|bibcode=2005JSSCh.178.1308H }}</ref>
|-
|Ni<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>
|[[nickel phosphate]]
|
|monoclinic
|10.1059
|4.6964
|5.8273
|91.138
|276.52
|2
|4.396
|greenish yellow
|<ref>{{cite journal |last1=McMurdie |first1=Howard F. |last2=Morris |first2=Marlene C. |last3=Evans |first3=Eloise H. |last4=Paretzkin |first4=Boris |last5=Wong-Ng |first5=Winnie |last6=Zhang |first6=Yuming |last7=Hubbard |first7=Camden R.
|title=Standard X-Ray Diffraction Powder Patterns from The JCPDS Research Associateship
|journal=Powder Diffraction
|date=28 October 2013 |volume=2 |issue=1 |pages=41–52 |doi=10.1017/S0885715600012239|bibcode=1987PDiff...2...41M }}</ref>
|-
|α-Ni<sub>2</sub>P<sub>2</sub>O<sub>7</sub>
|[[nickel pyrophosphate]]
|
|monoclinic
|6.9177
|8.275
|8.974
|113.879
|469.7
|4
|4.12
|∃ α',β and δ forms
|<ref>{{cite web
|title=Details of selected material
|url=http://crystdb.nims.go.jp/crystdb/search-details?condition_type=chemical_system&condition_value=Ni+O+P&errorCode=0&history=true&isConditionValueError=false&isNeedMoreValueError=false&isVisiblePeriodicTable=true&material_id=4295523697&need_more_type=prototype_number&need_more_value=&page=1&pageA=1&pageD=1&pageP=0&pageS=1&pageSubA=1&pageSubD=1&pageSubP=1&pageSubS=1&reference_id=4294981795&search-type=search-materials&substance_id=21244&tab=pageA&tabDetail=pageS&tabSub=pageA |website=AtomWork |accessdate=9 July 2016}}</ref>
|-
|NiHPO<sub>4</sub>
|[[nickel hydrogen orthophosphate]]
|
|
|
|
|
|
|
|
|
|beige yellow
|<ref name="viltange">{{cite journal |last1=Viltange |first1=M.
|title=Etude microanalytique des phosphates de nickel |language=fr
|journal=Mikrochimica Acta
|date=1964 |issue=1 |pages=1–16}}</ref>
|-
|{{chem2|[Ni(PO3)2]3*xH2O}}
|nickel trimetaphosphate
|
|
|
|
|
|
|
|
|
|
|<ref name="viltange"/>
|-
|((chem2|[Ni(PO3)2]4*xH2O}}
|nickel tetrametaphosphate
|
|
|
|
|
|
|
|
|
|
|<ref name="viltange"/>
|-
|Ni<sub>2</sub>P<sub>4</sub>O<sub>12</sub>
|nickel cyclotetraphosphate
|
|monoclinic ''C''12/''c''1
|11.611
|8.218
|9.826
|118.41
|824.7
|4
|
|green
|<ref>{{cite journal |last1=Olbertz |first1=A. |last2=Stachel |first2=D. |last3=Svoboda |first3=I. |last4=Fuess |first4=H.
|title=Redetermination of the crystal structures of nickel cyclotetraphosphate, <math chem>\ce{Ni2P4O12}</math> and of cobalt cyclotetraphosphate, <math chem>\ce{CO2P4O12}</math>
|journal=Zeitschrift für Kristallographie - New Crystal Structures
|date=1 January 1998 |volume=213 |issue=1–4 |doi=10.1524/ncrs.1998.213.14.255}}</ref>
|-
|Ni<sub>12</sub>H<sub>6</sub>(PO<sub>4</sub>)<sub>8</sub>(OH)<sub>6</sub>
|nickel hydroxy phosphate
|
|hexagonal
|12.4697
|
|4.9531
|
|
|1
|
|light green
|<ref name="marcos93"/>
|-
|{{(H3O+NH4+)4[Ni18(HPO4)14(OH)3F9]*12H2O}}
|Nanoporous nickel phosphate VSB-1
|
|hexagonal
|19.834
|
|5.0379
|
|1710
|
|
|
|<ref name="Timofeeva">{{cite journal |last1=Timofeeva |first1=M.N. |last2=Panchenko |first2=V.N. |last3=Hasan |first3=Zubair |last4=Jhung |first4=Sung Hwa
|title=Catalytic potential of the wonderful chameleons: Nickel phosphate molecular sieves
|journal=Applied Catalysis A
|date=March 2013 |volume=455 |pages=71–85 |doi=10.1016/j.apcata.2013.01.019}}</ref>
|-
|Ni<sub>20</sub>[(OH)<sub>12</sub>(H<sub>2</sub>O)<sub>6</sub>][(HPO<sub>4</sub>)<sub>8</sub>(PO<sub>4</sub>)<sub>4</sub>]{{hydrate|12}}
|Nanoporous nickel phosphate VSB-5
|
|hexagonal
|18.153
|
|6.387
|
|1827
|
|
|
|<ref name="Timofeeva"/>
|-
|Ni<sub>3</sub>P<sub>6</sub>O<sub>18</sub>{{hydrate|17}}
|nickel hexametaphosphate
|
|triclinic
|9.109
|9.267
|10.75113
|α=84.885 β=102.44 γ=101.64
|867.4
|
|
|pale green
|<ref>{{cite web
|title=Кристаллические структуры соединений Ni |language=ru
|url=http://www.kipt.kharkov.ua/kipt_sites/isspmst/crystal/ni/ni35.html |website=www.kipt.kharkov.ua |accessdate=20 July 2016}}</ref>
|-
|Ni<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>·8H<sub>2</sub>O
|[[annabergite]]
|
|Monoclinic
|10.179
|13.309
|4.725
|105
|
|2
|
|light green
|<ref name=HBM>{{cite web
|url=http://rruff.geo.arizona.edu/doclib/hom/annabergite.pdf |work=Handbook of Mineralogy
|title=Annabergite
|date=2005}}</ref>
|-
|Ni<sub>12</sub>H<sub>6</sub>(AsO<sub>4</sub>)<sub>8</sub>(OH)<sub>6</sub>
|nickel hydroxy arsenate
|
|hexagonal
|12.678
|
|5.0259
|
|
|1
|
|light green
|<ref name="marcos93"/>
|-
|NiAs<sub>2</sub>O<sub>4</sub>
|Nickel arsenite
|
|
|
|
|
|
|
|
|
|
|<ref>{{cite journal |last1=Witteveen |first1=H.T.
|title=Magnetic susceptibility of <math chem>\ce{NiAs2O4}</math> and <math chem>\ce{NiSb2O4}</math>
|journal=Solid State Communications
|date=August 1971 |volume=9 |issue=15 |pages=1313–1315 |doi=10.1016/0038-1098(71)90086-X|bibcode=1971SSCom...9.1313W }}</ref>
|-
|Ni<sub>3</sub>(AsO<sub>4</sub>)<sub>3</sub>
|''o''-nickel orthoarsenate
|454.01
|orthorhombic
|5.943
|11.263
|8.164
|
|546.5
|4
|5.517
|
|<ref name="barbi">{{cite journal |last1=Barbier |first1=J. |last2=Frampton |first2=C.
|title=Structures of orthorhombic and monoclinic <math chem>\ce{Ni3(AsO4)2}</math>
|journal=Acta Crystallographica Section B
|date=1 August 1991 |volume=47 |issue=4 |pages=457–462 |doi=10.1107/S0108768191002987}}</ref>
|-
|Ni<sub>3</sub>(AsO<sub>4</sub>)<sub>3</sub>
|''m''-nickel orthoarsenate [[xanthiosite]]
|453.91
|monoclinic
|5.764
|9.559
|10.194
|92.95
|560.9
|4
|5.394
|golden yellow
|<ref name="barbi"/>
|-
|Ni<sub>8.5</sub>As<sub>3</sub>O<sub>16</sub>
|[[Aerugite]]
|979.8
|trigonal
|5.9511
|
|27.567
|
|281.9
|1
|5.772
|dark green
|<ref>{{cite journal |last1=Fleet |first1=M. E. |last2=Barbier |first2=J.
|title=Structure of aerugite (<math chem>\ce{Ni}_{8.5}\ce{As3O16}</math>) and interrelated arsenate and germanate structural series
|journal=Acta Crystallographica Section B
|date=1 June 1989 |volume=45 |issue=3 |pages=201–205 |doi=10.1107/S0108768189002727}}</ref>
|-
|NiSb<sub>2</sub>O<sub>4</sub>
|Nickel antimonite
|
|tetragonal
|8.6388
|
|5.9052
|
|413.58
|
|(at 240K)
|
|<ref>{{cite journal |last1=Chater |first1=R. |last2=Gavarri |first2=J.R. |last3=Hewat |first3=A.W.
|title=Évolution structurale sous pression de <math chem>\ce{NiSb2O4}</math>: Compressibilités anisotropes et ordre magnetique
|journal=Journal of Solid State Chemistry
|date=March 1987 |volume=67 |issue=1 |pages=98–103 |doi=10.1016/0022-4596(87)90344-6|bibcode=1987JSSCh..67...98C }}</ref>
|-
|NiSb<sub>2</sub>O<sub>6</sub>
|Nickel metaantimonate<br/>nickel antimony oxide
|
|P4<sub>2</sub>/mnm
|4.62957
|
|9.1981
|
|
|2
|
|
|<ref name="ehrenb">{{cite journal |last1=Ehrenberg |first1=H |last2=Wltschek |first2=G |last3=Rodriguez-Carvajal |first3=J |last4=Vogt |first4=T
|title=Magnetic structures of the tri-rutiles <math chem>\ce{NiTa2O6}</math> and <math chem>\ce{NiSb2O6}</math>
|journal=Journal of Magnetism and Magnetic Materials
|date=April 1998 |volume=184 |issue=1 |pages=111–115 |doi=10.1016/S0304-8853(97)01122-0|bibcode=1998JMMM..184..111E }}</ref>
|-
|Ni(H<sub>2</sub>O)<sub>6</sub>[Sb(OH)<sub>6</sub>]<sub>2</sub>
|[[bottinoite]] Nickel hydroxy antimonate
|
|''P''3
|16.060
|
|9.792
|
|2187.2
|6
|
|pale blue
|<ref>{{cite journal |last1=Bonazzi |first1=Paola |last2=Mazzi |first2=Fiorenzo
|title=Bottinoite, <math chem>\ce{Ni(H2O)6[Sb(OH)6]2}</math>; crystal structure, twinning, and hydrogen-bond model
|journal=American Mineralogist
|date=1 December 1996 |volume=81 |issue=11–12 |pages=1494–1500 |doi=10.2138/am-1996-11-1220|bibcode=1996AmMin..81.1494B }}</ref>
|-
|NiTa<sub>2</sub>O<sub>6</sub>
|Nickel metatantalate
|
|P4<sub>2</sub>/mnm
|4.71581
|
|9.1163
|
|
|2
|
|
|<ref name="ehrenb"/>
|-
|NiSn(SO<sub>3</sub>F)<sub>6</sub>
|nickel tin fluorosulfate
|
|
|
|
|
|
|
|
|
|light yellow
|<ref name="mall87"/>
|-
|Ni(SO<sub>3</sub>CF<sub>3</sub>)<sub>2</sub>
|[[nickel trifluoromethanesulfonate]]
|
|
|
|
|
|
|
|
|
|
|<ref>{{cite journal |last1=Okan |first1=S. Erol |last2=Champeney |first2=D. C.
|title=Molar conductance of aqueous solutions of sodium, potassium, and nickel trifluoromethanesulfonate at 25‡C
|journal=Journal of Solution Chemistry
|date=April 1997 |volume=26 |issue=4 |pages=405–414 |doi=10.1007/BF02767679}}</ref>
|-
|NiSn(SO<sub>3</sub>CF<sub>3</sub>)<sub>6</sub>
|nickel tin triflate
|
|
|
|
|
|
|
|
|
|light yellow
|<ref name="mall87"/>
|-
|(Ni,Mg)<sub>10</sub>Ge<sub>3</sub>O<sub>16</sub>
|
|871.7
|trigonal ''R''{{overline|3}}
|5.8850
|
|28.6135
|
|286.1
|1
|5.060
|
|<ref>{{cite journal |last1=Fleet |first1=M. E. |last2=Barbier |first2=J.
|title=Structure of <math chem>\ce{(Ni,Mg)10Ge3O16}</math>
|journal=Acta Crystallographica Section C
|date=15 February 1988 |volume=44 |issue=2 |pages=232–234 |doi=10.1107/S0108270187009880}}</ref>
|-
|NiCO<sub>3</sub>
|anhydrous [[nickel carbonate]]
|118.72
|rhombohedral
|4.6117
|
|14.735
|
|271.39
|6
|4.358
|
|<ref>{{cite journal |last1=Pertlik |first1=F.
|title=Structures of hydrothermally synthesized cobalt(II) carbonate and nickel(II) carbonate
|journal=Acta Crystallographica Section C
|date=15 January 1986 |volume=42 |issue=1 |pages=4–5 |doi=10.1107/S0108270186097524}}</ref>
|-
|Ni<sub>2</sub>SiO<sub>4</sub>
|nickel orthosilicate<br/>[[liebenbergite]]<br/>nickel silicate olvine
|
|orthorhombic ''Pbnm''
|4.727
|10.120
|5.911
|
|285.0
|4
|
|
|<ref>{{cite book
|title=Chemical Thermodynamics of Nickel |publisher=Elsevier |isbn=9780080457543 |page=238
|url=https://books.google.com/books?id=yyhlSz3zyRkC&pg=PA238 |language=en
|date=2005-04-08 }}</ref>
|-
|Ni<sub>2</sub>GeO<sub>4</sub>
|nickel orthogermanate
|
|cubic Fd3m
|8.221
|
|
|
|
|8
|
|
|<ref>{{cite book
|title=Chemical Thermodynamics of Nickel |publisher=Elsevier |isbn=9780080457543 |page=245
|url=https://books.google.com/books?id=yyhlSz3zyRkC&pg=PA245 |language=en
|date=2005-04-08 }}</ref>
|-
|Ni(CN)<sub>2</sub>
|anhydrous [[nickel cyanide]]
|
|tetragonal quad layer
|4.8570
|
|12.801
|
|
|4
|
|
|<ref name="hibble"/>
|-
|NiB<sub>4</sub>O<sub>7</sub>
|γ-nickelborate
|
|''P''6<sub>5</sub>22
|4.256
|
|34.905
|
|547.5
|6
|
|
|<ref>{{cite journal|last1=Schmitt|first1=Martin K.|last2=Janka|first2=Oliver|last3=Niehaus|first3=Oliver|last4=Dresselhaus|first4=Thomas|last5=Pöttgen|first5=Rainer|last6=Pielnhofer|first6=Florian|last7=Weihrich|first7=Richard|last8=Krzhizhanovskaya|first8=Maria|last9=Filatov|first9=Stanislav|last10=Bubnova|first10=Rimma|last11=Bayarjargal|first11=Lkhamsuren|last12=Winkler|first12=Björn|last13=Glaum|first13=Robert|last14=Huppertz|first14=Hubert
|title=Synthesis and Characterization of the High-Pressure Nickel Borate <math chem>\ce{\gamma-NiB4O7}</math>
|journal=Inorganic Chemistry|volume=56|issue=7|pages=4217
|date=21 March 2017|doi=10.1021/acs.inorgchem.7b00243|pmid=28323420}}</ref>
|}


===Fluoro acid salts===
===Fluoro acid salts===

Revision as of 21:41, 24 February 2019

Compounds of nickel are chemical compounds containing the element nickel which is a member of the group 10 of the periodic table. Most compounds in the group have an oxidation state of +2. Nickel is classified as a transition metal with nickel(II) having much chemical behaviour in common with iron(II) and cobalt(II). Many salts of nickel(II) are isomorphous with salts of magnesium due to the ionic radii of the cations being almost the same. Nickel forms many coordination complexes. Nickel tetracarbonyl was the first pure metal carbonyl produced, and is unusual in its volatility. Metalloproteins containing nickel are found in biological systems.

Nickel forms simple binary compounds with non metals including halogens, chalcogenides, and pnictides. Nickel ions can act as a cation in salts with many acids, including common oxoacids Salts of the hexaaqua ion (Ni · 6 H2O2+) are especially well known. Many double salts containing nickel with another cation are known. There are organic acid salts. Nickel can be part of a negatively charged ion (anion) making what is called a nickellate. Numerous quaternary compounds (with four elements) of nickel have been studied for super conductivity properties, as nickel is adjacent to copper and iron in the periodic table can can form compounds with the same structure as the high-temperature superconductors that are known.

General

Colour

Most of the common salts of nickel are green due to the presence of hexaaquanickel(II) ion, Ni(H2O)62+.

Geometry

Nickel atoms can connect to surrounding atoms or ligands in a variety of ways. Six coordinated nickel is the most common and is octahedral, but this can be distorted if ligands are not equivalent. For four coordinate nickel arrangements can be square planar, or tetrahedral. Five coordinated nickel is rarer.

Magnetism

Some nickel compounds are ferromagnetic at sufficiently low temperatures. In order to show magnetic properties the nickel atoms have to be close enough together in the solid structure.

Binary compounds

A binary compound of nickel contains one other element. Substances that contain only nickel atoms are not actually compounds.

In a noble gas matrix, nickel can form dimers, a molecule with two nickel atoms: Ni2.[1] Ni2 has a bonding energy of 2.07±0.01 eV. For Ni2+ the bond energy is around 3.3 eV. Nickel dimers and other clusters can also be formed in a gas and plasma phase by shooting a powerful laser at a nickel rod in cold helium gas.[2]

Oxides

Nickel oxides include Nickel(II) oxide and Nickel(III) oxide.

Hydroxides

Nickel hydroxides are used in nickel–cadmium and Nickel–metal hydride batteries. Nickel(II) hydroxide Ni(OH)2, the main hydroxide of nickel is coloured apple green. It is known as the mineral theophrastite. β-NiO(OH) is a black powder with nickel in the +3 oxidation state. It can be made by oxidising nickel nitrate in a cold alkaline solution with bromine. A mixed oxidation state hydroxide Ni3O2(OH)4 is made if oxidation happens in a hot alkaline solution. A Ni4+ hydroxide: nickel peroxide hydrate NiO2 · H2O, can be made by oxidising with alkaline peroxide. It is black, and unstable and oxidises water.

Halides

nickel chloride hexahydrate

Nickel(II) fluoride NiF2 is yellow, crystallising in the rutile structure and can form a trihydrate, NiF2·3H2O.[3] A tetrahydrate also exists.[4]

Nickel chloride NiCl2 is yellow, crystallising in the cadmium chloride structure. It can form a hexahydrate, NiCl2·6H2O, a tetrahydrate NiCl2·4H2O over 29 °C and a dihydrate, NiCl2·2H2O over 64 °C.[3]

nickel bromide NiBr2 is yellow, also crystallising in the cadmium chloride structure. It can form a hexahydrate, NiBr2·6H2O.[3] Crystallisation above 29° forms a trihydrate NiBr2·3H2O, and a dihydrate NiBr2·2H2O.[5] Nonahydrate, NiBr2·9H2O can crstallise from water below 2 °C.[3] Nickelous hexammine bromide Ni(NH3)6Br2is violet or blue. It is soluble in boiling aqueous ammonia, but is insoluble in cold.[3] Diammine, monoammine, and dihydrazine nickel bromides also exist.[3]

With four bromide atoms nickel(II) forms a series of salts called tetrabromonickelates.

Nickel iodide NiI2 is black, also crystallising in the cadmium chloride structure. It can form a green hexahydrate, NiI2·6H2O.[3] Nickel iodide has a brown diammine NiI2•2NH3 and a bluish-violet hexammine NiI2•6NH3.[3]

Nickel(III) fluoride NiF3

Nickel(IV) fluoride NiF4

Chalcogenides

needles of Halls Gap Millerite

By reacting nickel with chalcogens, nickel sulfide, nickel selenide, and nickel telluride are formed. There are numerous sulfides: Ni1.5S, Ni17S18, Ni3S2 (heazlewoodite), Ni3S4 (polydymite), Ni9S8 (godlevskite), NiS (millerite) and two other NiS forms, NiS2 (vaesite) in pyrite structure. Black nickel tetrasulfide NiS4 is formed from ammonium polysulfide and nickel in water solution. Mixed and double sulfides of nickel also exist. Nickel with selenium forms several compounds Ni1−xSe 0≤x≤0.15, Ni2Se3, NiSe2 also known as a mineral penroseite.

Nickel forms two different polonides by heating nickel and polonium together: NiPo and NiPo2.[6]

Pnictides

The nickel arsenide nickeline

Non-stoichiometric compounds of nickel with phosphorus, arsenic and antimony exist, and some are found in nature. One interstitial nitride has formula Ni3N (hexagonal P6322, Z = 2, a = 4.6224 Å and c = 4.3059 Å).[7] In a solid nitrogen matrix, nickel atoms combine with nitrogen molecules to yield Ni(N2)4.[1]

Nickel phosphide Ni2P has density 7.33 and melts at 1100 °C.[4]

The mineral Nickelskutterudite has formula NiAs2-3, nickeline has formula NiAs and breithauptite has formula NiSb. NiAs melts at 967° and has density 7.77. NiSb melts at 1174°. It has the highest density of a nickel compound at 8.74 g/cm3.[4]

NiAsS gersdorffite, and NiSbS ullmannite, NiAsSe Jolliffeite are pnictide/chalcogenide compounds that occur as minerals.

Other

Nickel also forms carbides and borides. Nickel boride can take the forms Ni2B (a green/black solid), NiB, Ni3B, o-Ni4B3 and m-Ni4B3.[8] Nickel hydride NiH is only stable under high pressures of hydrogen.

Diatomic molecules

Hot nickel vapour reacting with other atoms in the gas phase can produce molecules consisting of two atoms. Nickel monofluoride can be observed by its emission spectrum in the gas phase.[9]

Nickel subchloride NiCl is formed in gaseous form when nickel chloride is vapourised, and is the most common in the gas phase above 1450 K. It is formed when nickel is exposed to hot, low pressure chlorine.[10]

Nickel monobromide, NiBr can exist in the gas phase when an electric discharge goes through NiBr2 gas.[9][11][12]

Nickelmonoiodide can exist in the gas phase.[9]

Formula wt distance energy refs
pm kcal/mol
NiH
NiF
NiCl
NiBr
NiI
Ni2 46 [2]
NiAu 58 [13]

Alloys

Compounds of nickel with other metals can be called alloys. The substances with fixed composition include nickel aluminide (NiAl) melting at 1638° with hexagonal structure.[4] NiY, NiY3, Ni3Y, Ni4Y, NiGd3,[14]

BaNi2Ge2 changes structure from orthorhombic to tetragonal around 480 °C.[15] THis is a ternary intermetallic compound. Others include BaNiSn3 and the superconductors SrNi2Ge2, SrNi2P2, SrNi2As2, BaNi2P2, BaNi2As2.[15]

Simple salts

Oxo acid salts

bright green crystals in two clusters on a white and grey rock
Mint green Annabergite, a nickel arsenite

Important nickel oxo acid salts include nickel(II) sulfate can crystallise with six water molecules yielding Retgersite or with seven making Morenosite which is isomorphic to Epsom salts. These contain the hexaquanickel(II) ion.[16] There is also an anhydrous form, a dihydrate and a tetrahydrate, the last two crystallised from sulfuric acid. The hexahydrate has two forms, a blue tetragonal form, and a green monoclinic form, with a transition temperature around 53 °C.[17] The heptahydrate crystallises from water below 31.5 above this blue hexhydrate forms, and above 53.3 the green form.[18] Heating nickel sulfate dehydrates it, and then 700° it loses sulfur trioxide, sulfur dioxide and oxygen.

Fluoro acid salts

Nickel tetrafluoroborate, Ni(BF4)2 · 6 H2O is very soluble in water, alcohol and acetonitrile. It is prepared by dissolving nickel carbonate in tetrafluoroboric acid.[19][20] Nickel tetrafluoroberyllate NiBeF4xH2O, can be hydrated with six or seven water molecules.[21] Both nickel hexafluorostannate and nickel fluorosilicate crystallise in the trigonal system.[22] Nickel hexafluorogermanate NiGeF6 has a rosy-tan colour and a hexagonal crystal with a = 5.241 Å unit cell volume is 92.9 Å3. It is formed in the reaction with GeF4 and K2NiF6.[23] Nickel fuorotitanate crystallises in hexagonal green crystals. It can be made by dissolving nickel carbonate, and titanium dioxide in hydrofluoric acid. The crystal dimensions are a = 9.54, c = 9.91 density = 2.09 (measure 2.03).[24]

Ni(AsF6)2, Ni(SbF6)2, Ni(BiF6)2 are made by reacting the hexafluoro acid with NiF2 in hydrofluoric acid.[23] They all have hexagonal crystal structure, resembling the similar salts of the other first row transition metals.[23] For Ni(AsF6)2 a = 4.98, c = 26.59, and V = 571, formula weight Z=3.[23] Ni(SbF6)2 is yellow with a = 5.16Å, c = 27.90Å Z = 3. The structure resembles LiSbF6, but with every second metal along the c axis missing.[25]

Others include the green fluorohafnate NiHfF6 · 6 H2O, and Ni2HfF8 · 12 H2O,[26] NiZrF6 · 6 H2O[27]

Chloroacid salts

Nickel tetrachloroiodate Ni(ICl4)2 can be made by reacting iodine with nickel chloride. It consists of green needles.[28]

Nitrogen anion salts

Nickel cyanide tetrahydrate Ni(CN)2 · 4 H2O is insoluble in water, but dissolves in aqueous ammonia.[4] It forms double salts with interesting structures.[29]

Nickel azide Ni(N3)2 is a sensitive explosive. It can be made by treating nickel carbonate with hydrazoic acid. Acetone causes the precipitation of the hydrous solid salt, which is green. At 490K it slowly decomposes to nitrogen and nickel metal powder, losing a half of the nitrogen in four hours.[30] Nickel azide is complexed by one azo group when dissolved in water, but in other solvents, the nickel atom can have up to four azo groups attached.[31] Nickel azide forms a dihydrate: Ni(N3)2 · 2 H2O and a basic salt called nickel hydroxy azide Ni(OH)N3.[32]

Nickel amide, Ni(NH2)2 is a deep red compound that contains Ni6 clusters surrounded by 12 NH2 groups.[33] Nickel amide also forms a series of double salts. Other homoleptic nickel amides derived by substituting the hydrogen atoms are Ni[N(C6H5)2]2 (diphenyl) and boryl amides Ni[NBMes2Mes]2 and Ni[NBMes2C6H5]2.[34]

Organic acid salts

Nickel acetate has the formula (CH3COO)2Ni·4H2O. It has monodentate acetate and hydrogen bonding. A dihdrate also exists. Nickel acetate is used to seal anodised aluminium.[35]

Nickel formate decomposes when heated to yield carbon dioxide, carbon monoxide, hydrogen, water and finely divided porous nickel.[36] All the nickel atoms are six coordinated, but half have four water molecules and two formate oxygens close to the atom, and the other half are coordinated by six oxygens of formate groups.[37]

Aspergillus niger is able to dispose of otherwise toxic levels of nickel in its environment by forming nickel oxalate dihydrate crystals.[38] nickel oxalate can also be formed in to various namorods and nanofibres by use of surfacants.[39] When heated nickel oxalate dihydrate dehydrates at 258° and decomposes to NiO over 316 °C.[40] Double oxalate salts where oxalate is a ligand on the nickel atom may be called oxalatonickelates.

Other organic acid salts of nickel include nickel oleate, nickel propionate, nickel butyrate, nickel caprylate, nickel lactate, nickel benzoate, nickel bis(acetyl acetonate), nickel salicylate, nickel alkyl phenyl salicylate. Nickel stearate forms a green solution, however when precipitated with alcohol a gel is produced, that also contains a mixture of basic salts, and free stearic acid.[41]

Nickel malonate, and nickel hydrogen malonate both crystallise with two molecules of water. They decomposes when heated to yield gaseous water, carbon dioxide, carbon monoxide, ethanol, acetic acid, methyl formate and ethyl formate. Nickel acetate exists as an intermediate and the final result is that solid nickel, nickel oxide, Ni3C and carbon remain.[42] With malonate nickel can form a bis-malonato-nickelate anion, which can form double salts.[43] Nickel maleate can be made from maleic acid and nickel carbonate in boiling water. A dihydrate crystallises from the water solution.[44] Nickel fumarate prepared from fumaric acid and nickel carbonate is pale green as a tetrahydrate, and mustard coloured as an anhydride. It decomposes when heated to 300° to 340° in vacuum. Decomposition mostly produces nickel carbide, carbon dioxide, carbon monoxide and methane. But also produced were butanes, benzene, toluene, and organic acid.[45]

Nickel succinate can form metal organic framework compounds.[46]

Nickel citrate complexes are found in leaves of some nickel accumulating plant species in New Caledonia such as Pycnandra acuminata.[47] Citrate complexes include NiHcit, NiHcit23−, Nicit, Nicit24−, and Ni2H2cit24−. (ordered from low to high pH). Also there is Ni4H4cit35−. Nickel citrate is important in nickel plating.[48] When precipitation of nickel citrate is attempted a gel forms. This apparently consists of tangled fibres of [(C6H6O7)Ni]n, which can be reduced to nickel metal fibres less than a micron thick, and meters long.[49] Double nickel citrates exist, including tetraanion citrate when pH is over 9.5.[50] An amorphous nickel iron citrate Ni3Fe6O4(C6H6O7)8·6H2O produces carbon monoxide, carbon dioxide and acetone when heated over 200 °C leaving Trevorite, NiFe2O4 a nickel ferrite.[51] A green crystalline nickel citrate with formula Ni3(C6H5O7)2·10H2O melts at 529K and decomposition starts at 333K.[52]

Nickel glutarate in the form called Mil-77, [Ni20{(C5H6O4)20(H2O)8}]⋅40H2O is pale green. It crystallises in a porous structure containing twenty member rings. The 40 water molecules "occluded" in the porous channels come out when it is heated to 150 °C retaining the crystal framework. At 240 °C the crystal form changes and over 255° the remaining water is lost. Between 330° and 360° the organic components burn and it is destroyed.[53]

Cyclopropane carboxylic acid forms two basic salts with nickel, a hydrate with density 1.554 Mg/m3 and an anhydrous form Ni5(OH)2(C4H5O2)8 with density 2.172 mg/m3.[54]

Nickel trifluoroacetate tetrahydrate exists, as well as two emerald green acid trifluoroacetates, a bridged trinuclear form [Ni3(CF3COO)6(CF3COOH)6](CF3COOH) and a hydrated acid form [Ni3(CF3COO)6(CF3COOH)2(H2O)4](CF3COOH)2 both with triclinic crystal form. The first has density 2.205 and the second 2.124. They are made by dissolving the nickel trifluoroacetate tetrahydrate in trifluoroacetic acid either anhydrous or 1% hydrated.[55]

Nickel naphthenate is used as a fuel additive to suppress smoke,[56] as a rubber catalyst and as an oil additive.

When Nickel benzoate is heated in a vacuum, carbon dioxide, carbon monoxide, benzene, benzoic acid, phenol, biphenyl, nickel, nickel oxide, and nickel carbide are formed.[57] It can crystallise as anhydrous, a trihydrate or a tetrahydrate.[58]

Nickel terephthalate can be made by a double decomposition of sodium terephthalate and nickel nitrate. Nickel terephthalate precipitates. Its solubility is 0.38 g/100g water at 25 °C. In ammonium hydroxide a violet solution forms. Boiling acetic acid converts the nickel to nickel acetate. The terephthalate converts to a basic salt when boiled in water. Understating this compound is important when reducing coloured contaminants in polymers made from terephthalate.[59]

formula name mol struct cell Å ° V Z density colour refs
wt a b c β Å3 g/cm3
Ni(HCOO)2·2H2O Nickel formate hydrate monoclinic 8.60 7.06 9.21 96°50′ 4 [37]
[Ni20{(C5H6O4)20(H2O)8}] · 40 H2O Nickel glutarate cubic 16.581 4559 pale green [53]
Ni9(OH)2(H2O)6(C4H5O2)8·2H2O nickel cyclopropane carboxylate hydrate orthorhombic 14.810 24.246 24.607 8836 4 1.554 bright green [54]
Ni5(OH)2(C4H5O2)8 nickel cyclopropane carboxylate orthorhombic 19.406 18.466 21.579 90 7733 8 2.172 pale green [54]
[Ni3(CF3COO)6(CF3COOH)6](CF3COOH) Nickel acid trifluoroacetate trigonal 13.307 53.13 8148 6 2.205 emerald green [55]
[Ni3(CF3COO)6(CF3COOH)2(H2O)4](CF3COOH)2 Nickel acid trifluoroacetate hydrate triclinic 9.12 10.379 12.109 α=84.59° β=72.20° γ=82.80° 1080.9 1 2.124 emerald green [55]
K2[Ni(C6H5O7)(H2O)2]2·4H2O potassium nickel citrate triclinic 6.729 9.100 10.594 α=94.86 β=100.76 γ=103.70 613.5 1 1.942 green [60]
K2[Ni2(C6H5O7)2(H2O)4]·4H2O Dipotassium tetraaquabis(μ-citrato-k4O:O',O'',O''')nickelate(II) tetrahydrate 717.94 monoclinic 10.616 13.006 9.0513 93.09 1247.8 2 1.911 green [61]
N(CH3)4[Ni4(C6H4O7)3(OH)(H2O)]·18H2O tetramethyl ammonium nickel basic citrate triclinic 11.84 14.29 20.93 96.16 β=106.36 γ=94.89 3352 1 bright green extremely weak [60][62]
Na2[Ni(C6H4O7)] · 2 H2O disodium nickel citrate green dec 371 [50]
(NH4)2[Ni(HCit) · 2 H2O]2 · 2 H2O Dimeric ammonium diaquocitratonickelate (II) dihydrate 639.79 triclinic 6.407 9.471 9.6904 α=105.064 β=91.99 γ=89.33 567.5 1 1.872 green [63]
(NH4)4[Ni(HCit)2] · 2 H2O tetrammonium dicitratonickelate (11) dihydrate 545.10 monoclinic 9.361 13.496 9.424 115.476 1074.9 2 1.684 [63]
Na2[Ni(HCit) · 2 H2O]2 · 2 H2O Dimeric sodium diaquocitratonickelate (II) dihydrate [63]
K2[Ni(HCit) · 2 H2O]2 · 2 H2O Dimeric potassium diaquocitratonickelate (II) dihydrate [63]
(NH4)2[Ni(H2O)6][Ti(H2cit)3]2·6H2O 1547.43 hexagonal 15.562 7.690 1605.5 1 1.600 light green [64]
[Ni(C5H7O2)2]3 Nickel(II) acetylacetonate 256.91 orthorhombic 23.23 9.64 15.65 3505 4 1.46 dark green [65]
Ni[C4O4] · 2 H2O nickel squarate ?cubic 8.068 8.068 8.068 90° 525 1.93 green [66]
Ni[C4O4] · 8 H2O nickel squarate octahydrate 428.93 monoclinic 10.288 6.372 12.852 106.98 805.8 2 1.768 green [67]
Ni[C5O5] · 3 H2O Nickel croconate trihydrate orthorhombic green [68]
K2[Ni(C5O5)2(H2O)2] · 4 H2O Poly[[di-μ2-aqua-di-μ5-croconato(2-)-nickel(II)dipotassium(I)] tetrahydrate] 525.11 monoclinic 8.015 6.660 16.489 90.20 880.1 2 1.982 green [69]
Ni(C5H5COO)2 · 2 H2O nickel dibenzoate tetrahydrate 354.98 monoclinic 6.1341 34.180 6.9793 95.331 1457.0 4 1.618 light green [58]
Ni(C5H5COOCOOH)2 · 6 H2O nickel dihydrogen diphthalate hexahydrate monoclinic 16.024 5.574 12.500 113.42 2 1.611 [70]
Ni[C6H4(COO)2] · 4 H2O Nickel terephthalate green [59]
Ni(OH)[C6H4(COO)(COOH)] · H2O basic nickel terephthalate green [59]

Double salts

Nickel is one of the metals that can form Tutton's salts. The singly charged ion can be any of the full range of potassium, rubidium, cesium, ammonium (), or thallium.[71] As a mineral the ammonium nickel salt, (NH4)2Ni(SO4)2 · 6 H2O, can be called nickelboussingaultite.[72] With sodium, the double sulfate is nickelblödite Na2Ni(SO4)2 · 4 H2O from the blödite family. Nickel can be substituted by other divalent metals of similar sized to make mixtures that crystallise in the same form.[73]

Nickel forms double salts with Tutton's salt structure with tetrafluoroberyllate with the range of cations of ammonia,[74] potassium, rubidium, cesium,[75] and thallium.[76]

Anhydrous salts of the formula M2Ni2(SO4)3, which can be termed metal nickel triusulfates, belong to the family of langbeinites. The known salts include (NH4)2Ni2(SO4)3, K2Ni2(SO4)3 and Rb2Ni2(SO4)3, and those of Tl and Cs are predicted to exist.

Some minerals are double salts, for example Nickelzippeite Ni2(UO2)6(SO4)3(OH)10 · 16H2O which is isomorphic to cobaltzippeite, magnesiozippeite and zinczippeite, part of the zippeite group.[77]

Double hydrides of nickel exist, such as Mg2NiH4.[78]


Ternary chalcogenides

Nickel forms a series of double nickel oxides with other elements, which may be termed "nickelates". There are also many well defined double compounds with sulfur, selenium and tellurium.

Polyoxometallates

Nickel can enter into metal oxygen clusters with other high oxidation state elements to form polyoxometalates. These may stabilize higher oxidation states of nickel, or show catalytic properties.

Nonamolybdonickelate(IV), [NiMo9O32]6− can oxidize aromatic hydrocarbons to alcohols.[79]

There is a dark brown heptamolybdonickelate(IV) potassium salt, K2H8NiMo7O28·6H2O.[80]

13-Vanadonickelate(IV) compounds such as K7NiV13O38 · 16 H2O with black octahedral crystals exist. It can be made from isopolyvanadate, with nickel(II) oxidised by peroxydisulfate at a pH around 4.[81] Nickel(IV) heteropolyniobates such as the dark maroon Na12NiNb12O38 · 21 H2O are also known.[82] An alternate orange red hydrate perhaps with 44 water molecules also exists. With nickel-II (tetramethylammonium)6[H3NiNb9O28 · 17 H2O forms a green salt that is very soluble in water, but hardly soluble in ethanol.[83]

H43K14Na6Nb32 Ni10O183 is a nickel-cation-bridged polyoxoniobate which crystallizes in the monoclinic system with cell dimensions a=15.140 b=24.824 c=25.190 Å and β=103.469 and two formulas per unit cell.[84]

Na8Li12[Ni2(P2W15O56)2] · 74 H2O forms a sandwich structure, and Na4Li5[Ni3(OH)3(H2O)3P2W16O59] · 48 H2O is a Wells-Dawson polyoxometalate.[85]

Acid salts

Nickel hydrofluoride, H5NiF7·6H2O is made by using excess hydrofluoric acid solution on nickel carbonate. It is deep green.[3]

Basic salts

Nickel oxyfluoride Ni4F4O(OH)2 is green.[3]

Nickelous enneaoxydiiodide 9NiO•Nil2 · 15 H2O forms when solutions of nickel iodide are exposed to air and evaporated.[3]

Complexes

Sample of potassium tetracyanonickelate hydrate

Simple complexes of nickel include hexaquonickel(II), yellow tetracyanonickelate [Ni(CN)4]2−, red pentacyanonickelate [Ni(CN)5]3− only found in solution, [Ni(SCN)4]2− and [Ni(SCN)6]4−. Halo- complexes include [NiCl4]2−, [NiF4]2−, [NiF6]4−, [NiCl2(H2O)4] [Ni(NH3)4(H2O)2]2+, [Ni(NH3)6]2+, [Ni(en)3)]2+.[16] Some complexes have fivefold coordination. (tris(N,N-dimethyl-2-aminoethyl)amine); P(o-C6H4SMe)3; P(CH2CH2CH2AsMe2)3.[16]

Other ligands for octahedral coordination include PPh3, PPh2Me and thiourea.[16]

Nickel tetrahedral complexes are often bright blue and 20 times or more intensely coloured than the octahedral complexes.[16] The ligands can include selections of neutral amines, arsines, arsine oxides, phosphines or phosphine oxides and halogens.[16]

Several nickel atoms can cluster together in a compound with other elements to produce nickel cluster complexes. One example where nickel atoms form a square pyramid is a nickel hydride cluster complexed by triphenyl phosphine ligands and bonding a hydrogen atom on each edge. Another example has a square planar Ni4H4 shape in its core.[86]

Nickel bis(dimethylglyoximate), an insoluble red solid is important for gravimetric analysis.

Bio molecules

Active site of Nickel superoxide dismutase

Cofactor F430 contains nickel in a tetrapyrrole derivative, and is used in the production of methane. Some hydrogenase enzymes contain a nickel-iron cluster as an active site in which the nickel atom is held in place by cysteine or selenocysteine.[87] Plant ureases contain a bis-μ-hydroxo dimeric nickel cluster.[88] CO-methylating acetyl-CoA synthase contains two active nickel atoms, one is held in a square planar coordination by two cysteine and two amide groups, and the other nickel is held by three sulfur atoms. It is used to catalyse the reduction of carbon monoxide to acetyl-CoA.[89]

Nickel superoxide dismutase (or Ni-SOD) from Streptomyces contains six nickel atoms. The nickel holding is done by a "nickel binding hook" which as the amino acid pattern H2N-His-Cys-X-X-Pro-Cys-Gly-X-Tyr-rest of protein, where the bold bits are ligands for the nickel atom.[90]

Nickel transporter proteins exist to move nickel atoms in the cell. in E. coli these are termed NikA, NikB, NikC, NikD, NikE. In order to come through a cell membrane a nickel permease protein is used. In Alcaligenes eutrophus the gene for this is hoxN.[91]

Organometallics

Well known nickel organometalic (or organonickel) compounds include Nickelocene, bis(cyclooctadiene)nickel(0) and nickel tetracarbonyl. Nickel[92][93]

Nickel tetracarbonyl was the first discovered organonickel compound. It was discovered that carbon monoxide corroded a nickel reaction chamber valve. And then that the gas coloured a bunsen burner flame green, and then that a nickel mirror condensed from heating the gas. The Mond process was thus inspired to purify nickel.[94] The Nickel tetracarbonyl molecule is tetrahedral, with a bond length for nickel to carbon of 1.82 Å.[94] Nickel tetracarbonyl easily starts breaking apart over 36° forming Ni(CO)3, Ni(CO)2, and Ni.[94] Ni(CO) and NiC appear in mass spectroscopy of nickel carbonyl.[94]

There are several nickel carbonyl cluster anions formed by reduction from nickel carbonyl. These are [Ni2(CO)5]2−, dark red [Ni3(CO)8]2−, [Ni4(CO)9]2−, [Ni5(CO)9]2−, [Ni6(CO)12]2−. Salts such as Cd[Ni4(CO)9] and Li2[Ni3(CO)8]•5acetone can be crystallised.[95]

Mixed cluster carbonyl anions like [Cr2Ni3(CO)16]2−, [Mo2Ni3(CO)16]2− and [W2Ni3(CO)16]2− [Mo<Ni4(CO)14]2− can form salts with bulky cations like tetraethylammonium. The brown [NiCo3(CO)11] changes to red [Ni2Co4(CO)14]2−.[96]

With oxygen or air the explosive Ni(CO)3O2 can be formed from nickel carbonyl.[97]

Yet other ligands can substitute for carbon monoxide in nickel carbonyl. These lewis base ligands include triphenylphosphine, triphenoxyphosphine, trimethoxyphosphine, tributylphosphine, triethoxyphosphine, triethylisonitrolphosphine, triphenylarsine, and triphenylstibine.

Nickel forms dark blue planar complexes with 1,2-Diimino-3,5-cyclohexadiene or bisacetylbisaniline [(C6H5N-C(CH3)=)2]2Ni. Another planar bis compound of nickel is formed with phenylazothioformamide C6H5N=NC(S)NR2, and dithizone C6H5N=NC(S)NHNHC6H5.[98] tetrasulfur tetranitride when reduced with nickel carbonyl makes Ni[N2S2H]2 also coloured dark violet.[98]

One nickellabenzene is known where nickel substitutes for carbon in benzene. At nickel the plane of the molecule is bent, however the connection to the ring has aromatic character.[99]

Alkoxy compounds

Nickel tert-butoxide Ni[OC(CH3)3]2 is coloured violet. It is formed in the reaction of di-tert-butylperoxide with nickel carbonyl.[94]

Nickel dimethoxide is coloured green.[100] There are also nickel chloride methoxides with formulae: NiClOMe, Ni3Cl2(OMe)4 and Ni3Cl(OMe)5 in which Nickel and oxygen appear to form a cubane-type cluster.[101]

Other alkoxy compounds known for nickel include nickel dipropoxide, nickel di-isopropoxide, nickel tert-amyloxide, and nickel di-tert-hexanoxide.[102] These can be formed by crystallising nickel chloride from the corresponding alcohol, which forms an adduct. This is then heated with a base.[103] Nickel(II) alkoxy compounds are polymeric and non-volatile.[104]

Ziegler catalysis uses nickel as a catalyst. In addition it uses diethylaluminum ethoxide, phenylacetylene and triethylaluminium It converts ethylene into 1-butene. It can dimerise propylene. The catalyst, when combined with optically active phosphines, can produce optically active dimers. An intermediate formed is tris(ethylene)nickel.(CH2=CH2)3Ni in which the ethylene molecules connect to the nickel atom side on.[105]

Homoletptic bimetallic alkoxides have two different metals, and the same alkoxy group. They include Ni[(μ−OMe)3AlOMe]2, Ni[Al(OBut)4]2 (nickel tetra-tert-butoxyaluminate) and Ni[Al(OPri)4]2. (nickel tetra-isopropoxyaluminate a pink liquid)[106] Potassium hexaisoproxynoibate and tantalate can react with nickel chloride to make Ni[Nb(OPri)6]2 and Ni[Ta(OPri)6]2. Ni[Zr2(OPri)9]2 The bimetallic alkoxides are volatile and can dissolve in organic solvents.[107] A trimetallic one exists [Zr2(OPri)9]Ni[Al(OPri)4].[108] NiGe(OBut)8], NiSn(OBut)8] and NiPb(OBut)8] are tricyclic. [Ni2(μ3−OEt)2(μ−OEt)8Sb4(OEt)6]

Heteroleptic bitmetallic ethoxides have more than one variety of alkoxy group, e.g. Ni[(μ−OPri)(μ−OBut)Al(OBut)2]2 which is a purple solid.

Oxoalkoxides contain extra oxygen in addition to the alcohol. With only nickel, none are known, but with antimony an octanuclear molecule exists [Ni5Sb3(μ4−O)2(μ3−OEt)3(−OEt)9(OEt)3(EtOH)4].[109]

Aryloxy compounds

There are many nickel compounds with the formula template Ni(OAr)XL2 and Ni(OAr)2L2. L is a ligand with phosphorus or nitrogen atoms. OAr is a phenol group or O- attached to an aromatic ring. Often an extra molecule of the phenol is hydrogen bonded to the oxygen attached to nickel.[110]

μ-bonded molecules

Others include cyclododecatriene nickel.

Sulfur rings

Nickel bis-dithiobenzoate can form a violet coloured sodium salt.[94]

Two bisperfluoromethyl-l,2-dithietene molecules react with nickel carbonyl to make a double ring compound with nickel linked to four sulfur atoms. This contains four trifluoromethyl groups and is dark purple. Instead of this methyl or phenyl can substitute. These can be made by substituted acetylenes with sulfur on nickel carbonyl, or on nickel sulfide. Bis-diphenyldithiene nickel has a planar structure[111]

Nickel chalcogen cluster compound

A hexameric compound [Ni(SR)2]6 is produced in the reaction of nickel carbonyl with dialkyl sulfides (RSR).[111]

Nickel can be part of a cubane-type cluster with iron and chalcogens. The metal atoms are arranged in a tetrahedron shape, with the sulfur or selenium making up another tetrahedron that combines to make a cube. For example, the [NiFe3S4(PPh3)(SEt)3]2− is a dianion that has a tetraethyl ammonium salt. Similar ion clusters are [NiFe3Se4(PPh3)(SEt)3]2− and [NiFe3Se4(SEt)4]3−.[112] In the natural world cube shaped metal sulfur clusters can have sulfur atoms that are part of cysteine.

[Ni4Se23]4− has a cube with NiIV4Se4 at its core, and then the nickel atoms are bridge across the cube faces by five Se3 chains and one Se4 chain. It is formed as a tetraethylammonium salt, from Li2Se, Se, NEt4Cl and nickel dixanthate in dimethylformamide as a solvent. This reaction also produces (NEt4)2Ni(Se4)2.[113]

Nitrosyl compounds

When liquid nickel carbonyl is dissolved in liquid hydrogen chloride, it can react with nitrosyl chloride to form a dimer Ni(NOCl)2. This then decomposes to Ni(NO)Cl2, which is polymeric.[94]

Nickel carbonyl reacting with nitric oxide yields blue coloured mononitrosyl nickel NiNO. With cyclohexane as well, pale blue Ni(NO2)NO is produced with nitrous oxide as a side product. With cyclopentadiene as well, π-C5H5NiNO is produced.[94]

References

  1. ^ a b Barrett, Paul H.; Montano, P. A. (1977). "Proposed iron–nitrogen molecule produced in a solid nitrogen matrix". Journal of the Chemical Society, Faraday Transactions 2. 73 (3): 378–383. doi:10.1039/F29777300378.
  2. ^ a b Lian, Li; Su, C.-X.; Armentrout, P.B. (May 1991). "The bond energy of ". Chemical Physics Letters. 180 (3): 168–172. Bibcode:1991CPL...180..168L. doi:10.1016/0009-2614(91)87135-X.
  3. ^ a b c d e f g h i j k Mellor, J. W. (1946). "Nickel". A COMPREHENSIVE TREATISE ON INORGANIC AND THEORETICAL CHEMISTRY VOLUME XV Ni Ru, Rh Pd, Os, Ir. Retrieved 17 January 2019.
  4. ^ a b c d e Haynes, W. M., ed. (2014). CRC Handbook of Chemistry and Physics (95 ed.). pp. 4–77–4–78. ISBN 9781482208672.
  5. ^ Nicholls p1126-1127
  6. ^ Meyer, R. J. (1974). "Nickel und Polonium". Gmelins Handbuch Der Anorganischen Chemie - Nickel: Teil B — Lieferung 2. Verbindungen bis Nickel-Polonium (in German). Berlin: Springer-Verlag. p. 764. ISBN 9783662133026.
  7. ^ Leineweber, Andreas; Jacobs, Herbert; Hull, Steve (November 2001). "Ordering of Nitrogen in Nickel Nitride Determined by Neutron Diffraction". Inorganic Chemistry. 40 (23): 5818–5822. doi:10.1021/ic0104860.
  8. ^ Robert A. Scott (2011). "Boron: Inorganic Chemistry". Encyclopedia of Inorganic Chemistry. Wiley. p. 401. ISBN 9780470862100.
  9. ^ a b c Muzangwa, L.G.; Ayles, V.L.; Nyambo, S.; Reid, S.A. (September 2011). "Probing the electronic structure of the nickel monohalides: Spectroscopy of the low-lying electronic states of NiBr and NiCl". Journal of Molecular Spectroscopy. 269 (1): 36–40. Bibcode:2011JMoSp.269...36M. doi:10.1016/j.jms.2011.04.012.
  10. ^ Hauffe1, Karl; Puschmann, Herbert (2008). "A26 nickel". Corrosion Handbook. Wiley. doi:10.1002/9783527610433.chb203030.{{cite book}}: CS1 maint: numeric names: authors list (link)
  11. ^ Krishnamurty, V. G. (16 April 1952). "The band spectrum of the diatomic molecule NiBr extending from 3930 to 5000 Å has been obtained in emission using a heavy current discharge". Indian Journal of Physics and Proceedings of the Indian Association for the Cultivation of Science. 26: 429.
  12. ^ Reddy, S Paddi; Rao, P Tiruvenganna (1 February 1960). "The Band Spectra of NiCl and NiBr in the Visible". Proceedings of the Physical Society. 75 (2): 275–279. Bibcode:1960PPS....75..275R. doi:10.1088/0370-1328/75/2/314.
  13. ^ Kant, Arthur (1968). "Mass-Spectrometric Studies of the Gaseous Systems Au-Ni, Au-Co, and Au-Fe, and Dissociation Energies of AuNi, AuCo, and AuFe". Journal of Chemical Physics. 49 (11): 5144. Bibcode:1968JChPh..49.5144K. doi:10.1063/1.1670012.
  14. ^ "Кристаллические структуры соединений Ni". www.kipt.kharkov.ua.
  15. ^ a b Hlukhyy, Viktor; Trots, Dmytro; Fässler, Thomas F. (13 January 2017). "First-Order Phase Transition in BaNi2Ge2 and the Influence of the Valence Electron Count on Distortion of the Structure Type". Inorganic Chemistry. 56 (3): 1173. doi:10.1021/acs.inorgchem.6b02190. PMID 28085271.
  16. ^ a b c d e f Cotton and Wilkinson (1966). Advanced Inorganic Chemistry: A Comprehensive Treatise. John Wiley & Sons. pp. 878–893.
  17. ^ Mellor pp462-465
  18. ^ Mellor p 466-467
  19. ^ O'Brien, James F.; Reynolds, Warren Lind (November 1967). "Nuclear magnetic resonance study of cobalt and nickel tetrafluoroborates". Inorganic Chemistry. 6 (11): 2110–2111. doi:10.1021/ic50057a041.
  20. ^ Ryss, A. I.; Radchenko, I. V. (1966). "X-ray study of aqueous solutions of nickel tetrafluoroborate". Journal of Structural Chemistry. 6 (4): 489–492. doi:10.1007/BF00744813.
  21. ^ Rây, Nirmalendu Nath (20 April 1932). "Fluoberyllate und ihre Analogie mit den Sulfaten. II. Fluoberyllate einiger zweiwertiger Metalle". Zeitschrift für anorganische und allgemeine Chemie. 205 (3): 257–267. doi:10.1002/zaac.19322050307.
  22. ^ Karnezos, M.; Friedberg, S. A. (August 1978). "FERROMAGNETISM IN AND ". Le Journal de Physique Colloques. 39 (C6): C6–814–C6–815. doi:10.1051/jphyscol:19786362. Retrieved 14 May 2016.
  23. ^ a b c d Chacon, Lisa Carine (December 1997). "The Synthesis, Characterization and Reactivity of High Oxidation State Nickel Fluorides" (PDF). Berkeley California: University of California. Retrieved 27 April 2016.
  24. ^ Davidovich, R. L.; Kaidalova, T. A.; Levchishina, T. F. (1971). "X-ray diffraction data for some divalent metal fluorotitanates". Journal of Structural Chemistry. 12 (1): 166–168. doi:10.1007/BF00744565.
  25. ^ Christe, Karl O.; Wilson, William W.; Bougon, Roland A.; Charpin, Pierrette (January 1987). "Preparation and characterization of ". Journal of Fluorine Chemistry. 34 (3–4): 287–298. doi:10.1016/S0022-1139(00)85173-8.
  26. ^ Davidovich, R. L.; Buslaev, Yu. A.; Levchishina, T. F. (March 1968). "Synthesis of some new fluorohafnate complexes". Bulletin of the Academy of Sciences of the USSR Division of Chemical Science. 17 (3): 676–676. doi:10.1007/BF00911649.
  27. ^ Karnezos, M.; Meier, D.; Friedberg, S. A. (9–12 December 1975). "Magnetic ordering in ". AIP Conference Proceedings. 29: 505. Bibcode:1976AIPC...29..505K. doi:10.1063/1.30416.
  28. ^ Weinland, R. F.; Schlegelmilch, Fr. (7 March 1902). "Über Doppelsalze des Jodtrichlorids mit Chloriden zweiwertiger Metalle". Zeitschrift für anorganische Chemie. 30 (1): 134–143. doi:10.1002/zaac.19020300109.
  29. ^ Hibble, Simon J.; Chippindale, Ann M.; Pohl, Alexander H.; Hannon, Alex C. (17 September 2007). "Surprises from a Simple Material—The Structure and Properties of Nickel Cyanide". Angewandte Chemie International Edition. 46 (37): 7116–7118. doi:10.1002/anie.200701246.
  30. ^ Sood, R. K.; Nya, A. E.; Etim, E. S. (December 1981). "Thermal decomposition of nickel azide". Journal of Thermal Analysis. 22 (2): 231–237. doi:10.1007/BF01915269.
  31. ^ Abu-Eittah, R.; Elmakabaty, S. (1973). "Spectra of Nickel(II)-Azide Complexes in Organic Solvents". Bulletin of the Chemical Society of Japan. 46 (11): 3427–3431. doi:10.1246/bcsj.46.3427.
  32. ^ IROM, I I (1 January 2001). "Photolysis of nickel hydroxy azide". Global Journal of Pure and Applied Sciences. 7 (1): 73–80. doi:10.4314/gjpas.v7i1.16208.
  33. ^ Tenten, A.; Jacobs, H. (June 1991). "Isolierte -Einheiten in Nickel(II)-Amid". Journal of the Less Common Metals. 170 (1): 145–159. doi:10.1016/0022-5088(91)90060-H.
  34. ^ Lappert, Michael (2009). Metal amide chemistry. Chichester, U.K.: Wiley. pp. 172–173. ISBN 9780470721841.
  35. ^ Downie, T. C.; Harrison, W.; Raper, E. S.; Hepworth, M. A. (15 March 1971). "A three-dimensional study of the crystal structure of nickel acetate tetrahydrate". Acta Crystallographica Section B. 27 (3): 706–712. doi:10.1107/S0567740871002802.
  36. ^ FOX, P (January 1971). "The development of internal structure during thermal decomposition: Nickel formate dihydrate". Journal of Catalysis. 20 (1): 67–73. doi:10.1016/0021-9517(71)90007-8.
  37. ^ a b Krogmann, Klaus; Mattes, Rainer (January 1963). "Die Kristallstruktur von Nickelformiat, ". Zeitschrift für Kristallographie - Crystalline Materials (in German). 118 (1–6). doi:10.1524/zkri.1963.118.16.291.
  38. ^ Magyarosy, A.; Laidlaw, R.; Kilaas, R.; Echer, C.; Clark, D.; Keasling, J. (1 July 2002). "Nickel accumulation and nickel oxalate precipitation by Aspergillus niger". Applied Microbiology and Biotechnology. 59 (2–3): 382–388. doi:10.1007/s00253-002-1020-x.
  39. ^ Vaidya, Sonalika; Rastogi, Pankaj; Agarwal, Suman; Gupta, Santosh K.; Ahmad, Tokeer; Antonelli, Anthony M.; Ramanujachary, K. V.; Lofland, S. E.; Ganguli, Ashok K. (August 2008). "Nanospheres, Nanocubes, and Nanorods of Nickel Oxalate: Control of Shape and Size by Surfactant and Solvent". Journal of Physical Chemistry C. 112 (33): 12610–12615. doi:10.1021/jp803575h.
  40. ^ Zhan, Dan; Cong, Changjie; Diakite, Kahirou; Tao, Youtian; Zhang, Keli (June 2005). "Kinetics of thermal decomposition of nickel oxalate dihydrate in air". Thermochimica Acta. 430 (1–2): 101–105. doi:10.1016/j.tca.2005.01.029.
  41. ^ Soyenkoff, Basil (January 1929). "Benzene Dispersions of Basic Soaps of Nickel and Iron". Journal of Physical Chemistry. 34 (11): 2519–2538. doi:10.1021/j150317a006.
  42. ^ Mohamed, Mohamed A; Galwey, Andrew K; Halawy, Samih A (December 1998). "Kinetic and thermodynamic studies of the non-isothermal decompositions of nickel malonate dihydrate and nickel hydrogen malonate dihydrate". Thermochimica Acta. 323 (1–2): 27–36. doi:10.1016/S0040-6031(98)00492-4.
  43. ^ Xiao, Xunwen; Xu, Wei; Li, Yan; Zhang, Bin; Zhu, Daoben (12 December 2003). "Dipotassium diaquabis(malonato-κ2O,O')nickelate(II) dihydrate". Acta Crystallographica Section E. 60 (1): m48–m49. doi:10.1107/S1600536803027508.
  44. ^ McGinn, M. J.; Wheeler, B. R.; Galwey, A. K. (1971). "Thermal decomposition of nickel maleate". Transactions of the Faraday Society. 67: 1480. doi:10.1039/TF9716701480.
  45. ^ McGinn, M. J.; Wheeler, B. R.; Galwey, A. K. (1970). "Thermal decomposition of nickel fumarate". Transactions of the Faraday Society. 66: 1809. doi:10.1039/TF9706601809.
  46. ^ Guillou, Nathalie; Livage, Carine; Férey, Gérard (December 2006). "Cobalt and Nickel Oxide Architectures in Metal Carboxylate Frameworks: From Coordination Polymers to 3D Inorganic Skeletons". European Journal of Inorganic Chemistry. 2006 (24): 4963–4978. doi:10.1002/ejic.200600663.
  47. ^ Lee, Julian; Reeves, Roger D.; Brooks, Robert R.; Jaffré, Tanguy (January 1978). "The relation between nickel and citric acid in some nickel-accumulating plants". Phytochemistry. 17 (6): 1033–1035. doi:10.1016/S0031-9422(00)94274-2.
  48. ^ Rode, Sabine; Henninot, Christophe; Matlosz, Michael (2005). "Complexation Chemistry in Nickel and Copper-Nickel Alloy Plating from Citrate Baths". Journal of the Electrochemical Society. 152 (4): C248. doi:10.1149/1.1869980.
  49. ^ Shen, Xiangqian; Jing, Maoxiang; Wang, Taoping; Cao, Kai (June 2006). "Preparation of Superfine Ni and Fe Fibers by the Organic Gel-Thermal Reduction Method". Rare Metal Materials and Engineering.
  50. ^ a b Wang, Lian-Ying; Wu, Guo-Qing; Evans, David G. (July 2007). "Synthesis and characterization of a layered double hydroxide containing an intercalated nickel(II) citrate complex". Materials Chemistry and Physics. 104 (1): 133–140. doi:10.1016/j.matchemphys.2007.02.098.
  51. ^ Gajbhiye, N.S.; Prasad, Seema (August 1996). "Thermal decomposition of hexahydrated nickel iron citrate". Thermochimica Acta. 285 (2): 325–336. doi:10.1016/0040-6031(96)02906-1.
  52. ^ Masłowska, J. (September 1984). "Thermal decomposition and thermofracto-chromatographic studies of metal citrates". Journal of Thermal Analysis. 29 (5): 895–904. doi:10.1007/BF02188835.
  53. ^ a b Guillou, Nathalie; Livage, Carine; Drillon, Marc; Férey, Gérard (10 November 2003). "The Chirality, Porosity, and Ferromagnetism of a 3D Nickel Glutarate with Intersecting 20-Membered Ring Channels". Angewandte Chemie International Edition. 42 (43): 5314–5317. doi:10.1002/anie.200352520.
  54. ^ a b c Forster, Paul M; Yang, Zuag; Cheetham, Anthony K (April 2003). "Open framework metal monocarboxylates: nickel cyclopropionates containing 16- and 18-membered rings". Solid State Sciences. 5 (4): 635–642. Bibcode:2003SSSci...5..635F. doi:10.1016/S1293-2558(03)00055-4.
  55. ^ a b c Tokareva, A. O.; Tereshchenko, D. S.; Boltalin, A. I.; Troyanov, S. I. (September 2006). "Acid Co(II) and Ni(II) trifluoroacetate complexes: Synthesis and crystal structure". Russian Journal of Coordination Chemistry. 32 (9): 663–668. doi:10.1134/S1070328406090077.
  56. ^ SALOOJA, K. C. (March 1972). "Burner Fuel Additives*". Combustion Science and Technology. 5 (1): 243–249. doi:10.1080/00102207208952528.
  57. ^ Galwey, A. K. (1965). "1152. The thermal decomposition of nickel benzoate and of the nickel salt of cyclohexanecarboxylic acid". Journal of the Chemical Society: 6188. doi:10.1039/JR9650006188.
  58. ^ a b Vráblová, Anna; Falvello, Larry R.; Campo, Javier; Miklovič, Jozef; Boča, Roman; Černák, Juraj; Tomás, Milagros (February 2016). "Preparation, First Structure Analysis, and Magnetism of the Long-Known Nickel Benzoate Trihydrate - A Linear Ni···Ni···Ni Polymer and Its Parallels with the Active Site of Urease". European Journal of Inorganic Chemistry. 2016 (6): 928–934. doi:10.1002/ejic.201501255.
  59. ^ a b c Sherif, Fawzy G. (1 September 1970). "Heavy Metal Terephthalates". Industrial & Engineering Chemistry Product Research and Development. 9 (3): 408–412. doi:10.1021/i360035a026.
  60. ^ a b Baker, Edward N.; Baker, Heather M.; Anderson, Bryan F.; Reeves, Roger D. (January 1983). "Chelation of nickel(II) by citrate. The crystal structure of a nickel–citrate complex, ". Inorganica Chimica Acta. 78: 281–285. doi:10.1016/S0020-1693(00)86530-5.
  61. ^ Yao, Hua-Gang; Huang, Jia-Na; Deng, Run-Kang; Yao, Zhi-Bang (17 August 2013). "Dipotassium tetraaquabis(μ-citrato-κ : ′, ′′, ′′′)nickelate(II) tetrahydrate". Acta Crystallographica Section E. 69 (9): m502–m503. doi:10.1107/S1600536813022630. PMC 3884440.
  62. ^ Strouse, Jane; Layten, Steven W.; Strouse, Charles E. (January 1977). "Structural studies of transition metal complexes of triionized and tetraionized citrate. Models for the coordination of the citrate ion to transition metal ions in solution and at the active site of aconitase". Journal of the American Chemical Society. 99 (2): 562–572. doi:10.1021/ja00444a041.
  63. ^ a b c d Zhou, Zhao-Hui; Lin, Yi-Ji; Zhang, Hong-Bin; Lin, Guo-Dong; Tsai, Khi-Rui (5 October 2006). "SYNTHESES, STRUCTURES AND SPECTROSCOPIC PROPERTIES OF NICKEL(II) CITRATO COMPLEXES, AND ". Journal of Coordination Chemistry. 42 (1–2): 131–141. doi:10.1080/00958979708045286.
  64. ^ Deng, Yuan-Fu; Zhang, Hua-Lin; Hong, Qi-Ming; Weng, Wei-Zheng; Wan, Hui-Lin; Zhou, Zhao-Hui (November 2007). "Titanium-based mixed oxides from a series of titanium(IV) citrate complexes". Journal of Solid State Chemistry. 180 (11): 3152–3159. Bibcode:2007JSSCh.180.3152D. doi:10.1016/j.jssc.2007.08.033.
  65. ^ Bullen, G. J.; Mason, R.; Pauling, Peter (April 1965). "The Crystal and Molecular Structure of Bis(acetylacetonato)nickel (II)". Inorganic Chemistry. 4 (4): 456–462. doi:10.1021/ic50026a005.
  66. ^ Habenschuss, Michael (1974). "An x-ray, spectroscopic, and magnetic study of the structure of nickel squarate dihydrate, ". Journal of Chemical Physics. 61 (3): 852. Bibcode:1974JChPh..61..852H. doi:10.1063/1.1682025.
  67. ^ Brach, I.; Rozière, J.; Anselment, B.; Peters, K. (15 March 1987). "An X-ray structure determination of cobalt and nickel squarate octahydrate, (M=Ni,Co)". Acta Crystallographica Section C. 43 (3): 458–460. doi:10.1107/S0108270187095386.
  68. ^ West, Robert.; Niu, Hsien Ying. (September 1963). "New Aromatic Anions. VI. Complexes of Croconate Ion with Some Divalent and Trivalent Metals". Journal of the American Chemical Society. 85 (17): 2586–2588. doi:10.1021/ja00900a013.
  69. ^ Chen, Hong-Yu; Fang, Qi; Xue, Gang; Yu, Wen-Tao (19 November 2005). "Polydi-μ2-aqua-di-μ5-croconato(2–)-nickel(II)dipotassium(I) tetrahydrate". Acta Crystallographica Section C. 61 (12): m535–m537. doi:10.1107/S0108270105036322.
  70. ^ Adiwidjaja, G.; Küppers, H. (15 May 1976). "Nickel dihydrogen diphthalate hexahydrate". Acta Crystallographica Section B. 32 (5): 1571–1574. doi:10.1107/S0567740876005840.
  71. ^ Wang, Xia; Xinxin Zhuang; Genbo Su; Youping He (2008). "A new ultraviolet filter: (RNSH) single crystal" (PDF). Optical Materials. 31 (2): 233–236. Bibcode:2008OptMa..31..233W. doi:10.1016/j.optmat.2008.03.020. ISSN 0925-3467.
  72. ^ "Nickelboussingaultite: Nickelboussingaultite mineral information and data". www.mindat.org. Retrieved 3 May 2016.
  73. ^ "Nickelblödite: Nickelblödite mineral information and data". www.mindat.org. Retrieved 4 May 2016.
  74. ^ Montgomery, H. (15 September 1980). "Diammonium nickel bis(tetrafluoroberyllate)hexahydrate". Acta Crystallographica Section B. 36 (9): 2121–2123. doi:10.1107/S0567740880008060.
  75. ^ Rây, Nirmalendunath (18 April 1936). "Fluoberyllate und ihre Analogie mit Sulfaten. IV. Doppelsalze mit Rubidium- und Cäsiumfluoberyllaten". Zeitschrift für anorganische und allgemeine Chemie (in German). 227 (1): 32–36. doi:10.1002/zaac.19362270105.
  76. ^ Bose, A.; Mitra, S. C.; Datta, S. K. (11 November 1958). "The Behaviour of the Paramagnetic Ions in the Single Crystals of Some Similarly Constituted Salts of the Iron Group of Elements. II. Hydrated NiFormula Salts". Proceedings of the Royal Society A. 248 (1253): 153–168. Bibcode:1958RSPSA.248..153B. doi:10.1098/rspa.1958.0236.
  77. ^ "Nickelzippeite: Nickelzippeite mineral information and data". www.mindat.org. Retrieved 10 May 2016.
  78. ^ Reilly, James J.; Wiswall, Richard H. (November 1968). "Reaction of hydrogen with alloys of magnesium and nickel and the formation of ". Inorganic Chemistry. 7 (11): 2254–2256. doi:10.1021/ic50069a016.
  79. ^ Bhattacharya, Santanu; Saha, Basudeb; Dutta, Amitava; Banerjee, Pradyot (March 1998). "Electron transfer reactions of nickel(III) and nickel(IV) complexes". Coordination Chemistry Reviews. 170 (1): 47–74. doi:10.1016/S0010-8545(98)00065-4.
  80. ^ Roy, Ajoy; Chaudhury, Muktimoy (September 1983). "A New Series of Heptamolybdonickelate(IV) and Manganate(IV). Investigation of the Unusual Magnetic and Electronic Spectral Behavior of the Nickel(IV) Compound". Bulletin of the Chemical Society of Japan. 56 (9): 2827–2830. doi:10.1246/bcsj.56.2827.
  81. ^ George B. Kauffman; Russell Fuller; James Felser; Charles M. Flynn, Jr.; Michael T. Pope (1974). Parshall, George W. (ed.). "13‐Vanadomanganate(IV) and Nickelate(IV)". Inorganic Syntheses. 15: 103–110. doi:10.1002/9780470132463.ch24. ISBN 0070485216.
  82. ^ Flynn, Charles M.; Stucky, Galen D. (February 1969). "Heteropolyniobate complexes of manganese(IV) and nickel(IV)". Inorganic Chemistry. 8 (2): 332–334. doi:10.1021/ic50072a029.
  83. ^ Son, Jung-Ho; Ohlin, C. André; Casey, William H. (2013). "Highly soluble iron- and nickel-substituted decaniobates with tetramethylammonium countercations". Dalton Transactions. 42 (21): 7529. doi:10.1039/C3DT50887K. PMID 23588819.
  84. ^ Liang, Zhijie; Zhang, Dongdi; Wang, Haiying; Ma, Pengtao; Yang, Zongfei; Niu, Jingyang; Wang, Jingping (2016). "The aggregate: a perspective on isopolyniobates as ligands". Dalton Trans. 45 (41): 16173–16176. doi:10.1039/C6DT02575G. PMID 27711767.
  85. ^ Guo, Weiwei; Lv, Hongjin; Bacsa, John; Gao, Yuanzhe; Lee, Je Seong; Hill, Craig L. (19 January 2016). "Syntheses, Structural Characterization, and Catalytic Properties of Di- and Trinickel Polyoxometalates". Inorganic Chemistry. 55 (2): 461–466. doi:10.1021/acs.inorgchem.5b01935.
  86. ^ Shoshani, Manar M.; Beck, Robert; Wang, Xiaoping; McLaughlin, Matthew J.; Johnson, Samuel A. (15 November 2017). "Synthesis of Surface-Analogue Square-Planar Tetranuclear Nickel Hydride Clusters and Bonding to μ4-NR, -O and -BH Ligands". Inorganic Chemistry. 57 (5): 2438–2446. doi:10.1021/acs.inorgchem.7b02546.
  87. ^ Greening, C.; Berney, M.; Hards, K.; Cook, G. M.; Conrad, R. (3 March 2014). "A soil actinobacterium scavenges atmospheric using two membrane-associated, oxygen-dependent [NiFe] hydrogenases". Proceedings of the National Academy of Sciences. 111 (11): 4257–4261. Bibcode:2014PNAS..111.4257G. doi:10.1073/pnas.1320586111.
  88. ^ Karplus PA, Pearson MA, Hausinger RP (1997). "70 years of crystalline urease: What have we learned?". Accounts of Chemical Research. 30 (8): 330–337. doi:10.1021/ar960022j.
  89. ^ EVANS, D (August 2005). "Chemistry relating to the nickel enzymes CODH and ACS". Coordination Chemistry Reviews. 249 (15–16): 1582–1595. doi:10.1016/j.ccr.2004.09.012.
  90. ^ Wuerges, J.; Lee, J.-W.; Yim, Y.-I.; Yim, H.-S.; Kang, S.-O.; Carugo, K. D. (1 June 2004). "Crystal structure of nickel-containing superoxide dismutase reveals another type of active site". Proceedings of the National Academy of Sciences. 101 (23): 8569–8574. Bibcode:2004PNAS..101.8569W. doi:10.1073/pnas.0308514101.
  91. ^ Cammack, Richard; Vliet, Pieter (1999). "Catalysis by Nickel in Biological Systems". In Reedijk, Jan; Bouwman, Elisabeth (eds.). Bioinorganic Catalysis (2 ed.). New York: Marcel Dekker. p. 233. ISBN 0-8247-0241-7.
  92. ^ Cite error: The named reference Jolly was invoked but never defined (see the help page).
  93. ^ Jolly, P. W.; Wilke, G. (1975). The organic chemistry of nickel. Vol. 2. New York: Academic Press. ISBN 0-12-388402-0.
  94. ^ a b c d e f g h Jolly, P. W.; Wilke, G. (1974). The organic chemistry of nickel. Vol. 1. New York: Academic Press. pp. 1–9. ISBN 0-12-388401-2.
  95. ^ Jolly, P. W.; Wilke, G. (1974). The organic chemistry of nickel. Vol. 1. New York: Academic Press. pp. 20–22. ISBN 0-12-388401-2.
  96. ^ Jolly, P. W.; Wilke, G. (1974). The organic chemistry of nickel. Vol. 1. New York: Academic Press. pp. 23–24. ISBN 0-12-388401-2.
  97. ^ Jolly, P. W.; Wilke, G. (1974). The organic chemistry of nickel. Vol. 1. New York: Academic Press. p. 16. ISBN 0-12-388401-2.
  98. ^ a b Jolly, P. W.; Wilke, G. (1974). The organic chemistry of nickel. Vol. 1. New York: Academic Press. p. 19. ISBN 0-12-388401-2.
  99. ^ Wright, L. James (2017). Metallabenzenes: An Expert View. John Wiley & Sons. p. 97. ISBN 9781119068099.
  100. ^ Bradley], D.C. (2001). Alkoxo and aryloxo derivatives of metals. San Diego: Academic Press. p. 97. ISBN 0-12-124140-8.
  101. ^ Bradley, Don C.; Mehrotra, R. C.; Rothwell, Ian; Sin, A. (2001). Alkoxo and aryloxo derivatives of metals. San Diego: Academic Press. p. 100. ISBN 978-0-12-124140-7.
  102. ^ Bradley, Don C.; Mehrotra, R. C.; Rothwell, Ian; Sin, A. (2001). Alkoxo and aryloxo derivatives of metals. San Diego: Academic Press. p. 11. ISBN 978-0-12-124140-7.
  103. ^ Bradley, Don C.; Mehrotra, R. C.; Rothwell, Ian; Sin, A. (2001). Alkoxo and aryloxo derivatives of metals. San Diego: Academic Press. p. 19. ISBN 978-0-12-124140-7.
  104. ^ Bradley, Don C.; Mehrotra, R. C.; Rothwell, Ian; Sin, A. (2001). Alkoxo and aryloxo derivatives of metals. San Diego: Academic Press. p. 68. ISBN 978-0-12-124140-7.
  105. ^ Jolly, P. W.; Wilke, G. (1975). The organic chemistry of nickel. Vol. 2. New York: Academic Press. p. 3. ISBN 0-12-388402-0.
  106. ^ Bradley, Don C.; Mehrotra, R. C.; Rothwell, Ian; Sin, A. (2001). Alkoxo and aryloxo derivatives of metals. San Diego: Academic Press. p. 208. ISBN 978-0-12-124140-7.
  107. ^ Bradley, Don C.; Mehrotra, R. C.; Rothwell, Ian; Sin, A. (2001). Alkoxo and aryloxo derivatives of metals. San Diego: Academic Press. pp. 185–192. ISBN 978-0-12-124140-7.
  108. ^ Bradley, Don C.; Mehrotra, R. C.; Rothwell, Ian; Sin, A. (2001). Alkoxo and aryloxo derivatives of metals. San Diego: Academic Press. pp. 215–216. ISBN 978-0-12-124140-7.
  109. ^ Bradley, Don C.; Mehrotra, R. C.; Rothwell, Ian; Sin, A. (2001). Alkoxo and aryloxo derivatives of metals. San Diego: Academic Press. pp. 432–433. ISBN 978-0-12-124140-7.
  110. ^ Bradley, Don C.; Mehrotra, R. C.; Rothwell, Ian; Sin, A. (2001). Alkoxo and aryloxo derivatives of metals. San Diego: Academic Press. pp. 619–621. ISBN 978-0-12-124140-7.
  111. ^ a b Jolly, P. W.; Wilke, G. (1974). The organic chemistry of nickel. Vol. 1. New York: Academic Press. pp. 18–19. ISBN 0-12-388401-2.
  112. ^ Ciurli, Stefano; Ross, Paul K.; Scott, Michael J.; Yu, Shi Bao; Holm, R. H. (June 1992). "Synthetic nickel-containing heterometal cubane-type clusters with cores (Q=sulfur, selenium)". Journal of the American Chemical Society. 114 (13): 5415–5423. doi:10.1021/ja00039a063.
  113. ^ McConnachie, Jonathan M.; Ansari, Mohammad A.; Ibers, James A. (August 1991). "Synthesis and characterization of nickel chalcogenide - anion, a Ni(IV) cubane species". Journal of the American Chemical Society. 113 (18): 7078–7079. doi:10.1021/ja00018a079.

Sources