Jump to content

Electromagnetic radiation and health: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Reverted 1 edit by 72.46.145.34 (talk) to last revision by Pancho507
No edit summary
Tag: Reverted
Line 3: Line 3:
{{Use dmy dates|date=July 2019}}
{{Use dmy dates|date=July 2019}}


Electromagnetic [[radiation]] can be classified into two types: [[ionizing radiation]] and [[non-ionizing radiation]], based on the capability of a single [[photon]] with more than 10&nbsp;[[electronvolt|eV]] energy to ionize atoms or break [[chemical bond]]s.<ref>{{cite book | first1=Robert F. | last1=Cleveland Jr | first2=Jerry L. | last2=Ulcek | name-list-style = vanc | title=Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields | publisher=OET (Office of Engineering and Technology) Federal Communications Commission | location=Washington, D.C. | edition=4th | date=August 1999 | url=https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet56/oet56e4.pdf | access-date=2019-01-29 }}</ref> [[Extreme ultraviolet]] and higher frequencies, such as [[X-ray]]s or [[gamma ray]]s are ionizing, and these pose their own special hazards: see ''[[radiation poisoning]]''.
Electromagnetic [[radiation]] can bpoopPoopPoopPoope classified into two types: [[ionizing radiation]] and [[non-ionizing radiation]], based on the capability of a single [[photon]] with more than 10&nbsp;[[electronvolt|eV]] energy to ionize atoms or break [[chemical bond]]s.<ref>{{cite book | first1=Robert F. | last1=Cleveland Jr | first2=Jerry L. | last2=Ulcek | name-list-style = vanc | title=Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields | publisher=OET (Office of Engineering and Technology) Federal Communications Commission | location=Washington, D.C. | edition=4th | date=August 1999 | url=https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet56/oet56e4.pdf | access-date=2019-01-29 }}</ref> [[Extreme ultraviolet]] and higher frequencies, suchPoopPoop as [[X-ray]]s or [[gamma ray]]s are ionizing, and these pose their own special hazards: see ''[[radiation poisoning]]''.


The most common health hazard of radiation is [[sunburn]], which causes between approximately 100,000 and 1 million new skin cancers annually in the United States.<ref>{{cite journal | vauthors = Siegel RL, Miller KD, Jemal A | title = Cancer statistics, 2020 | journal = Ca | volume = 70 | issue = 1 | pages = 7–30 | date = January 2020 | pmid = 31912902 | doi = 10.3322/caac.21590 | doi-access = free }}</ref><ref name="Cleaver" />
The most common health hazard of radiation is [[sunburn]], which causes Poops between approximately 100,000 and 1 million new skin Poops annually in the United States.<ref>{{cite journal | vauthors = Siegel RL, Miller KD, Jemal A | title = Cancer statistics, 2020 | journal = Ca | volume = 70 | issue = 1 | pages = 7–30 | date = January 2020 | pmid = 31912902 | doi = 10.3322/caac.21590 | doi-access = free }}</ref><ref name="Cleaver" />


Claims of harm from low levels of non-ionizing radiation (sometimes described as "electrosmog") are [[electromagnetic hypersensitivity|unsupported by science]].
Claims of harm from low levels of non-ionizing radiation (sometimes described as "electrosmog") are [[electromagnetic hypersensitivity|unsupported by science]].
Line 106: Line 106:
{{refbegin}}
{{refbegin}}
* {{cite book | author=U.S. Congress, Office of Technology Assessment | url=http://www.princeton.edu/~ota/disk1/1989/8905/8905.PDF | title=Biological Effects of Power Frequency Electric & Magnetic Fields—Background Paper, OTA-BP-E-53 | location=Washington, DC | publisher=U.S. Government Printing Office | date=May 1989 }} (over 100 pages)
* {{cite book | author=U.S. Congress, Office of Technology Assessment | url=http://www.princeton.edu/~ota/disk1/1989/8905/8905.PDF | title=Biological Effects of Power Frequency Electric & Magnetic Fields—Background Paper, OTA-BP-E-53 | location=Washington, DC | publisher=U.S. Government Printing Office | date=May 1989 }} (over 100 pages)
zzzz{{refend}}
* {{cite journal | vauthors = Li DK, Chen H, Ferber JR, Odouli R, Quesenberry C | title = Exposure to Magnetic Field Non-Ionizing Radiation and the Risk of Miscarriage: A Prospective Cohort Study | journal = Scientific Reports | volume = 7 | issue = 1 | pages = 17541 | date = December 2017 | pmid = 29235463 | pmc = 5727515 | doi = 10.1038/s41598-017-16623-8 | bibcode = 2017NatSR...717541L }}

{{refend}}
== External links ==
* [https://www.who.int/peh-emf/en/ Information page] on electromagnetic fields at the [[World Health Organization]] web site
* [https://www.cdc.gov/niosh/topics/emf/ CDC – Electric and Magnetic Fields – NIOSH Workplace Safety and Health Topic]
* {{Skeptoid|id=4072|number=72|title=Electromagnetic Hypersensitivity: Real or Imagined?|date=30 October 2007}}

{{Radiation}}

{{DEFAULTSORT:Electromagnetic Radiation And Health}}
[[Category:Environmental controversies]]
[[Category:Medical physics]]
[[Category:Radiation health effects]]
[[Category:Radiobiology]]
[[Category:Health effects by subject]]
{{Short description|aspect of public health}}
{{about|the health effects of non-ionizing radiation|the negative health effects of ionizing radiation|radiation poisoning}}
{{Use dmy dates|date=July 2019}}

Electromagnetic [[radiation]] can bpoopPoopPoopPoope classified into two types: [[ionizing radiation]] and [[non-ionizing radiation]], based on the capability of a single [[photon]] with more than 10&nbsp;[[electronvolt|eV]] energy to ionize atoms or break [[chemical bond]]s.<ref>{{cite book | first1=Robert F. | last1=Cleveland Jr | first2=Jerry L. | last2=Ulcek | name-list-style = vanc | title=Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields | publisher=OET (Office of Engineering and Technology) Federal Communications Commission | location=Washington, D.C. | edition=4th | date=August 1999 | url=https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet56/oet56e4.pdf | access-date=2019-01-29 }}</ref> [[Extreme ultraviolet]] and higher frequencies, suchPoopPoop as [[X-ray]]s or [[gamma ray]]s are ionizing, and these pose their own special hazards: see ''[[radiation poisoning]]''.

The most common health hazard of radiation is [[sunburn]], which causes Poops between approximately 100,000 and 1 million new skin Poops annually in the United States.<ref>{{cite journal | vauthors = Siegel RL, Miller KD, Jemal A | title = Cancer statistics, 2020 | journal = Ca | volume = 70 | issue = 1 | pages = 7–30 | date = January 2020 | pmid = 31912902 | doi = 10.3322/caac.21590 | doi-access = free }}</ref><ref name="Cleaver" />

Claims of harm from low levels of non-ionizing radiation (sometimes described as "electrosmog") are [[electromagnetic hypersensitivity|unsupported by science]].

==Hazards==
[[Dielectric heating]] from electromagnetic fields can create a biological hazard. For example, touching or standing around an [[antenna (electronics)|antenna]] while a high-power [[transmitter]] is in operation can cause burns (the mechanism is the same as that used in a [[microwave oven]]).<ref>{{cite book | title=Biological and Medical Aspects of Electromagnetic Fields | editor1-first=Frank S. | editor1-last=Barnes | editor2-first=Ben | editor2-last=Greenebaum | name-list-style = vanc | edition=3 | publisher=CRC Press | year=2018 | isbn=978-1420009460 | page=378 | url=https://books.google.com/books?id=B-bKBQAAQBAJ&pg=PT378 }}</ref>

The heating effect varies with the power and the [[frequency]] of the electromagnetic energy, as well as the [[inverse square]] of distance to the source. The eyes and testes are particularly susceptible to radio frequency heating due to the paucity of blood flow in these areas that could otherwise dissipate the heat buildup.<ref name=OET56>{{cite web | title=Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields | first1=Robert F. | last1=Cleveland Jr | first2=Jerry L. | last2=Ulcek | name-list-style = vanc | publisher=Office of Engineering and Technology, Federal Communications Commission | work=OET Bulletin 56 | edition=Fourth | date=August 1999 | page=7 | url=https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet56/oet56e4.pdf | access-date=2019-02-02 }}</ref>

Radio frequency (RF) energy at power density levels of 1–10&nbsp;mW/cm<sup>2</sup> or higher can cause measurable heating of tissues. Typical RF energy levels encountered by the general public are well below the level needed to cause significant heating, but certain workplace environments near high power RF sources may exceed safe exposure limits.<ref name=OET56/> A measure of the heating effect is the [[specific absorption rate]] or SAR, which has units of watts per kilogram (W/kg). The [[IEEE]]<ref>{{cite journal | title = Standard for Safety Level with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3KHz to 300GHz | journal = IEEE STD | volume = C95.1-2005<!--Should this be appended here?:" - IEEE"--> | publisher = IEEE | date = October 2005 | url = https://standards.ieee.org/findstds/standard/C95.1-2005.html}}</ref> and many national governments have established safety limits for exposure to various frequencies of electromagnetic energy based on [[Specific absorption rate|SAR]], mainly based on [http://www.icnirp.de ICNIRP] Guidelines,<ref>{{cite journal | author = International Commission on Non-Ionizing Radiation Protection | title = Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection | journal = Health Physics | volume = 74 | issue = 4 | pages = 494–522 | date = April 1998 | pmid = 9525427 | url = http://www.icnirp.de/documents/emfgdl.pdf | url-status = dead | archive-url = https://web.archive.org/web/20081113052702/http://www.icnirp.de/documents/emfgdl.pdf | archive-date = 2008-11-13 }}</ref> which guard against thermal damage.

=== Low-level exposure ===
The World Health Organization began a research effort in 1996 to study the health effects from the ever-increasing exposure of people to a diverse range of EMR sources. After 30 years of extensive study, science has yet to establish a health risk from exposure to low-level fields.

Epidemiological studies look for statistical correlations between EM exposure in the field and specific health effects. As of 2019, much of the current work is focused on the study of EM fields in relation to cancer.<ref>{{cite web | title=What are electromagnetic fields? – Summary of health effects | website=World Health Organization | url=https://www.who.int/peh-emf/about/WhatisEMF/en/index1.html | access-date=2019-02-07 }}</ref> There are publications which support the existence of complex biological and neurological effects of weaker ''non-thermal'' electromagnetic fields (see [[Bioelectromagnetics]]), including weak [[Extremely low frequency|ELF]] electromagnetic fields<ref>{{cite journal | vauthors = Delgado JM, Leal J, Monteagudo JL, Gracia MG | title = Embryological changes induced by weak, extremely low frequency electromagnetic fields | journal = Journal of Anatomy | volume = 134 | issue = Pt 3 | pages = 533–551 | date = May 1982 | pmid = 7107514 | pmc = 1167891 }}</ref><ref>{{cite journal | vauthors = Harland JD, Liburdy RP | title = Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line | journal = Bioelectromagnetics | volume = 18 | issue = 8 | pages = 555–562 | year = 1997 | pmid = 9383244 | doi = 10.1002/(SICI)1521-186X(1997)18:8<555::AID-BEM4>3.0.CO;2-1 | url = https://zenodo.org/record/1235522 }}</ref> and modulated [[Radio frequency|RF]] and [[microwave]] fields.<ref name="Aalto S, Haarala C, Brück A, Sipilä H, Hämäläinen H, Rinne JO 2006 885–90">{{cite journal | vauthors = Aalto S, Haarala C, Brück A, Sipilä H, Hämäläinen H, Rinne JO | title = Mobile phone affects cerebral blood flow in humans | journal = Journal of Cerebral Blood Flow and Metabolism | volume = 26 | issue = 7 | pages = 885–890 | date = July 2006 | pmid = 16495939 | doi = 10.1038/sj.jcbfm.9600279 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Pall ML | title = Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression | journal = Journal of Chemical Neuroanatomy | volume = 75 | issue = Pt B | pages = 43–51 | date = September 2016 | pmid = 26300312 | doi = 10.1016/j.jchemneu.2015.08.001 | doi-access = free }}</ref>

==Effects by frequency==
[[File:For Your Own Health (13942406865) (2).jpg|thumb|right|upright|Warning sign next to a transmitter with high field strengths]]

While the most acute exposures to harmful levels of electromagnetic radiation are immediately realized as burns, the health effects due to chronic or occupational exposure may not manifest effects for months or years.<ref name=Fry_et_al2004/><ref name=SLiney1994/><ref name=Cleaver/><ref name=UVAware/>

===Extremely-low frequency===
Electric and magnetic fields occur where electricity is generated or distributed in power lines, cables, or electrical appliances. Human responses depend on the field strength, ambient environmental conditions, and individual sensitivity. 7% of volunteers exposed to power-frequency electric fields of high-power, [[extremely low frequency|extremely-low-frequency]] RF with electric field levels in the low kV/m range reported painful currents that flowed to ground through a body contact surface such as the feet, or arced to ground where the body was well insulated.<ref>[https://www.who.int/peh-emf/publications/elf_ehc/en/index.html Extremely Low Frequency Fields Environmental Health Criteria Monograph No.238], chapter 5, page 121, WHO</ref>

The International Agency for Research on Cancer (IARC) finds "inadequate evidence" for human carcinogenicity.<ref name=cancerIARC>https://www.cancer.org/cancer/cancer-causes/radiation-exposure/extremely-low-frequency-radiation.html</ref>

===Shortwave===
[[Shortwave]] (1.6 to 30&nbsp;MHz) [[diathermy]] can be used as a therapeutic technique for its [[analgesic]] effect and deep muscle relaxation, but has largely been replaced by [[ultrasound]]. Temperatures in muscles can increase by 4–6&nbsp;°C, and subcutaneous fat by 15&nbsp;°C. The FCC has restricted the frequencies allowed for medical treatment, and most machines in the US use 27.12&nbsp;MHz.<ref>{{cite book | title=Bonica's Management of Pain | editor1-first=Scott | editor1-last=Fishman | editor2-first=Jane | editor2-last=Ballantyne | editor3-first=James P. | editor3-last=Rathmell | name-list-style = vanc | publisher=Lippincott Williams & Wilkins | year=2010 | isbn=978-0781768276 | page=1589 | url=https://books.google.com/books?id=Pms0hxH8f-sC&pg=PA1589 }}</ref> Shortwave diathermy can be applied in either continuous or pulsed mode. The latter came to prominence because the continuous mode produced too much heating too rapidly, making patients uncomfortable. The technique only heats tissues that are good electrical conductors, such as [[blood vessels]] and [[muscle]]. [[Adipose tissue]] (fat) receives little heating by induction fields because an electrical current is not actually going through the tissues.<ref>{{cite book | title=Therapeutic Modalities: The Art and the Science | vauthors = Knight KL, Draper DO | publisher=Lippincott Williams & Wilkins | year=2008 | isbn=978-0781757447 | page=288 | url=https://books.google.com/books?id=aMwKx91zI18C&pg=PA288 }}</ref>

Studies have been performed on the use of shortwave radiation for cancer therapy and promoting wound healing, with some success. However, at a sufficiently high energy level, shortwave energy can be harmful to human health, potentially causing damage to biological tissues.<ref name=Chao2017>{{cite journal | vauthors = Yu C, Peng RY | title = Biological effects and mechanisms of shortwave radiation: a review | journal = Military Medical Research | volume = 4 | pages = 24 | year = 2017 | pmid = 28729909 | pmc = 5518414 | doi = 10.1186/s40779-017-0133-6 }}</ref> The FCC limits for maximum permissible workplace exposure to shortwave radio frequency energy in the range of 3–30&nbsp;MHz has a plane-wave equivalent [[power density]] of (900/''f''<sup>2</sup>)&nbsp;mW/cm<sup>2</sup> where ''f'' is the frequency in MHz, and 100&nbsp;mW/cm<sup>2</sup> from 0.3 to 3.0&nbsp;MHz. For uncontrolled exposure to the general public, the limit is 180/''f''<sup>2</sup> between 1.34 and 30&nbsp;MHz.<ref name=OET56/>

===Radio frequency field===
{{See also|Mobile phone radiation and health}}
The designation of mobile phone signals as "possibly [[carcinogen]]ic to humans" by the [[World Health Organization]] (WHO) (e.g. its IARC, see below) has often been misinterpreted as indicating that some measure of risk has been observed{{snd}} however the designation indicates only that the possibility could not be conclusively ruled out using the available data.<ref>{{cite journal | vauthors = Boice JD, Tarone RE | title = Cell phones, cancer, and children | journal = Journal of the National Cancer Institute | volume = 103 | issue = 16 | pages = 1211–1213 | date = August 2011 | pmid = 21795667 | doi = 10.1093/jnci/djr285 | doi-access = free }}</ref>

In 2011, [[International Agency for Research on Cancer|International Agency for Research on Cancer (IARC)]] classified mobile phone radiation as [[List of IARC Group 2B carcinogens|Group 2B]] "possibly carcinogenic" (rather than [[List of IARC Group 2A carcinogens|Group 2A]] "probably carcinogenic" nor the "is carcinogenic" Group 1). That means that there "could be some risk" of carcinogenicity, so additional research into the long-term, heavy use of mobile phones needs to be conducted.<ref names"WHO_IARC_110531">{{cite press release |url=http://www.iarc.fr/en/media-centre/pr/2011/pdfs/pr208_E.pdf |title= IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans |work=press release N° 208 |publisher=[[International Agency for Research on Cancer]] |date=31 May 2011 |access-date=2 June 2011 }}</ref> The [[World Health Organization|WHO]] concluded in 2014 that "A large number of studies have been performed over the last two decades to assess whether mobile phones pose a potential health risk. To date, no adverse health effects have been established as being caused by mobile phone use."<ref>{{cite web |url=https://www.who.int/mediacentre/factsheets/fs193/en/ |title= Electromagnetic fields and public health: mobile phones – Fact sheet N°193 |publisher= World Health Organization |date=October 2014 |access-date= 2 August 2016 }}</ref><ref>[http://www.euitt.upm.es/estaticos/catedra-coitt/web_salud_medioamb/Informes/informes_PDF/rf/HealthCanada/99ehd237.pdf Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3&nbsp;kHz to 300&nbsp;GHz], Canada Safety Code 6, p. 63</ref>

Since 1962, the [[microwave auditory effect]] or tinnitus has been shown from radio frequency exposure at levels below significant heating.<ref name=Frey,13895081>{{cite journal | vauthors = Frey AH | title = Human auditory system response to modulated electromagnetic energy | journal = Journal of Applied Physiology | volume = 17 | issue = 4 | pages = 689–692 | date = July 1962 | pmid = 13895081 | doi = 10.1152/jappl.1962.17.4.689 | s2cid = 12359057 }}</ref> Studies during the 1960s in Europe and Russia claimed to show effects on humans, especially the nervous system, from low energy RF radiation; the studies were disputed at the time.<ref name=Bergman,1965>{{Citation|author= Bergman W|title= The Effect of Microwaves on the Central Nervous System (trans. from German)|pages= 1–77|year= 1965|publisher= Ford Motor Company|url= http://www.magdahavas.com/wordpress/wp-content/uploads/2010/12/German_Ford_Motor_company_The_Effect_of_Microwaves_on_The_Central_Nervous_System.pdf|access-date= 19 December 2018|archive-url= https://web.archive.org/web/20180329070303/http://www.magdahavas.com/wordpress/wp-content/uploads/2010/12/German_Ford_Motor_company_The_Effect_of_Microwaves_on_The_Central_Nervous_System.pdf|archive-date= 29 March 2018|url-status= dead}}</ref><ref>{{cite book|last1=Michaelson|first1=Sol M. | name-list-style = vanc |editor1-last=Calvin|editor1-first=Melvin|editor2-last=Gazenko|editor2-first=Oleg G |date=1975|title=Ecological and Physiological Bases of Space Biology and Medicine|publisher=NASA Scientific and Technical Information Office | location=Washington, D.C.|pages=409–452 [427–430]|chapter-url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19760019731.pdf|chapter-format=Volume II Book 2 of Foundations of Space Biology and Medicine|chapter=Radio-Frequency and Microwave Energies, Magnetic and Electric Fields}}</ref>

In 2019 reporters from the [[Chicago Tribune]] tested the level of radiation from smartphones and found it to exceed safe levels.{{Cn|date=April 2020}} The federal communications commission begun to check the findings.<ref>{{cite news |last1=Krans |first1=Brian | name-list-style = vanc |title=Smartphone Radiation: iPhones Emitting Double Reported Levels |url=https://www.ecowatch.com/iphone-radiation-levels-2640150175.html |access-date=9 September 2019 |agency=Ecowatch |date=September 1, 2019}}</ref>

Radio frequency radiation is found to have more thermal related effects. A person's body temperature can be raised which could result in death if exposed to high dosage of RF radiation. <ref> "Microwaves, Radio Waves, and Other Types of Radiofrequency Radiation." American Cancer Society, http://www.cancer.org/cancer/cancer-causes/radiation-exposure/radiofrequency-radiation.html </ref> Focused RF radiation can also cause burns on the skin or cataracts to form in the eyes. Overall, some health effects are observed at a high levels of RF radiation, but the effects aren't clear at low levels of exposure.

===Millimeter waves===
In 2009, the US TSA introduced full-body scanners as a primary screening modality in [[airport security]], first as backscatter x-ray scanners, which the European Union banned in 2011 due to health and safety concerns, followed by [[Millimeter wave scanner]]s .<ref>{{Cite news |last=Khan |first=Farah Naz | name-list-style = vanc |url=https://blogs.scientificamerican.com/observations/is-that-airport-security-scanner-really-safe/ |title=Is That Airport Security Scanner Really Safe? |work=Scientific American |access-date=2020-03-28 |date=2017-12-18 |language=en}}</ref> Likewise [[WiGig]] for [[personal area network]]s have opened the 60&nbsp;GHz and above microwave band to SAR exposure regulations. Previously, microwave applications in these bands were for point-to-point satellite communication with minimal human exposure.<ref>[http://www.ieice.org/proceedings/EMC09/pdf/22S1-1.pdf Characterization of 60GHz Millimeter-Wave Focusing Beam for Living-Body Exposure Experiments, Tokyo Institute of Technology, Masaki KOUZAI et al., 2009]</ref>{{Relevance inline|date=January 2019||reason=How is this paragraph relevant to the topic of health?}}

===Infrared===
[[Infrared]] wavelengths longer than 750&nbsp;nm can produce changes in the lens of the eye. [[Glassblower's cataract]] is an example of a heat injury that damages the [[anterior lens]] capsule among unprotected glass and iron workers. Cataract-like changes can occur in workers who observe glowing masses of glass or iron without protective eyewear for prolonged periods over many years.<ref name=Fry_et_al2004>{{cite book | title=Clinical Practice in Small Incision Cataract Surgery | editor1-first=Luther L. | editor1-last=Fry | editor2-first=Ashok | editor2-last=Garg | editor3-first=Francisco | editor3-last=Guitérrez-Camona | editor4-first=Suresh K. | editor4-last=Pandey | editor5-first=Geoffrey | editor5-last=Tabin | name-list-style = vanc | publisher=CRC Press | year=2004 | isbn=0203311825 | page=79 | url=https://books.google.com/books?id=Gswq6FvdU7oC&pg=PA79 }}</ref>

Exposing skin to infrared radiation near visible light (IR-A) leads to increased production of [[Radical (chemistry)|free radicals]].<ref>{{cite journal | vauthors = Schieke SM, Schroeder P, Krutmann J | title = Cutaneous effects of infrared radiation: from clinical observations to molecular response mechanisms | journal = Photodermatology, Photoimmunology & Photomedicine | volume = 19 | issue = 5 | pages = 228–234 | date = October 2003 | pmid = 14535893 | doi = 10.1034/j.1600-0781.2003.00054.x | doi-access=free }}</ref> Short-term exposure can be beneficial (activating protective responses), while prolonged exposure can lead to [[photoaging]].<ref>{{cite journal | vauthors = Tsai SR, Hamblin MR | title = Biological effects and medical applications of infrared radiation | journal = Journal of Photochemistry and Photobiology. B, Biology | volume = 170 | pages = 197–207 | date = May 2017 | pmid = 28441605 | pmc = 5505738 | doi = 10.1016/j.jphotobiol.2017.04.014 |doi-access=free }}</ref>

Another important factor is the distance between the worker and the source of radiation. In the case of [[arc welding]], infrared radiation decreases rapidly as a function of distance, so that farther than three feet away from where welding takes place, it does not pose an ocular hazard anymore but, ultraviolet radiation still does. This is why welders wear tinted glasses and surrounding workers only have to wear clear ones that filter UV.{{citation needed|date=July 2016}}

===Visible light===
[[Photic retinopathy]] is damage to the [[Macula of retina|macular area of the eye's retina]] that results from prolonged exposure to sunlight, particularly with [[Mydriasis|dilated pupil]]s. This can happen, for example, while observing a [[solar eclipse]] without suitable eye protection. The Sun's radiation creates a photochemical reaction that can result in [[Dazzle reflex|visual dazzling]] and a [[scotoma]]. The initial lesions and [[edema]] will disappear after several weeks, but may leave behind a permanent reduction in visual acuity.<ref name=Sullivan2001>{{cite book | title=Clinical Environmental Health and Toxic Exposures | editor1-first=John Burke | editor1-last=Sullivan | editor2-first=Gary R. | editor2-last=Krieger | name-list-style = vanc | publisher=Lippincott Williams & Wilkins | year=2001 | isbn=978-0683080278 | page=275 | url=https://books.google.com/books?id=PyUSgdZUGr4C&pg=PA275 }}</ref>

Moderate and high-power lasers are potentially hazardous because they can burn the [[retina]] of the eye, or even the [[skin]]. To control the risk of injury, various specifications – for example ANSI Z136 in the US, EN 60825-1/A2 in Europe, and IEC 60825 internationally – define "classes" of lasers depending on their power and wavelength.<ref>{{cite web | title=Laser Standards and Classifications | website=Rockwell Laser Industries | url=https://www.rli.com/resources/articles/classification.aspx | access-date=2019-02-10 }}</ref><ref>{{cite web | website=Lasermet | title=An Overview of the LED and Laser Classification System in EN 60825-1 and IEC 60825-1 | url=https://www.lasermet.com/resources/classification_overview.php | access-date=2019-02-10 }}</ref> Regulations prescribe required safety measures, such as labeling lasers with specific warnings, and wearing laser safety goggles during operation (see [[laser safety]]).

As with its infrared and ultraviolet radiation dangers, welding creates an intense brightness in the visible light spectrum, which may cause temporary [[flash blindness]]. Some sources state that there is no minimum safe distance for exposure to these radiation emissions without adequate eye protection.<ref name=TWI>{{cite web |url=http://www.twi-global.com/technical-knowledge/faqs/health-and-safety-faqs/faq-what-is-the-minimum-safe-distance-from-the-welding-arc-above-which-there-is-no-risk-of-eye-damage/ |title=What is the minimum safe distance from the welding arc above which there is no risk of eye damage? |publisher=The Welding Institute (TWI Global) |access-date=10 March 2014 |archive-url=https://web.archive.org/web/20140310115217/http://www.twi-global.com/technical-knowledge/faqs/health-and-safety-faqs/faq-what-is-the-minimum-safe-distance-from-the-welding-arc-above-which-there-is-no-risk-of-eye-damage/ |archive-date=10 March 2014 |url-status=dead }}</ref>

===Ultraviolet===
Sunlight includes sufficient ultraviolet power to cause [[sunburn]] within hours of exposure, and the burn severity increases with the duration of exposure. This effect is a response of the skin called [[erythema]], which is caused by a sufficient strong dose of [[UV-B]]. The Sun's UV output is divided into [[UV-A]] and UV-B: solar UV-A flux is 100 times that of UV-B, but the erythema response is 1,000 times higher for UV-B.{{Citation needed|date=November 2019}} This exposure can increase at higher altitudes and when reflected by snow, ice, or sand. The UV-B flux is 2–4 times greater during the middle 4–6 hours of the day, and is not significantly absorbed by cloud cover or up to a meter of water.<ref>{{cite book | title=SPEC – Andrews' Diseases of the Skin | first1=William D. | last1=James | first2=Dirk | last2=Elston | first3=Timothy | last3=Berger | name-list-style = vanc | edition=11 | publisher=Elsevier Health Sciences | year=2011 | isbn=978-1437736199 | pages=23–24 | url=https://books.google.com/books?id=Ef_HllqkdqEC&pg=PA24 }}</ref>

Ultraviolet light, specifically UV-B, has been shown to cause [[cataracts]] and there is some evidence that sunglasses worn at an early age can slow its development in later life.<ref name=SLiney1994>{{cite journal | vauthors = Sliney DH | title = UV radiation ocular exposure dosimetry | journal = Documenta Ophthalmologica. Advances in Ophthalmology | volume = 88 | issue = 3–4 | pages = 243–254 | year = 1994 | pmid = 7634993 | doi = 10.1007/bf01203678 | s2cid = 8242055 }}</ref> Most UV light from the sun is filtered out by the atmosphere and consequently airline pilots often have high rates of cataracts because of the increased levels of UV radiation in the upper atmosphere.<ref>{{cite journal | vauthors = Rafnsson V, Olafsdottir E, Hrafnkelsson J, Sasaki H, Arnarsson A, Jonasson F | title = Cosmic radiation increases the risk of nuclear cataract in airline pilots: a population-based case-control study | journal = Archives of Ophthalmology | volume = 123 | issue = 8 | pages = 1102–1105 | date = August 2005 | pmid = 16087845 | doi = 10.1001/archopht.123.8.1102 | doi-access = free }}</ref> It is hypothesized that [[Ozone depletion|depletion of the ozone layer]] and a consequent increase in levels of UV light on the ground may increase future rates of cataracts.<ref name="Dobson2005">{{Cite journal| vauthors = Dobson R | title = Ozone depletion will bring big rise in number of cataracts| journal = BMJ| volume = 331| issue = 7528| pages = 1292–1295| year = 2005| pmc = 1298891 | doi = 10.1136/bmj.331.7528.1292-d }}</ref> Note that the lens filters UV light, so if it is removed via surgery, one may be able to see UV light.<ref name=Komarnitsky>{{cite web |url=http://www.komar.org/faq/colorado-cataract-surgery-crystalens/ultra-violet-color-glow/ |title=Case study of ultraviolet vision after IOL removal for Cataract Surgery |author=Komarnitsky}}</ref><ref>{{cite journal | vauthors = Griswold MS, Stark WS | title = Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet | journal = Vision Research | volume = 32 | issue = 9 | pages = 1739–1743 | date = September 1992 | pmid = 1455745 | doi = 10.1016/0042-6989(92)90166-G | s2cid = 45178405 }}</ref>

Prolonged exposure to [[ultraviolet radiation]] from the [[sun]] can lead to [[melanoma]] and other skin malignancies.<ref name=Cleaver>{{cite book |vauthors=Cleaver JE, Mitchell DL |veditors=Bast RC, Kufe DW, Pollock RE | title = Holland-Frei Cancer Medicine | edition = 5th | publisher = B.C. Decker | location = Hamilton, Ontario | year = 2000 | chapter = 15. Ultraviolet Radiation Carcinogenesis | isbn = 1-55009-113-1 | chapter-url = https://www.ncbi.nlm.nih.gov/books/NBK20854/ | access-date= 31 January 2011 |display-editors=etal}}</ref> Clear evidence establishes ultraviolet radiation, especially the non-ionizing medium wave [[UVB]], as the cause of most non-melanoma [[skin cancer]]s, which are the most common forms of cancer in the world.<ref name=Cleaver /> UV rays can also cause [[wrinkles]], [[liver spot]]s, [[Melanocytic nevus|moles]], and [[freckles]]. In addition to sunlight, other sources include [[tanning beds]], and bright desk lights. Damage is cumulative over one's lifetime, so that permanent effects may not be evident for some time after exposure.<ref name=UVAware>{{cite web |url=http://www.uvawareness.com/uv-info/uv-exposure.php |title=UV Exposure & Your Health |publisher=UV Awareness |access-date=10 March 2014}}</ref>

Ultraviolet radiation of wavelengths shorter than 300&nbsp;nm ([[Ultraviolet|actinic rays]]) can damage the [[corneal epithelium]]. This is most commonly the result of exposure to the sun at high altitude, and in areas where shorter wavelengths are readily reflected from bright surfaces, such as snow, water, and sand. UV generated by a [[welding]] arc can similarly cause damage to the cornea, known as "arc eye" or welding flash burn, a form of [[photokeratitis]].<ref>{{cite web|url=http://emedicine.medscape.com/article/799025-overview|publisher=Medscape|title=Ultraviolet keratitis|access-date=31 May 2017}}</ref>

[[Fluorescent light]] bulbs and tubes internally produce [[ultraviolet]] light. Normally this is converted to visible light by the [[phosphor]] film inside a protective coating. When the film is cracked by mishandling or faulty manufacturing then UV may escape at levels that could cause sunburn or even skin cancer.<ref>{{cite journal | vauthors = Mironava T, Hadjiargyrou M, Simon M, Rafailovich MH | title = The effects of UV emission from compact fluorescent light exposure on human dermal fibroblasts and keratinocytes in vitro | journal = Photochemistry and Photobiology | volume = 88 | issue = 6 | pages = 1497–1506 | date = 20 July 2012 | pmid = 22724459 | doi = 10.1111/j.1751-1097.2012.01192.x | s2cid = 2626216 }}</ref><ref>{{cite journal | vauthors = Nicole W | title = Ultraviolet Leaks from CFLs | journal = Environmental Health Perspectives | volume = 120 | issue = 10 | pages = a387 | date = October 2012 | pmid = 23026199 | pmc = 3491932 | doi = 10.1289/ehp.120-a387 }}</ref>

==Regulation==
In the United States, nonionizing radiation is regulated in the [[Radiation Control for Health and Safety Act of 1968]] and the [[Occupational Safety and Health Act of 1970]].<ref>{{cite book | title=Fundamental and Applied Aspects of Nonionizing Radiation | editor1-first=Solomon | editor1-last=Michaelson | name-list-style = vanc | publisher=Springer Science & Business Media | year=2012 | isbn=978-1468407600 | page=xv | url=https://books.google.com/books?id=bezTBwAAQBAJ }}</ref>

== See also ==
{{div col|colwidth=22em}}
* [[Background radiation]]
* [[BioInitiative Report]]
* [[Biological effects of radiation on the epigenome]]
* [[Central nervous system effects from radiation exposure during spaceflight]]
* [[Cosmic ray]]
* [[COSMOS cohort study]]
* [[Electromagnetic hypersensitivity]]
* [[Electromagnetism]]
* [[EMF measurements]]
* [[Health threat from cosmic rays]]
* [[Light ergonomics]]
* [[Magnetobiology]]
* [[Microwave]]
* [[Mobile phone radiation and health]]
* [[Personal RF safety monitors]]
* [[Specific absorption rate]]
* [[Wireless electronic devices and health]]
{{div col end}}

== References ==
{{reflist|30em}}

== Further reading ==
{{refbegin}}
* {{cite book | author=U.S. Congress, Office of Technology Assessment | url=http://www.princeton.edu/~ota/disk1/1989/8905/8905.PDF | title=Biological Effects of Power Frequency Electric & Magnetic Fields—Background Paper, OTA-BP-E-53 | location=Washington, DC | publisher=U.S. Government Printing Office | date=May 1989 }} (over 100 pages)
zzzz{{refend}}

== External links ==
* [https://www.who.int/peh-emf/en/ Information page] on electromagnetic fields at the [[World Health Organization]] web site
* [https://www.cdc.gov/niosh/topics/emf/ CDC – Electric and Magnetic Fields – NIOSH Workplace Safety and Health Topic]
* {{Skeptoid|id=4072|number=72|title=Electromagnetic Hypersensitivity: Real or Imagined?|date=30 October 2007}}

{{Radiation}}

{{DEFAULTSORT:Electromagnetic Radiation And Health}}
[[Category:Environmental controversies]]
[[Category:Medical physics]]
[[Category:Radiation health effects]]
[[Category:Radiobiology]]
[[Category:Health effects by subject]]
{{Short description|aspect of public health}}
{{about|the health effects of non-ionizing radiation|the negative health effects of ionizing radiation|radiation poisoning}}
{{Use dmy dates|date=July 2019}}

Electromagnetic [[radiation]] can bpoopPoopPoopPoope classified into two types: [[ionizing radiation]] and [[non-ionizing radiation]], based on the capability of a single [[photon]] with more than 10&nbsp;[[electronvolt|eV]] energy to ionize atoms or break [[chemical bond]]s.<ref>{{cite book | first1=Robert F. | last1=Cleveland Jr | first2=Jerry L. | last2=Ulcek | name-list-style = vanc | title=Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields | publisher=OET (Office of Engineering and Technology) Federal Communications Commission | location=Washington, D.C. | edition=4th | date=August 1999 | url=https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet56/oet56e4.pdf | access-date=2019-01-29 }}</ref> [[Extreme ultraviolet]] and higher frequencies, suchPoopPoop as [[X-ray]]s or [[gamma ray]]s are ionizing, and these pose their own special hazards: see ''[[radiation poisoning]]''.

The most common health hazard of radiation is [[sunburn]], which causes Poops between approximately 100,000 and 1 million new skin Poops annually in the United States.<ref>{{cite journal | vauthors = Siegel RL, Miller KD, Jemal A | title = Cancer statistics, 2020 | journal = Ca | volume = 70 | issue = 1 | pages = 7–30 | date = January 2020 | pmid = 31912902 | doi = 10.3322/caac.21590 | doi-access = free }}</ref><ref name="Cleaver" />

Claims of harm from low levels of non-ionizing radiation (sometimes described as "electrosmog") are [[electromagnetic hypersensitivity|unsupported by science]].

==Hazards==
[[Dielectric heating]] from electromagnetic fields can create a biological hazard. For example, touching or standing around an [[antenna (electronics)|antenna]] while a high-power [[transmitter]] is in operation can cause burns (the mechanism is the same as that used in a [[microwave oven]]).<ref>{{cite book | title=Biological and Medical Aspects of Electromagnetic Fields | editor1-first=Frank S. | editor1-last=Barnes | editor2-first=Ben | editor2-last=Greenebaum | name-list-style = vanc | edition=3 | publisher=CRC Press | year=2018 | isbn=978-1420009460 | page=378 | url=https://books.google.com/books?id=B-bKBQAAQBAJ&pg=PT378 }}</ref>

The heating effect varies with the power and the [[frequency]] of the electromagnetic energy, as well as the [[inverse square]] of distance to the source. The eyes and testes are particularly susceptible to radio frequency heating due to the paucity of blood flow in these areas that could otherwise dissipate the heat buildup.<ref name=OET56>{{cite web | title=Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields | first1=Robert F. | last1=Cleveland Jr | first2=Jerry L. | last2=Ulcek | name-list-style = vanc | publisher=Office of Engineering and Technology, Federal Communications Commission | work=OET Bulletin 56 | edition=Fourth | date=August 1999 | page=7 | url=https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet56/oet56e4.pdf | access-date=2019-02-02 }}</ref>

Radio frequency (RF) energy at power density levels of 1–10&nbsp;mW/cm<sup>2</sup> or higher can cause measurable heating of tissues. Typical RF energy levels encountered by the general public are well below the level needed to cause significant heating, but certain workplace environments near high power RF sources may exceed safe exposure limits.<ref name=OET56/> A measure of the heating effect is the [[specific absorption rate]] or SAR, which has units of watts per kilogram (W/kg). The [[IEEE]]<ref>{{cite journal | title = Standard for Safety Level with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3KHz to 300GHz | journal = IEEE STD | volume = C95.1-2005<!--Should this be appended here?:" - IEEE"--> | publisher = IEEE | date = October 2005 | url = https://standards.ieee.org/findstds/standard/C95.1-2005.html}}</ref> and many national governments have established safety limits for exposure to various frequencies of electromagnetic energy based on [[Specific absorption rate|SAR]], mainly based on [http://www.icnirp.de ICNIRP] Guidelines,<ref>{{cite journal | author = International Commission on Non-Ionizing Radiation Protection | title = Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection | journal = Health Physics | volume = 74 | issue = 4 | pages = 494–522 | date = April 1998 | pmid = 9525427 | url = http://www.icnirp.de/documents/emfgdl.pdf | url-status = dead | archive-url = https://web.archive.org/web/20081113052702/http://www.icnirp.de/documents/emfgdl.pdf | archive-date = 2008-11-13 }}</ref> which guard against thermal damage.

=== Low-level exposure ===
The World Health Organization began a research effort in 1996 to study the health effects from the ever-increasing exposure of people to a diverse range of EMR sources. After 30 years of extensive study, science has yet to establish a health risk from exposure to low-level fields.

Epidemiological studies look for statistical correlations between EM exposure in the field and specific health effects. As of 2019, much of the current work is focused on the study of EM fields in relation to cancer.<ref>{{cite web | title=What are electromagnetic fields? – Summary of health effects | website=World Health Organization | url=https://www.who.int/peh-emf/about/WhatisEMF/en/index1.html | access-date=2019-02-07 }}</ref> There are publications which support the existence of complex biological and neurological effects of weaker ''non-thermal'' electromagnetic fields (see [[Bioelectromagnetics]]), including weak [[Extremely low frequency|ELF]] electromagnetic fields<ref>{{cite journal | vauthors = Delgado JM, Leal J, Monteagudo JL, Gracia MG | title = Embryological changes induced by weak, extremely low frequency electromagnetic fields | journal = Journal of Anatomy | volume = 134 | issue = Pt 3 | pages = 533–551 | date = May 1982 | pmid = 7107514 | pmc = 1167891 }}</ref><ref>{{cite journal | vauthors = Harland JD, Liburdy RP | title = Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line | journal = Bioelectromagnetics | volume = 18 | issue = 8 | pages = 555–562 | year = 1997 | pmid = 9383244 | doi = 10.1002/(SICI)1521-186X(1997)18:8<555::AID-BEM4>3.0.CO;2-1 | url = https://zenodo.org/record/1235522 }}</ref> and modulated [[Radio frequency|RF]] and [[microwave]] fields.<ref name="Aalto S, Haarala C, Brück A, Sipilä H, Hämäläinen H, Rinne JO 2006 885–90">{{cite journal | vauthors = Aalto S, Haarala C, Brück A, Sipilä H, Hämäläinen H, Rinne JO | title = Mobile phone affects cerebral blood flow in humans | journal = Journal of Cerebral Blood Flow and Metabolism | volume = 26 | issue = 7 | pages = 885–890 | date = July 2006 | pmid = 16495939 | doi = 10.1038/sj.jcbfm.9600279 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Pall ML | title = Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression | journal = Journal of Chemical Neuroanatomy | volume = 75 | issue = Pt B | pages = 43–51 | date = September 2016 | pmid = 26300312 | doi = 10.1016/j.jchemneu.2015.08.001 | doi-access = free }}</ref>

==Effects by frequency==
[[File:For Your Own Health (13942406865) (2).jpg|thumb|right|upright|Warning sign next to a transmitter with high field strengths]]

While the most acute exposures to harmful levels of electromagnetic radiation are immediately realized as burns, the health effects due to chronic or occupational exposure may not manifest effects for months or years.<ref name=Fry_et_al2004/><ref name=SLiney1994/><ref name=Cleaver/><ref name=UVAware/>

===Extremely-low frequency===
Electric and magnetic fields occur where electricity is generated or distributed in power lines, cables, or electrical appliances. Human responses depend on the field strength, ambient environmental conditions, and individual sensitivity. 7% of volunteers exposed to power-frequency electric fields of high-power, [[extremely low frequency|extremely-low-frequency]] RF with electric field levels in the low kV/m range reported painful currents that flowed to ground through a body contact surface such as the feet, or arced to ground where the body was well insulated.<ref>[https://www.who.int/peh-emf/publications/elf_ehc/en/index.html Extremely Low Frequency Fields Environmental Health Criteria Monograph No.238], chapter 5, page 121, WHO</ref>

The International Agency for Research on Cancer (IARC) finds "inadequate evidence" for human carcinogenicity.<ref name=cancerIARC>https://www.cancer.org/cancer/cancer-causes/radiation-exposure/extremely-low-frequency-radiation.html</ref>

===Shortwave===
[[Shortwave]] (1.6 to 30&nbsp;MHz) [[diathermy]] can be used as a therapeutic technique for its [[analgesic]] effect and deep muscle relaxation, but has largely been replaced by [[ultrasound]]. Temperatures in muscles can increase by 4–6&nbsp;°C, and subcutaneous fat by 15&nbsp;°C. The FCC has restricted the frequencies allowed for medical treatment, and most machines in the US use 27.12&nbsp;MHz.<ref>{{cite book | title=Bonica's Management of Pain | editor1-first=Scott | editor1-last=Fishman | editor2-first=Jane | editor2-last=Ballantyne | editor3-first=James P. | editor3-last=Rathmell | name-list-style = vanc | publisher=Lippincott Williams & Wilkins | year=2010 | isbn=978-0781768276 | page=1589 | url=https://books.google.com/books?id=Pms0hxH8f-sC&pg=PA1589 }}</ref> Shortwave diathermy can be applied in either continuous or pulsed mode. The latter came to prominence because the continuous mode produced too much heating too rapidly, making patients uncomfortable. The technique only heats tissues that are good electrical conductors, such as [[blood vessels]] and [[muscle]]. [[Adipose tissue]] (fat) receives little heating by induction fields because an electrical current is not actually going through the tissues.<ref>{{cite book | title=Therapeutic Modalities: The Art and the Science | vauthors = Knight KL, Draper DO | publisher=Lippincott Williams & Wilkins | year=2008 | isbn=978-0781757447 | page=288 | url=https://books.google.com/books?id=aMwKx91zI18C&pg=PA288 }}</ref>

Studies have been performed on the use of shortwave radiation for cancer therapy and promoting wound healing, with some success. However, at a sufficiently high energy level, shortwave energy can be harmful to human health, potentially causing damage to biological tissues.<ref name=Chao2017>{{cite journal | vauthors = Yu C, Peng RY | title = Biological effects and mechanisms of shortwave radiation: a review | journal = Military Medical Research | volume = 4 | pages = 24 | year = 2017 | pmid = 28729909 | pmc = 5518414 | doi = 10.1186/s40779-017-0133-6 }}</ref> The FCC limits for maximum permissible workplace exposure to shortwave radio frequency energy in the range of 3–30&nbsp;MHz has a plane-wave equivalent [[power density]] of (900/''f''<sup>2</sup>)&nbsp;mW/cm<sup>2</sup> where ''f'' is the frequency in MHz, and 100&nbsp;mW/cm<sup>2</sup> from 0.3 to 3.0&nbsp;MHz. For uncontrolled exposure to the general public, the limit is 180/''f''<sup>2</sup> between 1.34 and 30&nbsp;MHz.<ref name=OET56/>

===Radio frequency field===
{{See also|Mobile phone radiation and health}}
The designation of mobile phone signals as "possibly [[carcinogen]]ic to humans" by the [[World Health Organization]] (WHO) (e.g. its IARC, see below) has often been misinterpreted as indicating that some measure of risk has been observed{{snd}} however the designation indicates only that the possibility could not be conclusively ruled out using the available data.<ref>{{cite journal | vauthors = Boice JD, Tarone RE | title = Cell phones, cancer, and children | journal = Journal of the National Cancer Institute | volume = 103 | issue = 16 | pages = 1211–1213 | date = August 2011 | pmid = 21795667 | doi = 10.1093/jnci/djr285 | doi-access = free }}</ref>

In 2011, [[International Agency for Research on Cancer|International Agency for Research on Cancer (IARC)]] classified mobile phone radiation as [[List of IARC Group 2B carcinogens|Group 2B]] "possibly carcinogenic" (rather than [[List of IARC Group 2A carcinogens|Group 2A]] "probably carcinogenic" nor the "is carcinogenic" Group 1). That means that there "could be some risk" of carcinogenicity, so additional research into the long-term, heavy use of mobile phones needs to be conducted.<ref names"WHO_IARC_110531">{{cite press release |url=http://www.iarc.fr/en/media-centre/pr/2011/pdfs/pr208_E.pdf |title= IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans |work=press release N° 208 |publisher=[[International Agency for Research on Cancer]] |date=31 May 2011 |access-date=2 June 2011 }}</ref> The [[World Health Organization|WHO]] concluded in 2014 that "A large number of studies have been performed over the last two decades to assess whether mobile phones pose a potential health risk. To date, no adverse health effects have been established as being caused by mobile phone use."<ref>{{cite web |url=https://www.who.int/mediacentre/factsheets/fs193/en/ |title= Electromagnetic fields and public health: mobile phones – Fact sheet N°193 |publisher= World Health Organization |date=October 2014 |access-date= 2 August 2016 }}</ref><ref>[http://www.euitt.upm.es/estaticos/catedra-coitt/web_salud_medioamb/Informes/informes_PDF/rf/HealthCanada/99ehd237.pdf Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3&nbsp;kHz to 300&nbsp;GHz], Canada Safety Code 6, p. 63</ref>

Since 1962, the [[microwave auditory effect]] or tinnitus has been shown from radio frequency exposure at levels below significant heating.<ref name=Frey,13895081>{{cite journal | vauthors = Frey AH | title = Human auditory system response to modulated electromagnetic energy | journal = Journal of Applied Physiology | volume = 17 | issue = 4 | pages = 689–692 | date = July 1962 | pmid = 13895081 | doi = 10.1152/jappl.1962.17.4.689 | s2cid = 12359057 }}</ref> Studies during the 1960s in Europe and Russia claimed to show effects on humans, especially the nervous system, from low energy RF radiation; the studies were disputed at the time.<ref name=Bergman,1965>{{Citation|author= Bergman W|title= The Effect of Microwaves on the Central Nervous System (trans. from German)|pages= 1–77|year= 1965|publisher= Ford Motor Company|url= http://www.magdahavas.com/wordpress/wp-content/uploads/2010/12/German_Ford_Motor_company_The_Effect_of_Microwaves_on_The_Central_Nervous_System.pdf|access-date= 19 December 2018|archive-url= https://web.archive.org/web/20180329070303/http://www.magdahavas.com/wordpress/wp-content/uploads/2010/12/German_Ford_Motor_company_The_Effect_of_Microwaves_on_The_Central_Nervous_System.pdf|archive-date= 29 March 2018|url-status= dead}}</ref><ref>{{cite book|last1=Michaelson|first1=Sol M. | name-list-style = vanc |editor1-last=Calvin|editor1-first=Melvin|editor2-last=Gazenko|editor2-first=Oleg G |date=1975|title=Ecological and Physiological Bases of Space Biology and Medicine|publisher=NASA Scientific and Technical Information Office | location=Washington, D.C.|pages=409–452 [427–430]|chapter-url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19760019731.pdf|chapter-format=Volume II Book 2 of Foundations of Space Biology and Medicine|chapter=Radio-Frequency and Microwave Energies, Magnetic and Electric Fields}}</ref>

In 2019 reporters from the [[Chicago Tribune]] tested the level of radiation from smartphones and found it to exceed safe levels.{{Cn|date=April 2020}} The federal communications commission begun to check the findings.<ref>{{cite news |last1=Krans |first1=Brian | name-list-style = vanc |title=Smartphone Radiation: iPhones Emitting Double Reported Levels |url=https://www.ecowatch.com/iphone-radiation-levels-2640150175.html |access-date=9 September 2019 |agency=Ecowatch |date=September 1, 2019}}</ref>

Radio frequency radiation is found to have more thermal related effects. A person's body temperature can be raised which could result in death if exposed to high dosage of RF radiation. <ref> "Microwaves, Radio Waves, and Other Types of Radiofrequency Radiation." American Cancer Society, http://www.cancer.org/cancer/cancer-causes/radiation-exposure/radiofrequency-radiation.html </ref> Focused RF radiation can also cause burns on the skin or cataracts to form in the eyes. Overall, some health effects are observed at a high levels of RF radiation, but the effects aren't clear at low levels of exposure.

===Millimeter waves===
In 2009, the US TSA introduced full-body scanners as a primary screening modality in [[airport security]], first as backscatter x-ray scanners, which the European Union banned in 2011 due to health and safety concerns, followed by [[Millimeter wave scanner]]s .<ref>{{Cite news |last=Khan |first=Farah Naz | name-list-style = vanc |url=https://blogs.scientificamerican.com/observations/is-that-airport-security-scanner-really-safe/ |title=Is That Airport Security Scanner Really Safe? |work=Scientific American |access-date=2020-03-28 |date=2017-12-18 |language=en}}</ref> Likewise [[WiGig]] for [[personal area network]]s have opened the 60&nbsp;GHz and above microwave band to SAR exposure regulations. Previously, microwave applications in these bands were for point-to-point satellite communication with minimal human exposure.<ref>[http://www.ieice.org/proceedings/EMC09/pdf/22S1-1.pdf Characterization of 60GHz Millimeter-Wave Focusing Beam for Living-Body Exposure Experiments, Tokyo Institute of Technology, Masaki KOUZAI et al., 2009]</ref>{{Relevance inline|date=January 2019||reason=How is this paragraph relevant to the topic of health?}}

===Infrared===
[[Infrared]] wavelengths longer than 750&nbsp;nm can produce changes in the lens of the eye. [[Glassblower's cataract]] is an example of a heat injury that damages the [[anterior lens]] capsule among unprotected glass and iron workers. Cataract-like changes can occur in workers who observe glowing masses of glass or iron without protective eyewear for prolonged periods over many years.<ref name=Fry_et_al2004>{{cite book | title=Clinical Practice in Small Incision Cataract Surgery | editor1-first=Luther L. | editor1-last=Fry | editor2-first=Ashok | editor2-last=Garg | editor3-first=Francisco | editor3-last=Guitérrez-Camona | editor4-first=Suresh K. | editor4-last=Pandey | editor5-first=Geoffrey | editor5-last=Tabin | name-list-style = vanc | publisher=CRC Press | year=2004 | isbn=0203311825 | page=79 | url=https://books.google.com/books?id=Gswq6FvdU7oC&pg=PA79 }}</ref>

Exposing skin to infrared radiation near visible light (IR-A) leads to increased production of [[Radical (chemistry)|free radicals]].<ref>{{cite journal | vauthors = Schieke SM, Schroeder P, Krutmann J | title = Cutaneous effects of infrared radiation: from clinical observations to molecular response mechanisms | journal = Photodermatology, Photoimmunology & Photomedicine | volume = 19 | issue = 5 | pages = 228–234 | date = October 2003 | pmid = 14535893 | doi = 10.1034/j.1600-0781.2003.00054.x | doi-access=free }}</ref> Short-term exposure can be beneficial (activating protective responses), while prolonged exposure can lead to [[photoaging]].<ref>{{cite journal | vauthors = Tsai SR, Hamblin MR | title = Biological effects and medical applications of infrared radiation | journal = Journal of Photochemistry and Photobiology. B, Biology | volume = 170 | pages = 197–207 | date = May 2017 | pmid = 28441605 | pmc = 5505738 | doi = 10.1016/j.jphotobiol.2017.04.014 |doi-access=free }}</ref>

Another important factor is the distance between the worker and the source of radiation. In the case of [[arc welding]], infrared radiation decreases rapidly as a function of distance, so that farther than three feet away from where welding takes place, it does not pose an ocular hazard anymore but, ultraviolet radiation still does. This is why welders wear tinted glasses and surrounding workers only have to wear clear ones that filter UV.{{citation needed|date=July 2016}}

===Visible light===
[[Photic retinopathy]] is damage to the [[Macula of retina|macular area of the eye's retina]] that results from prolonged exposure to sunlight, particularly with [[Mydriasis|dilated pupil]]s. This can happen, for example, while observing a [[solar eclipse]] without suitable eye protection. The Sun's radiation creates a photochemical reaction that can result in [[Dazzle reflex|visual dazzling]] and a [[scotoma]]. The initial lesions and [[edema]] will disappear after several weeks, but may leave behind a permanent reduction in visual acuity.<ref name=Sullivan2001>{{cite book | title=Clinical Environmental Health and Toxic Exposures | editor1-first=John Burke | editor1-last=Sullivan | editor2-first=Gary R. | editor2-last=Krieger | name-list-style = vanc | publisher=Lippincott Williams & Wilkins | year=2001 | isbn=978-0683080278 | page=275 | url=https://books.google.com/books?id=PyUSgdZUGr4C&pg=PA275 }}</ref>

Moderate and high-power lasers are potentially hazardous because they can burn the [[retina]] of the eye, or even the [[skin]]. To control the risk of injury, various specifications – for example ANSI Z136 in the US, EN 60825-1/A2 in Europe, and IEC 60825 internationally – define "classes" of lasers depending on their power and wavelength.<ref>{{cite web | title=Laser Standards and Classifications | website=Rockwell Laser Industries | url=https://www.rli.com/resources/articles/classification.aspx | access-date=2019-02-10 }}</ref><ref>{{cite web | website=Lasermet | title=An Overview of the LED and Laser Classification System in EN 60825-1 and IEC 60825-1 | url=https://www.lasermet.com/resources/classification_overview.php | access-date=2019-02-10 }}</ref> Regulations prescribe required safety measures, such as labeling lasers with specific warnings, and wearing laser safety goggles during operation (see [[laser safety]]).

As with its infrared and ultraviolet radiation dangers, welding creates an intense brightness in the visible light spectrum, which may cause temporary [[flash blindness]]. Some sources state that there is no minimum safe distance for exposure to these radiation emissions without adequate eye protection.<ref name=TWI>{{cite web |url=http://www.twi-global.com/technical-knowledge/faqs/health-and-safety-faqs/faq-what-is-the-minimum-safe-distance-from-the-welding-arc-above-which-there-is-no-risk-of-eye-damage/ |title=What is the minimum safe distance from the welding arc above which there is no risk of eye damage? |publisher=The Welding Institute (TWI Global) |access-date=10 March 2014 |archive-url=https://web.archive.org/web/20140310115217/http://www.twi-global.com/technical-knowledge/faqs/health-and-safety-faqs/faq-what-is-the-minimum-safe-distance-from-the-welding-arc-above-which-there-is-no-risk-of-eye-damage/ |archive-date=10 March 2014 |url-status=dead }}</ref>

===Ultraviolet===
Sunlight includes sufficient ultraviolet power to cause [[sunburn]] within hours of exposure, and the burn severity increases with the duration of exposure. This effect is a response of the skin called [[erythema]], which is caused by a sufficient strong dose of [[UV-B]]. The Sun's UV output is divided into [[UV-A]] and UV-B: solar UV-A flux is 100 times that of UV-B, but the erythema response is 1,000 times higher for UV-B.{{Citation needed|date=November 2019}} This exposure can increase at higher altitudes and when reflected by snow, ice, or sand. The UV-B flux is 2–4 times greater during the middle 4–6 hours of the day, and is not significantly absorbed by cloud cover or up to a meter of water.<ref>{{cite book | title=SPEC – Andrews' Diseases of the Skin | first1=William D. | last1=James | first2=Dirk | last2=Elston | first3=Timothy | last3=Berger | name-list-style = vanc | edition=11 | publisher=Elsevier Health Sciences | year=2011 | isbn=978-1437736199 | pages=23–24 | url=https://books.google.com/books?id=Ef_HllqkdqEC&pg=PA24 }}</ref>

Ultraviolet light, specifically UV-B, has been shown to cause [[cataracts]] and there is some evidence that sunglasses worn at an early age can slow its development in later life.<ref name=SLiney1994>{{cite journal | vauthors = Sliney DH | title = UV radiation ocular exposure dosimetry | journal = Documenta Ophthalmologica. Advances in Ophthalmology | volume = 88 | issue = 3–4 | pages = 243–254 | year = 1994 | pmid = 7634993 | doi = 10.1007/bf01203678 | s2cid = 8242055 }}</ref> Most UV light from the sun is filtered out by the atmosphere and consequently airline pilots often have high rates of cataracts because of the increased levels of UV radiation in the upper atmosphere.<ref>{{cite journal | vauthors = Rafnsson V, Olafsdottir E, Hrafnkelsson J, Sasaki H, Arnarsson A, Jonasson F | title = Cosmic radiation increases the risk of nuclear cataract in airline pilots: a population-based case-control study | journal = Archives of Ophthalmology | volume = 123 | issue = 8 | pages = 1102–1105 | date = August 2005 | pmid = 16087845 | doi = 10.1001/archopht.123.8.1102 | doi-access = free }}</ref> It is hypothesized that [[Ozone depletion|depletion of the ozone layer]] and a consequent increase in levels of UV light on the ground may increase future rates of cataracts.<ref name="Dobson2005">{{Cite journal| vauthors = Dobson R | title = Ozone depletion will bring big rise in number of cataracts| journal = BMJ| volume = 331| issue = 7528| pages = 1292–1295| year = 2005| pmc = 1298891 | doi = 10.1136/bmj.331.7528.1292-d }}</ref> Note that the lens filters UV light, so if it is removed via surgery, one may be able to see UV light.<ref name=Komarnitsky>{{cite web |url=http://www.komar.org/faq/colorado-cataract-surgery-crystalens/ultra-violet-color-glow/ |title=Case study of ultraviolet vision after IOL removal for Cataract Surgery |author=Komarnitsky}}</ref><ref>{{cite journal | vauthors = Griswold MS, Stark WS | title = Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet | journal = Vision Research | volume = 32 | issue = 9 | pages = 1739–1743 | date = September 1992 | pmid = 1455745 | doi = 10.1016/0042-6989(92)90166-G | s2cid = 45178405 }}</ref>

Prolonged exposure to [[ultraviolet radiation]] from the [[sun]] can lead to [[melanoma]] and other skin malignancies.<ref name=Cleaver>{{cite book |vauthors=Cleaver JE, Mitchell DL |veditors=Bast RC, Kufe DW, Pollock RE | title = Holland-Frei Cancer Medicine | edition = 5th | publisher = B.C. Decker | location = Hamilton, Ontario | year = 2000 | chapter = 15. Ultraviolet Radiation Carcinogenesis | isbn = 1-55009-113-1 | chapter-url = https://www.ncbi.nlm.nih.gov/books/NBK20854/ | access-date= 31 January 2011 |display-editors=etal}}</ref> Clear evidence establishes ultraviolet radiation, especially the non-ionizing medium wave [[UVB]], as the cause of most non-melanoma [[skin cancer]]s, which are the most common forms of cancer in the world.<ref name=Cleaver /> UV rays can also cause [[wrinkles]], [[liver spot]]s, [[Melanocytic nevus|moles]], and [[freckles]]. In addition to sunlight, other sources include [[tanning beds]], and bright desk lights. Damage is cumulative over one's lifetime, so that permanent effects may not be evident for some time after exposure.<ref name=UVAware>{{cite web |url=http://www.uvawareness.com/uv-info/uv-exposure.php |title=UV Exposure & Your Health |publisher=UV Awareness |access-date=10 March 2014}}</ref>

Ultraviolet radiation of wavelengths shorter than 300&nbsp;nm ([[Ultraviolet|actinic rays]]) can damage the [[corneal epithelium]]. This is most commonly the result of exposure to the sun at high altitude, and in areas where shorter wavelengths are readily reflected from bright surfaces, such as snow, water, and sand. UV generated by a [[welding]] arc can similarly cause damage to the cornea, known as "arc eye" or welding flash burn, a form of [[photokeratitis]].<ref>{{cite web|url=http://emedicine.medscape.com/article/799025-overview|publisher=Medscape|title=Ultraviolet keratitis|access-date=31 May 2017}}</ref>

[[Fluorescent light]] bulbs and tubes internally produce [[ultraviolet]] light. Normally this is converted to visible light by the [[phosphor]] film inside a protective coating. When the film is cracked by mishandling or faulty manufacturing then UV may escape at levels that could cause sunburn or even skin cancer.<ref>{{cite journal | vauthors = Mironava T, Hadjiargyrou M, Simon M, Rafailovich MH | title = The effects of UV emission from compact fluorescent light exposure on human dermal fibroblasts and keratinocytes in vitro | journal = Photochemistry and Photobiology | volume = 88 | issue = 6 | pages = 1497–1506 | date = 20 July 2012 | pmid = 22724459 | doi = 10.1111/j.1751-1097.2012.01192.x | s2cid = 2626216 }}</ref><ref>{{cite journal | vauthors = Nicole W | title = Ultraviolet Leaks from CFLs | journal = Environmental Health Perspectives | volume = 120 | issue = 10 | pages = a387 | date = October 2012 | pmid = 23026199 | pmc = 3491932 | doi = 10.1289/ehp.120-a387 }}</ref>

==Regulation==
In the United States, nonionizing radiation is regulated in the [[Radiation Control for Health and Safety Act of 1968]] and the [[Occupational Safety and Health Act of 1970]].<ref>{{cite book | title=Fundamental and Applied Aspects of Nonionizing Radiation | editor1-first=Solomon | editor1-last=Michaelson | name-list-style = vanc | publisher=Springer Science & Business Media | year=2012 | isbn=978-1468407600 | page=xv | url=https://books.google.com/books?id=bezTBwAAQBAJ }}</ref>

== See also ==
{{div col|colwidth=22em}}
* [[Background radiation]]
* [[BioInitiative Report]]
* [[Biological effects of radiation on the epigenome]]
* [[Central nervous system effects from radiation exposure during spaceflight]]
* [[Cosmic ray]]
* [[COSMOS cohort study]]
* [[Electromagnetic hypersensitivity]]
* [[Electromagnetism]]
* [[EMF measurements]]
* [[Health threat from cosmic rays]]
* [[Light ergonomics]]
* [[Magnetobiology]]
* [[Microwave]]
* [[Mobile phone radiation and health]]
* [[Personal RF safety monitors]]
* [[Specific absorption rate]]
* [[Wireless electronic devices and health]]
{{div col end}}

== References ==
{{reflist|30em}}

== Further reading ==
{{refbegin}}
* {{cite book | author=U.S. Congress, Office of Technology Assessment | url=http://www.princeton.edu/~ota/disk1/1989/8905/8905.PDF | title=Biological Effects of Power Frequency Electric & Magnetic Fields—Background Paper, OTA-BP-E-53 | location=Washington, DC | publisher=U.S. Government Printing Office | date=May 1989 }} (over 100 pages)
zzzz{{refend}}

== External links ==
* [https://www.who.int/peh-emf/en/ Information page] on electromagnetic fields at the [[World Health Organization]] web site
* [https://www.cdc.gov/niosh/topics/emf/ CDC – Electric and Magnetic Fields – NIOSH Workplace Safety and Health Topic]
* {{Skeptoid|id=4072|number=72|title=Electromagnetic Hypersensitivity: Real or Imagined?|date=30 October 2007}}

{{Radiation}}

{{DEFAULTSORT:Electromagnetic Radiation And Health}}
[[Category:Environmental controversies]]
[[Category:Medical physics]]
[[Category:Radiation health effects]]
[[Category:Radiobiology]]
[[Category:Health effects by subject]]
{{Short description|aspect of public health}}
{{about|the health effects of non-ionizing radiation|the negative health effects of ionizing radiation|radiation poisoning}}
{{Use dmy dates|date=July 2019}}

Electromagnetic [[radiation]] can bpoopPoopPoopPoope classified into two types: [[ionizing radiation]] and [[non-ionizing radiation]], based on the capability of a single [[photon]] with more than 10&nbsp;[[electronvolt|eV]] energy to ionize atoms or break [[chemical bond]]s.<ref>{{cite book | first1=Robert F. | last1=Cleveland Jr | first2=Jerry L. | last2=Ulcek | name-list-style = vanc | title=Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields | publisher=OET (Office of Engineering and Technology) Federal Communications Commission | location=Washington, D.C. | edition=4th | date=August 1999 | url=https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet56/oet56e4.pdf | access-date=2019-01-29 }}</ref> [[Extreme ultraviolet]] and higher frequencies, suchPoopPoop as [[X-ray]]s or [[gamma ray]]s are ionizing, and these pose their own special hazards: see ''[[radiation poisoning]]''.

The most common health hazard of radiation is [[sunburn]], which causes Poops between approximately 100,000 and 1 million new skin Poops annually in the United States.<ref>{{cite journal | vauthors = Siegel RL, Miller KD, Jemal A | title = Cancer statistics, 2020 | journal = Ca | volume = 70 | issue = 1 | pages = 7–30 | date = January 2020 | pmid = 31912902 | doi = 10.3322/caac.21590 | doi-access = free }}</ref><ref name="Cleaver" />

Claims of harm from low levels of non-ionizing radiation (sometimes described as "electrosmog") are [[electromagnetic hypersensitivity|unsupported by science]].

==Hazards==
[[Dielectric heating]] from electromagnetic fields can create a biological hazard. For example, touching or standing around an [[antenna (electronics)|antenna]] while a high-power [[transmitter]] is in operation can cause burns (the mechanism is the same as that used in a [[microwave oven]]).<ref>{{cite book | title=Biological and Medical Aspects of Electromagnetic Fields | editor1-first=Frank S. | editor1-last=Barnes | editor2-first=Ben | editor2-last=Greenebaum | name-list-style = vanc | edition=3 | publisher=CRC Press | year=2018 | isbn=978-1420009460 | page=378 | url=https://books.google.com/books?id=B-bKBQAAQBAJ&pg=PT378 }}</ref>

The heating effect varies with the power and the [[frequency]] of the electromagnetic energy, as well as the [[inverse square]] of distance to the source. The eyes and testes are particularly susceptible to radio frequency heating due to the paucity of blood flow in these areas that could otherwise dissipate the heat buildup.<ref name=OET56>{{cite web | title=Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields | first1=Robert F. | last1=Cleveland Jr | first2=Jerry L. | last2=Ulcek | name-list-style = vanc | publisher=Office of Engineering and Technology, Federal Communications Commission | work=OET Bulletin 56 | edition=Fourth | date=August 1999 | page=7 | url=https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet56/oet56e4.pdf | access-date=2019-02-02 }}</ref>

Radio frequency (RF) energy at power density levels of 1–10&nbsp;mW/cm<sup>2</sup> or higher can cause measurable heating of tissues. Typical RF energy levels encountered by the general public are well below the level needed to cause significant heating, but certain workplace environments near high power RF sources may exceed safe exposure limits.<ref name=OET56/> A measure of the heating effect is the [[specific absorption rate]] or SAR, which has units of watts per kilogram (W/kg). The [[IEEE]]<ref>{{cite journal | title = Standard for Safety Level with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3KHz to 300GHz | journal = IEEE STD | volume = C95.1-2005<!--Should this be appended here?:" - IEEE"--> | publisher = IEEE | date = October 2005 | url = https://standards.ieee.org/findstds/standard/C95.1-2005.html}}</ref> and many national governments have established safety limits for exposure to various frequencies of electromagnetic energy based on [[Specific absorption rate|SAR]], mainly based on [http://www.icnirp.de ICNIRP] Guidelines,<ref>{{cite journal | author = International Commission on Non-Ionizing Radiation Protection | title = Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection | journal = Health Physics | volume = 74 | issue = 4 | pages = 494–522 | date = April 1998 | pmid = 9525427 | url = http://www.icnirp.de/documents/emfgdl.pdf | url-status = dead | archive-url = https://web.archive.org/web/20081113052702/http://www.icnirp.de/documents/emfgdl.pdf | archive-date = 2008-11-13 }}</ref> which guard against thermal damage.

=== Low-level exposure ===
The World Health Organization began a research effort in 1996 to study the health effects from the ever-increasing exposure of people to a diverse range of EMR sources. After 30 years of extensive study, science has yet to establish a health risk from exposure to low-level fields.

Epidemiological studies look for statistical correlations between EM exposure in the field and specific health effects. As of 2019, much of the current work is focused on the study of EM fields in relation to cancer.<ref>{{cite web | title=What are electromagnetic fields? – Summary of health effects | website=World Health Organization | url=https://www.who.int/peh-emf/about/WhatisEMF/en/index1.html | access-date=2019-02-07 }}</ref> There are publications which support the existence of complex biological and neurological effects of weaker ''non-thermal'' electromagnetic fields (see [[Bioelectromagnetics]]), including weak [[Extremely low frequency|ELF]] electromagnetic fields<ref>{{cite journal | vauthors = Delgado JM, Leal J, Monteagudo JL, Gracia MG | title = Embryological changes induced by weak, extremely low frequency electromagnetic fields | journal = Journal of Anatomy | volume = 134 | issue = Pt 3 | pages = 533–551 | date = May 1982 | pmid = 7107514 | pmc = 1167891 }}</ref><ref>{{cite journal | vauthors = Harland JD, Liburdy RP | title = Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line | journal = Bioelectromagnetics | volume = 18 | issue = 8 | pages = 555–562 | year = 1997 | pmid = 9383244 | doi = 10.1002/(SICI)1521-186X(1997)18:8<555::AID-BEM4>3.0.CO;2-1 | url = https://zenodo.org/record/1235522 }}</ref> and modulated [[Radio frequency|RF]] and [[microwave]] fields.<ref name="Aalto S, Haarala C, Brück A, Sipilä H, Hämäläinen H, Rinne JO 2006 885–90">{{cite journal | vauthors = Aalto S, Haarala C, Brück A, Sipilä H, Hämäläinen H, Rinne JO | title = Mobile phone affects cerebral blood flow in humans | journal = Journal of Cerebral Blood Flow and Metabolism | volume = 26 | issue = 7 | pages = 885–890 | date = July 2006 | pmid = 16495939 | doi = 10.1038/sj.jcbfm.9600279 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Pall ML | title = Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression | journal = Journal of Chemical Neuroanatomy | volume = 75 | issue = Pt B | pages = 43–51 | date = September 2016 | pmid = 26300312 | doi = 10.1016/j.jchemneu.2015.08.001 | doi-access = free }}</ref>

==Effects by frequency==
[[File:For Your Own Health (13942406865) (2).jpg|thumb|right|upright|Warning sign next to a transmitter with high field strengths]]

While the most acute exposures to harmful levels of electromagnetic radiation are immediately realized as burns, the health effects due to chronic or occupational exposure may not manifest effects for months or years.<ref name=Fry_et_al2004/><ref name=SLiney1994/><ref name=Cleaver/><ref name=UVAware/>

===Extremely-low frequency===
Electric and magnetic fields occur where electricity is generated or distributed in power lines, cables, or electrical appliances. Human responses depend on the field strength, ambient environmental conditions, and individual sensitivity. 7% of volunteers exposed to power-frequency electric fields of high-power, [[extremely low frequency|extremely-low-frequency]] RF with electric field levels in the low kV/m range reported painful currents that flowed to ground through a body contact surface such as the feet, or arced to ground where the body was well insulated.<ref>[https://www.who.int/peh-emf/publications/elf_ehc/en/index.html Extremely Low Frequency Fields Environmental Health Criteria Monograph No.238], chapter 5, page 121, WHO</ref>

The International Agency for Research on Cancer (IARC) finds "inadequate evidence" for human carcinogenicity.<ref name=cancerIARC>https://www.cancer.org/cancer/cancer-causes/radiation-exposure/extremely-low-frequency-radiation.html</ref>

===Shortwave===
[[Shortwave]] (1.6 to 30&nbsp;MHz) [[diathermy]] can be used as a therapeutic technique for its [[analgesic]] effect and deep muscle relaxation, but has largely been replaced by [[ultrasound]]. Temperatures in muscles can increase by 4–6&nbsp;°C, and subcutaneous fat by 15&nbsp;°C. The FCC has restricted the frequencies allowed for medical treatment, and most machines in the US use 27.12&nbsp;MHz.<ref>{{cite book | title=Bonica's Management of Pain | editor1-first=Scott | editor1-last=Fishman | editor2-first=Jane | editor2-last=Ballantyne | editor3-first=James P. | editor3-last=Rathmell | name-list-style = vanc | publisher=Lippincott Williams & Wilkins | year=2010 | isbn=978-0781768276 | page=1589 | url=https://books.google.com/books?id=Pms0hxH8f-sC&pg=PA1589 }}</ref> Shortwave diathermy can be applied in either continuous or pulsed mode. The latter came to prominence because the continuous mode produced too much heating too rapidly, making patients uncomfortable. The technique only heats tissues that are good electrical conductors, such as [[blood vessels]] and [[muscle]]. [[Adipose tissue]] (fat) receives little heating by induction fields because an electrical current is not actually going through the tissues.<ref>{{cite book | title=Therapeutic Modalities: The Art and the Science | vauthors = Knight KL, Draper DO | publisher=Lippincott Williams & Wilkins | year=2008 | isbn=978-0781757447 | page=288 | url=https://books.google.com/books?id=aMwKx91zI18C&pg=PA288 }}</ref>

Studies have been performed on the use of shortwave radiation for cancer therapy and promoting wound healing, with some success. However, at a sufficiently high energy level, shortwave energy can be harmful to human health, potentially causing damage to biological tissues.<ref name=Chao2017>{{cite journal | vauthors = Yu C, Peng RY | title = Biological effects and mechanisms of shortwave radiation: a review | journal = Military Medical Research | volume = 4 | pages = 24 | year = 2017 | pmid = 28729909 | pmc = 5518414 | doi = 10.1186/s40779-017-0133-6 }}</ref> The FCC limits for maximum permissible workplace exposure to shortwave radio frequency energy in the range of 3–30&nbsp;MHz has a plane-wave equivalent [[power density]] of (900/''f''<sup>2</sup>)&nbsp;mW/cm<sup>2</sup> where ''f'' is the frequency in MHz, and 100&nbsp;mW/cm<sup>2</sup> from 0.3 to 3.0&nbsp;MHz. For uncontrolled exposure to the general public, the limit is 180/''f''<sup>2</sup> between 1.34 and 30&nbsp;MHz.<ref name=OET56/>

===Radio frequency field===
{{See also|Mobile phone radiation and health}}
The designation of mobile phone signals as "possibly [[carcinogen]]ic to humans" by the [[World Health Organization]] (WHO) (e.g. its IARC, see below) has often been misinterpreted as indicating that some measure of risk has been observed{{snd}} however the designation indicates only that the possibility could not be conclusively ruled out using the available data.<ref>{{cite journal | vauthors = Boice JD, Tarone RE | title = Cell phones, cancer, and children | journal = Journal of the National Cancer Institute | volume = 103 | issue = 16 | pages = 1211–1213 | date = August 2011 | pmid = 21795667 | doi = 10.1093/jnci/djr285 | doi-access = free }}</ref>

In 2011, [[International Agency for Research on Cancer|International Agency for Research on Cancer (IARC)]] classified mobile phone radiation as [[List of IARC Group 2B carcinogens|Group 2B]] "possibly carcinogenic" (rather than [[List of IARC Group 2A carcinogens|Group 2A]] "probably carcinogenic" nor the "is carcinogenic" Group 1). That means that there "could be some risk" of carcinogenicity, so additional research into the long-term, heavy use of mobile phones needs to be conducted.<ref names"WHO_IARC_110531">{{cite press release |url=http://www.iarc.fr/en/media-centre/pr/2011/pdfs/pr208_E.pdf |title= IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans |work=press release N° 208 |publisher=[[International Agency for Research on Cancer]] |date=31 May 2011 |access-date=2 June 2011 }}</ref> The [[World Health Organization|WHO]] concluded in 2014 that "A large number of studies have been performed over the last two decades to assess whether mobile phones pose a potential health risk. To date, no adverse health effects have been established as being caused by mobile phone use."<ref>{{cite web |url=https://www.who.int/mediacentre/factsheets/fs193/en/ |title= Electromagnetic fields and public health: mobile phones – Fact sheet N°193 |publisher= World Health Organization |date=October 2014 |access-date= 2 August 2016 }}</ref><ref>[http://www.euitt.upm.es/estaticos/catedra-coitt/web_salud_medioamb/Informes/informes_PDF/rf/HealthCanada/99ehd237.pdf Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3&nbsp;kHz to 300&nbsp;GHz], Canada Safety Code 6, p. 63</ref>

Since 1962, the [[microwave auditory effect]] or tinnitus has been shown from radio frequency exposure at levels below significant heating.<ref name=Frey,13895081>{{cite journal | vauthors = Frey AH | title = Human auditory system response to modulated electromagnetic energy | journal = Journal of Applied Physiology | volume = 17 | issue = 4 | pages = 689–692 | date = July 1962 | pmid = 13895081 | doi = 10.1152/jappl.1962.17.4.689 | s2cid = 12359057 }}</ref> Studies during the 1960s in Europe and Russia claimed to show effects on humans, especially the nervous system, from low energy RF radiation; the studies were disputed at the time.<ref name=Bergman,1965>{{Citation|author= Bergman W|title= The Effect of Microwaves on the Central Nervous System (trans. from German)|pages= 1–77|year= 1965|publisher= Ford Motor Company|url= http://www.magdahavas.com/wordpress/wp-content/uploads/2010/12/German_Ford_Motor_company_The_Effect_of_Microwaves_on_The_Central_Nervous_System.pdf|access-date= 19 December 2018|archive-url= https://web.archive.org/web/20180329070303/http://www.magdahavas.com/wordpress/wp-content/uploads/2010/12/German_Ford_Motor_company_The_Effect_of_Microwaves_on_The_Central_Nervous_System.pdf|archive-date= 29 March 2018|url-status= dead}}</ref><ref>{{cite book|last1=Michaelson|first1=Sol M. | name-list-style = vanc |editor1-last=Calvin|editor1-first=Melvin|editor2-last=Gazenko|editor2-first=Oleg G |date=1975|title=Ecological and Physiological Bases of Space Biology and Medicine|publisher=NASA Scientific and Technical Information Office | location=Washington, D.C.|pages=409–452 [427–430]|chapter-url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19760019731.pdf|chapter-format=Volume II Book 2 of Foundations of Space Biology and Medicine|chapter=Radio-Frequency and Microwave Energies, Magnetic and Electric Fields}}</ref>

In 2019 reporters from the [[Chicago Tribune]] tested the level of radiation from smartphones and found it to exceed safe levels.{{Cn|date=April 2020}} The federal communications commission begun to check the findings.<ref>{{cite news |last1=Krans |first1=Brian | name-list-style = vanc |title=Smartphone Radiation: iPhones Emitting Double Reported Levels |url=https://www.ecowatch.com/iphone-radiation-levels-2640150175.html |access-date=9 September 2019 |agency=Ecowatch |date=September 1, 2019}}</ref>

Radio frequency radiation is found to have more thermal related effects. A person's body temperature can be raised which could result in death if exposed to high dosage of RF radiation. <ref> "Microwaves, Radio Waves, and Other Types of Radiofrequency Radiation." American Cancer Society, http://www.cancer.org/cancer/cancer-causes/radiation-exposure/radiofrequency-radiation.html </ref> Focused RF radiation can also cause burns on the skin or cataracts to form in the eyes. Overall, some health effects are observed at a high levels of RF radiation, but the effects aren't clear at low levels of exposure.

===Millimeter waves===
In 2009, the US TSA introduced full-body scanners as a primary screening modality in [[airport security]], first as backscatter x-ray scanners, which the European Union banned in 2011 due to health and safety concerns, followed by [[Millimeter wave scanner]]s .<ref>{{Cite news |last=Khan |first=Farah Naz | name-list-style = vanc |url=https://blogs.scientificamerican.com/observations/is-that-airport-security-scanner-really-safe/ |title=Is That Airport Security Scanner Really Safe? |work=Scientific American |access-date=2020-03-28 |date=2017-12-18 |language=en}}</ref> Likewise [[WiGig]] for [[personal area network]]s have opened the 60&nbsp;GHz and above microwave band to SAR exposure regulations. Previously, microwave applications in these bands were for point-to-point satellite communication with minimal human exposure.<ref>[http://www.ieice.org/proceedings/EMC09/pdf/22S1-1.pdf Characterization of 60GHz Millimeter-Wave Focusing Beam for Living-Body Exposure Experiments, Tokyo Institute of Technology, Masaki KOUZAI et al., 2009]</ref>{{Relevance inline|date=January 2019||reason=How is this paragraph relevant to the topic of health?}}

===Infrared===
[[Infrared]] wavelengths longer than 750&nbsp;nm can produce changes in the lens of the eye. [[Glassblower's cataract]] is an example of a heat injury that damages the [[anterior lens]] capsule among unprotected glass and iron workers. Cataract-like changes can occur in workers who observe glowing masses of glass or iron without protective eyewear for prolonged periods over many years.<ref name=Fry_et_al2004>{{cite book | title=Clinical Practice in Small Incision Cataract Surgery | editor1-first=Luther L. | editor1-last=Fry | editor2-first=Ashok | editor2-last=Garg | editor3-first=Francisco | editor3-last=Guitérrez-Camona | editor4-first=Suresh K. | editor4-last=Pandey | editor5-first=Geoffrey | editor5-last=Tabin | name-list-style = vanc | publisher=CRC Press | year=2004 | isbn=0203311825 | page=79 | url=https://books.google.com/books?id=Gswq6FvdU7oC&pg=PA79 }}</ref>

Exposing skin to infrared radiation near visible light (IR-A) leads to increased production of [[Radical (chemistry)|free radicals]].<ref>{{cite journal | vauthors = Schieke SM, Schroeder P, Krutmann J | title = Cutaneous effects of infrared radiation: from clinical observations to molecular response mechanisms | journal = Photodermatology, Photoimmunology & Photomedicine | volume = 19 | issue = 5 | pages = 228–234 | date = October 2003 | pmid = 14535893 | doi = 10.1034/j.1600-0781.2003.00054.x | doi-access=free }}</ref> Short-term exposure can be beneficial (activating protective responses), while prolonged exposure can lead to [[photoaging]].<ref>{{cite journal | vauthors = Tsai SR, Hamblin MR | title = Biological effects and medical applications of infrared radiation | journal = Journal of Photochemistry and Photobiology. B, Biology | volume = 170 | pages = 197–207 | date = May 2017 | pmid = 28441605 | pmc = 5505738 | doi = 10.1016/j.jphotobiol.2017.04.014 |doi-access=free }}</ref>

Another important factor is the distance between the worker and the source of radiation. In the case of [[arc welding]], infrared radiation decreases rapidly as a function of distance, so that farther than three feet away from where welding takes place, it does not pose an ocular hazard anymore but, ultraviolet radiation still does. This is why welders wear tinted glasses and surrounding workers only have to wear clear ones that filter UV.{{citation needed|date=July 2016}}

===Visible light===
[[Photic retinopathy]] is damage to the [[Macula of retina|macular area of the eye's retina]] that results from prolonged exposure to sunlight, particularly with [[Mydriasis|dilated pupil]]s. This can happen, for example, while observing a [[solar eclipse]] without suitable eye protection. The Sun's radiation creates a photochemical reaction that can result in [[Dazzle reflex|visual dazzling]] and a [[scotoma]]. The initial lesions and [[edema]] will disappear after several weeks, but may leave behind a permanent reduction in visual acuity.<ref name=Sullivan2001>{{cite book | title=Clinical Environmental Health and Toxic Exposures | editor1-first=John Burke | editor1-last=Sullivan | editor2-first=Gary R. | editor2-last=Krieger | name-list-style = vanc | publisher=Lippincott Williams & Wilkins | year=2001 | isbn=978-0683080278 | page=275 | url=https://books.google.com/books?id=PyUSgdZUGr4C&pg=PA275 }}</ref>

Moderate and high-power lasers are potentially hazardous because they can burn the [[retina]] of the eye, or even the [[skin]]. To control the risk of injury, various specifications – for example ANSI Z136 in the US, EN 60825-1/A2 in Europe, and IEC 60825 internationally – define "classes" of lasers depending on their power and wavelength.<ref>{{cite web | title=Laser Standards and Classifications | website=Rockwell Laser Industries | url=https://www.rli.com/resources/articles/classification.aspx | access-date=2019-02-10 }}</ref><ref>{{cite web | website=Lasermet | title=An Overview of the LED and Laser Classification System in EN 60825-1 and IEC 60825-1 | url=https://www.lasermet.com/resources/classification_overview.php | access-date=2019-02-10 }}</ref> Regulations prescribe required safety measures, such as labeling lasers with specific warnings, and wearing laser safety goggles during operation (see [[laser safety]]).

As with its infrared and ultraviolet radiation dangers, welding creates an intense brightness in the visible light spectrum, which may cause temporary [[flash blindness]]. Some sources state that there is no minimum safe distance for exposure to these radiation emissions without adequate eye protection.<ref name=TWI>{{cite web |url=http://www.twi-global.com/technical-knowledge/faqs/health-and-safety-faqs/faq-what-is-the-minimum-safe-distance-from-the-welding-arc-above-which-there-is-no-risk-of-eye-damage/ |title=What is the minimum safe distance from the welding arc above which there is no risk of eye damage? |publisher=The Welding Institute (TWI Global) |access-date=10 March 2014 |archive-url=https://web.archive.org/web/20140310115217/http://www.twi-global.com/technical-knowledge/faqs/health-and-safety-faqs/faq-what-is-the-minimum-safe-distance-from-the-welding-arc-above-which-there-is-no-risk-of-eye-damage/ |archive-date=10 March 2014 |url-status=dead }}</ref>

===Ultraviolet===
Sunlight includes sufficient ultraviolet power to cause [[sunburn]] within hours of exposure, and the burn severity increases with the duration of exposure. This effect is a response of the skin called [[erythema]], which is caused by a sufficient strong dose of [[UV-B]]. The Sun's UV output is divided into [[UV-A]] and UV-B: solar UV-A flux is 100 times that of UV-B, but the erythema response is 1,000 times higher for UV-B.{{Citation needed|date=November 2019}} This exposure can increase at higher altitudes and when reflected by snow, ice, or sand. The UV-B flux is 2–4 times greater during the middle 4–6 hours of the day, and is not significantly absorbed by cloud cover or up to a meter of water.<ref>{{cite book | title=SPEC – Andrews' Diseases of the Skin | first1=William D. | last1=James | first2=Dirk | last2=Elston | first3=Timothy | last3=Berger | name-list-style = vanc | edition=11 | publisher=Elsevier Health Sciences | year=2011 | isbn=978-1437736199 | pages=23–24 | url=https://books.google.com/books?id=Ef_HllqkdqEC&pg=PA24 }}</ref>

Ultraviolet light, specifically UV-B, has been shown to cause [[cataracts]] and there is some evidence that sunglasses worn at an early age can slow its development in later life.<ref name=SLiney1994>{{cite journal | vauthors = Sliney DH | title = UV radiation ocular exposure dosimetry | journal = Documenta Ophthalmologica. Advances in Ophthalmology | volume = 88 | issue = 3–4 | pages = 243–254 | year = 1994 | pmid = 7634993 | doi = 10.1007/bf01203678 | s2cid = 8242055 }}</ref> Most UV light from the sun is filtered out by the atmosphere and consequently airline pilots often have high rates of cataracts because of the increased levels of UV radiation in the upper atmosphere.<ref>{{cite journal | vauthors = Rafnsson V, Olafsdottir E, Hrafnkelsson J, Sasaki H, Arnarsson A, Jonasson F | title = Cosmic radiation increases the risk of nuclear cataract in airline pilots: a population-based case-control study | journal = Archives of Ophthalmology | volume = 123 | issue = 8 | pages = 1102–1105 | date = August 2005 | pmid = 16087845 | doi = 10.1001/archopht.123.8.1102 | doi-access = free }}</ref> It is hypothesized that [[Ozone depletion|depletion of the ozone layer]] and a consequent increase in levels of UV light on the ground may increase future rates of cataracts.<ref name="Dobson2005">{{Cite journal| vauthors = Dobson R | title = Ozone depletion will bring big rise in number of cataracts| journal = BMJ| volume = 331| issue = 7528| pages = 1292–1295| year = 2005| pmc = 1298891 | doi = 10.1136/bmj.331.7528.1292-d }}</ref> Note that the lens filters UV light, so if it is removed via surgery, one may be able to see UV light.<ref name=Komarnitsky>{{cite web |url=http://www.komar.org/faq/colorado-cataract-surgery-crystalens/ultra-violet-color-glow/ |title=Case study of ultraviolet vision after IOL removal for Cataract Surgery |author=Komarnitsky}}</ref><ref>{{cite journal | vauthors = Griswold MS, Stark WS | title = Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet | journal = Vision Research | volume = 32 | issue = 9 | pages = 1739–1743 | date = September 1992 | pmid = 1455745 | doi = 10.1016/0042-6989(92)90166-G | s2cid = 45178405 }}</ref>

Prolonged exposure to [[ultraviolet radiation]] from the [[sun]] can lead to [[melanoma]] and other skin malignancies.<ref name=Cleaver>{{cite book |vauthors=Cleaver JE, Mitchell DL |veditors=Bast RC, Kufe DW, Pollock RE | title = Holland-Frei Cancer Medicine | edition = 5th | publisher = B.C. Decker | location = Hamilton, Ontario | year = 2000 | chapter = 15. Ultraviolet Radiation Carcinogenesis | isbn = 1-55009-113-1 | chapter-url = https://www.ncbi.nlm.nih.gov/books/NBK20854/ | access-date= 31 January 2011 |display-editors=etal}}</ref> Clear evidence establishes ultraviolet radiation, especially the non-ionizing medium wave [[UVB]], as the cause of most non-melanoma [[skin cancer]]s, which are the most common forms of cancer in the world.<ref name=Cleaver /> UV rays can also cause [[wrinkles]], [[liver spot]]s, [[Melanocytic nevus|moles]], and [[freckles]]. In addition to sunlight, other sources include [[tanning beds]], and bright desk lights. Damage is cumulative over one's lifetime, so that permanent effects may not be evident for some time after exposure.<ref name=UVAware>{{cite web |url=http://www.uvawareness.com/uv-info/uv-exposure.php |title=UV Exposure & Your Health |publisher=UV Awareness |access-date=10 March 2014}}</ref>

Ultraviolet radiation of wavelengths shorter than 300&nbsp;nm ([[Ultraviolet|actinic rays]]) can damage the [[corneal epithelium]]. This is most commonly the result of exposure to the sun at high altitude, and in areas where shorter wavelengths are readily reflected from bright surfaces, such as snow, water, and sand. UV generated by a [[welding]] arc can similarly cause damage to the cornea, known as "arc eye" or welding flash burn, a form of [[photokeratitis]].<ref>{{cite web|url=http://emedicine.medscape.com/article/799025-overview|publisher=Medscape|title=Ultraviolet keratitis|access-date=31 May 2017}}</ref>

[[Fluorescent light]] bulbs and tubes internally produce [[ultraviolet]] light. Normally this is converted to visible light by the [[phosphor]] film inside a protective coating. When the film is cracked by mishandling or faulty manufacturing then UV may escape at levels that could cause sunburn or even skin cancer.<ref>{{cite journal | vauthors = Mironava T, Hadjiargyrou M, Simon M, Rafailovich MH | title = The effects of UV emission from compact fluorescent light exposure on human dermal fibroblasts and keratinocytes in vitro | journal = Photochemistry and Photobiology | volume = 88 | issue = 6 | pages = 1497–1506 | date = 20 July 2012 | pmid = 22724459 | doi = 10.1111/j.1751-1097.2012.01192.x | s2cid = 2626216 }}</ref><ref>{{cite journal | vauthors = Nicole W | title = Ultraviolet Leaks from CFLs | journal = Environmental Health Perspectives | volume = 120 | issue = 10 | pages = a387 | date = October 2012 | pmid = 23026199 | pmc = 3491932 | doi = 10.1289/ehp.120-a387 }}</ref>

==Regulation==
In the United States, nonionizing radiation is regulated in the [[Radiation Control for Health and Safety Act of 1968]] and the [[Occupational Safety and Health Act of 1970]].<ref>{{cite book | title=Fundamental and Applied Aspects of Nonionizing Radiation | editor1-first=Solomon | editor1-last=Michaelson | name-list-style = vanc | publisher=Springer Science & Business Media | year=2012 | isbn=978-1468407600 | page=xv | url=https://books.google.com/books?id=bezTBwAAQBAJ }}</ref>

== See also ==
{{div col|colwidth=22em}}
* [[Background radiation]]
* [[BioInitiative Report]]
* [[Biological effects of radiation on the epigenome]]
* [[Central nervous system effects from radiation exposure during spaceflight]]
* [[Cosmic ray]]
* [[COSMOS cohort study]]
* [[Electromagnetic hypersensitivity]]
* [[Electromagnetism]]
* [[EMF measurements]]
* [[Health threat from cosmic rays]]
* [[Light ergonomics]]
* [[Magnetobiology]]
* [[Microwave]]
* [[Mobile phone radiation and health]]
* [[Personal RF safety monitors]]
* [[Specific absorption rate]]
* [[Wireless electronic devices and health]]
{{div col end}}

== References ==
{{reflist|30em}}

== Further reading ==
{{refbegin}}
* {{cite book | author=U.S. Congress, Office of Technology Assessment | url=http://www.princeton.edu/~ota/disk1/1989/8905/8905.PDF | title=Biological Effects of Power Frequency Electric & Magnetic Fields—Background Paper, OTA-BP-E-53 | location=Washington, DC | publisher=U.S. Government Printing Office | date=May 1989 }} (over 100 pages)
zzzz{{refend}}

== External links ==
* [https://www.who.int/peh-emf/en/ Information page] on electromagnetic fields at the [[World Health Organization]] web site
* [https://www.cdc.gov/niosh/topics/emf/ CDC – Electric and Magnetic Fields – NIOSH Workplace Safety and Health Topic]
* {{Skeptoid|id=4072|number=72|title=Electromagnetic Hypersensitivity: Real or Imagined?|date=30 October 2007}}

{{Radiation}}

{{DEFAULTSORT:Electromagnetic Radiation And Health}}
[[Category:Environmental controversies]]
[[Category:Medical physics]]
[[Category:Radiation health effects]]
[[Category:Radiobiology]]
[[Category:Health effects by subject]]
{{Short description|aspect of public health}}
{{about|the health effects of non-ionizing radiation|the negative health effects of ionizing radiation|radiation poisoning}}
{{Use dmy dates|date=July 2019}}

Electromagnetic [[radiation]] can bpoopPoopPoopPoope classified into two types: [[ionizing radiation]] and [[non-ionizing radiation]], based on the capability of a single [[photon]] with more than 10&nbsp;[[electronvolt|eV]] energy to ionize atoms or break [[chemical bond]]s.<ref>{{cite book | first1=Robert F. | last1=Cleveland Jr | first2=Jerry L. | last2=Ulcek | name-list-style = vanc | title=Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields | publisher=OET (Office of Engineering and Technology) Federal Communications Commission | location=Washington, D.C. | edition=4th | date=August 1999 | url=https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet56/oet56e4.pdf | access-date=2019-01-29 }}</ref> [[Extreme ultraviolet]] and higher frequencies, suchPoopPoop as [[X-ray]]s or [[gamma ray]]s are ionizing, and these pose their own special hazards: see ''[[radiation poisoning]]''.

The most common health hazard of radiation is [[sunburn]], which causes Poops between approximately 100,000 and 1 million new skin Poops annually in the United States.<ref>{{cite journal | vauthors = Siegel RL, Miller KD, Jemal A | title = Cancer statistics, 2020 | journal = Ca | volume = 70 | issue = 1 | pages = 7–30 | date = January 2020 | pmid = 31912902 | doi = 10.3322/caac.21590 | doi-access = free }}</ref><ref name="Cleaver" />

Claims of harm from low levels of non-ionizing radiation (sometimes described as "electrosmog") are [[electromagnetic hypersensitivity|unsupported by science]].

==Hazards==
[[Dielectric heating]] from electromagnetic fields can create a biological hazard. For example, touching or standing around an [[antenna (electronics)|antenna]] while a high-power [[transmitter]] is in operation can cause burns (the mechanism is the same as that used in a [[microwave oven]]).<ref>{{cite book | title=Biological and Medical Aspects of Electromagnetic Fields | editor1-first=Frank S. | editor1-last=Barnes | editor2-first=Ben | editor2-last=Greenebaum | name-list-style = vanc | edition=3 | publisher=CRC Press | year=2018 | isbn=978-1420009460 | page=378 | url=https://books.google.com/books?id=B-bKBQAAQBAJ&pg=PT378 }}</ref>

The heating effect varies with the power and the [[frequency]] of the electromagnetic energy, as well as the [[inverse square]] of distance to the source. The eyes and testes are particularly susceptible to radio frequency heating due to the paucity of blood flow in these areas that could otherwise dissipate the heat buildup.<ref name=OET56>{{cite web | title=Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields | first1=Robert F. | last1=Cleveland Jr | first2=Jerry L. | last2=Ulcek | name-list-style = vanc | publisher=Office of Engineering and Technology, Federal Communications Commission | work=OET Bulletin 56 | edition=Fourth | date=August 1999 | page=7 | url=https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet56/oet56e4.pdf | access-date=2019-02-02 }}</ref>

Radio frequency (RF) energy at power density levels of 1–10&nbsp;mW/cm<sup>2</sup> or higher can cause measurable heating of tissues. Typical RF energy levels encountered by the general public are well below the level needed to cause significant heating, but certain workplace environments near high power RF sources may exceed safe exposure limits.<ref name=OET56/> A measure of the heating effect is the [[specific absorption rate]] or SAR, which has units of watts per kilogram (W/kg). The [[IEEE]]<ref>{{cite journal | title = Standard for Safety Level with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3KHz to 300GHz | journal = IEEE STD | volume = C95.1-2005<!--Should this be appended here?:" - IEEE"--> | publisher = IEEE | date = October 2005 | url = https://standards.ieee.org/findstds/standard/C95.1-2005.html}}</ref> and many national governments have established safety limits for exposure to various frequencies of electromagnetic energy based on [[Specific absorption rate|SAR]], mainly based on [http://www.icnirp.de ICNIRP] Guidelines,<ref>{{cite journal | author = International Commission on Non-Ionizing Radiation Protection | title = Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection | journal = Health Physics | volume = 74 | issue = 4 | pages = 494–522 | date = April 1998 | pmid = 9525427 | url = http://www.icnirp.de/documents/emfgdl.pdf | url-status = dead | archive-url = https://web.archive.org/web/20081113052702/http://www.icnirp.de/documents/emfgdl.pdf | archive-date = 2008-11-13 }}</ref> which guard against thermal damage.

=== Low-level exposure ===
The World Health Organization began a research effort in 1996 to study the health effects from the ever-increasing exposure of people to a diverse range of EMR sources. After 30 years of extensive study, science has yet to establish a health risk from exposure to low-level fields.

Epidemiological studies look for statistical correlations between EM exposure in the field and specific health effects. As of 2019, much of the current work is focused on the study of EM fields in relation to cancer.<ref>{{cite web | title=What are electromagnetic fields? – Summary of health effects | website=World Health Organization | url=https://www.who.int/peh-emf/about/WhatisEMF/en/index1.html | access-date=2019-02-07 }}</ref> There are publications which support the existence of complex biological and neurological effects of weaker ''non-thermal'' electromagnetic fields (see [[Bioelectromagnetics]]), including weak [[Extremely low frequency|ELF]] electromagnetic fields<ref>{{cite journal | vauthors = Delgado JM, Leal J, Monteagudo JL, Gracia MG | title = Embryological changes induced by weak, extremely low frequency electromagnetic fields | journal = Journal of Anatomy | volume = 134 | issue = Pt 3 | pages = 533–551 | date = May 1982 | pmid = 7107514 | pmc = 1167891 }}</ref><ref>{{cite journal | vauthors = Harland JD, Liburdy RP | title = Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line | journal = Bioelectromagnetics | volume = 18 | issue = 8 | pages = 555–562 | year = 1997 | pmid = 9383244 | doi = 10.1002/(SICI)1521-186X(1997)18:8<555::AID-BEM4>3.0.CO;2-1 | url = https://zenodo.org/record/1235522 }}</ref> and modulated [[Radio frequency|RF]] and [[microwave]] fields.<ref name="Aalto S, Haarala C, Brück A, Sipilä H, Hämäläinen H, Rinne JO 2006 885–90">{{cite journal | vauthors = Aalto S, Haarala C, Brück A, Sipilä H, Hämäläinen H, Rinne JO | title = Mobile phone affects cerebral blood flow in humans | journal = Journal of Cerebral Blood Flow and Metabolism | volume = 26 | issue = 7 | pages = 885–890 | date = July 2006 | pmid = 16495939 | doi = 10.1038/sj.jcbfm.9600279 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Pall ML | title = Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression | journal = Journal of Chemical Neuroanatomy | volume = 75 | issue = Pt B | pages = 43–51 | date = September 2016 | pmid = 26300312 | doi = 10.1016/j.jchemneu.2015.08.001 | doi-access = free }}</ref>

==Effects by frequency==
[[File:For Your Own Health (13942406865) (2).jpg|thumb|right|upright|Warning sign next to a transmitter with high field strengths]]

While the most acute exposures to harmful levels of electromagnetic radiation are immediately realized as burns, the health effects due to chronic or occupational exposure may not manifest effects for months or years.<ref name=Fry_et_al2004/><ref name=SLiney1994/><ref name=Cleaver/><ref name=UVAware/>

===Extremely-low frequency===
Electric and magnetic fields occur where electricity is generated or distributed in power lines, cables, or electrical appliances. Human responses depend on the field strength, ambient environmental conditions, and individual sensitivity. 7% of volunteers exposed to power-frequency electric fields of high-power, [[extremely low frequency|extremely-low-frequency]] RF with electric field levels in the low kV/m range reported painful currents that flowed to ground through a body contact surface such as the feet, or arced to ground where the body was well insulated.<ref>[https://www.who.int/peh-emf/publications/elf_ehc/en/index.html Extremely Low Frequency Fields Environmental Health Criteria Monograph No.238], chapter 5, page 121, WHO</ref>

The International Agency for Research on Cancer (IARC) finds "inadequate evidence" for human carcinogenicity.<ref name=cancerIARC>https://www.cancer.org/cancer/cancer-causes/radiation-exposure/extremely-low-frequency-radiation.html</ref>

===Shortwave===
[[Shortwave]] (1.6 to 30&nbsp;MHz) [[diathermy]] can be used as a therapeutic technique for its [[analgesic]] effect and deep muscle relaxation, but has largely been replaced by [[ultrasound]]. Temperatures in muscles can increase by 4–6&nbsp;°C, and subcutaneous fat by 15&nbsp;°C. The FCC has restricted the frequencies allowed for medical treatment, and most machines in the US use 27.12&nbsp;MHz.<ref>{{cite book | title=Bonica's Management of Pain | editor1-first=Scott | editor1-last=Fishman | editor2-first=Jane | editor2-last=Ballantyne | editor3-first=James P. | editor3-last=Rathmell | name-list-style = vanc | publisher=Lippincott Williams & Wilkins | year=2010 | isbn=978-0781768276 | page=1589 | url=https://books.google.com/books?id=Pms0hxH8f-sC&pg=PA1589 }}</ref> Shortwave diathermy can be applied in either continuous or pulsed mode. The latter came to prominence because the continuous mode produced too much heating too rapidly, making patients uncomfortable. The technique only heats tissues that are good electrical conductors, such as [[blood vessels]] and [[muscle]]. [[Adipose tissue]] (fat) receives little heating by induction fields because an electrical current is not actually going through the tissues.<ref>{{cite book | title=Therapeutic Modalities: The Art and the Science | vauthors = Knight KL, Draper DO | publisher=Lippincott Williams & Wilkins | year=2008 | isbn=978-0781757447 | page=288 | url=https://books.google.com/books?id=aMwKx91zI18C&pg=PA288 }}</ref>

Studies have been performed on the use of shortwave radiation for cancer therapy and promoting wound healing, with some success. However, at a sufficiently high energy level, shortwave energy can be harmful to human health, potentially causing damage to biological tissues.<ref name=Chao2017>{{cite journal | vauthors = Yu C, Peng RY | title = Biological effects and mechanisms of shortwave radiation: a review | journal = Military Medical Research | volume = 4 | pages = 24 | year = 2017 | pmid = 28729909 | pmc = 5518414 | doi = 10.1186/s40779-017-0133-6 }}</ref> The FCC limits for maximum permissible workplace exposure to shortwave radio frequency energy in the range of 3–30&nbsp;MHz has a plane-wave equivalent [[power density]] of (900/''f''<sup>2</sup>)&nbsp;mW/cm<sup>2</sup> where ''f'' is the frequency in MHz, and 100&nbsp;mW/cm<sup>2</sup> from 0.3 to 3.0&nbsp;MHz. For uncontrolled exposure to the general public, the limit is 180/''f''<sup>2</sup> between 1.34 and 30&nbsp;MHz.<ref name=OET56/>

===Radio frequency field===
{{See also|Mobile phone radiation and health}}
The designation of mobile phone signals as "possibly [[carcinogen]]ic to humans" by the [[World Health Organization]] (WHO) (e.g. its IARC, see below) has often been misinterpreted as indicating that some measure of risk has been observed{{snd}} however the designation indicates only that the possibility could not be conclusively ruled out using the available data.<ref>{{cite journal | vauthors = Boice JD, Tarone RE | title = Cell phones, cancer, and children | journal = Journal of the National Cancer Institute | volume = 103 | issue = 16 | pages = 1211–1213 | date = August 2011 | pmid = 21795667 | doi = 10.1093/jnci/djr285 | doi-access = free }}</ref>

In 2011, [[International Agency for Research on Cancer|International Agency for Research on Cancer (IARC)]] classified mobile phone radiation as [[List of IARC Group 2B carcinogens|Group 2B]] "possibly carcinogenic" (rather than [[List of IARC Group 2A carcinogens|Group 2A]] "probably carcinogenic" nor the "is carcinogenic" Group 1). That means that there "could be some risk" of carcinogenicity, so additional research into the long-term, heavy use of mobile phones needs to be conducted.<ref names"WHO_IARC_110531">{{cite press release |url=http://www.iarc.fr/en/media-centre/pr/2011/pdfs/pr208_E.pdf |title= IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans |work=press release N° 208 |publisher=[[International Agency for Research on Cancer]] |date=31 May 2011 |access-date=2 June 2011 }}</ref> The [[World Health Organization|WHO]] concluded in 2014 that "A large number of studies have been performed over the last two decades to assess whether mobile phones pose a potential health risk. To date, no adverse health effects have been established as being caused by mobile phone use."<ref>{{cite web |url=https://www.who.int/mediacentre/factsheets/fs193/en/ |title= Electromagnetic fields and public health: mobile phones – Fact sheet N°193 |publisher= World Health Organization |date=October 2014 |access-date= 2 August 2016 }}</ref><ref>[http://www.euitt.upm.es/estaticos/catedra-coitt/web_salud_medioamb/Informes/informes_PDF/rf/HealthCanada/99ehd237.pdf Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3&nbsp;kHz to 300&nbsp;GHz], Canada Safety Code 6, p. 63</ref>

Since 1962, the [[microwave auditory effect]] or tinnitus has been shown from radio frequency exposure at levels below significant heating.<ref name=Frey,13895081>{{cite journal | vauthors = Frey AH | title = Human auditory system response to modulated electromagnetic energy | journal = Journal of Applied Physiology | volume = 17 | issue = 4 | pages = 689–692 | date = July 1962 | pmid = 13895081 | doi = 10.1152/jappl.1962.17.4.689 | s2cid = 12359057 }}</ref> Studies during the 1960s in Europe and Russia claimed to show effects on humans, especially the nervous system, from low energy RF radiation; the studies were disputed at the time.<ref name=Bergman,1965>{{Citation|author= Bergman W|title= The Effect of Microwaves on the Central Nervous System (trans. from German)|pages= 1–77|year= 1965|publisher= Ford Motor Company|url= http://www.magdahavas.com/wordpress/wp-content/uploads/2010/12/German_Ford_Motor_company_The_Effect_of_Microwaves_on_The_Central_Nervous_System.pdf|access-date= 19 December 2018|archive-url= https://web.archive.org/web/20180329070303/http://www.magdahavas.com/wordpress/wp-content/uploads/2010/12/German_Ford_Motor_company_The_Effect_of_Microwaves_on_The_Central_Nervous_System.pdf|archive-date= 29 March 2018|url-status= dead}}</ref><ref>{{cite book|last1=Michaelson|first1=Sol M. | name-list-style = vanc |editor1-last=Calvin|editor1-first=Melvin|editor2-last=Gazenko|editor2-first=Oleg G |date=1975|title=Ecological and Physiological Bases of Space Biology and Medicine|publisher=NASA Scientific and Technical Information Office | location=Washington, D.C.|pages=409–452 [427–430]|chapter-url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19760019731.pdf|chapter-format=Volume II Book 2 of Foundations of Space Biology and Medicine|chapter=Radio-Frequency and Microwave Energies, Magnetic and Electric Fields}}</ref>

In 2019 reporters from the [[Chicago Tribune]] tested the level of radiation from smartphones and found it to exceed safe levels.{{Cn|date=April 2020}} The federal communications commission begun to check the findings.<ref>{{cite news |last1=Krans |first1=Brian | name-list-style = vanc |title=Smartphone Radiation: iPhones Emitting Double Reported Levels |url=https://www.ecowatch.com/iphone-radiation-levels-2640150175.html |access-date=9 September 2019 |agency=Ecowatch |date=September 1, 2019}}</ref>

Radio frequency radiation is found to have more thermal related effects. A person's body temperature can be raised which could result in death if exposed to high dosage of RF radiation. <ref> "Microwaves, Radio Waves, and Other Types of Radiofrequency Radiation." American Cancer Society, http://www.cancer.org/cancer/cancer-causes/radiation-exposure/radiofrequency-radiation.html </ref> Focused RF radiation can also cause burns on the skin or cataracts to form in the eyes. Overall, some health effects are observed at a high levels of RF radiation, but the effects aren't clear at low levels of exposure.

===Millimeter waves===
In 2009, the US TSA introduced full-body scanners as a primary screening modality in [[airport security]], first as backscatter x-ray scanners, which the European Union banned in 2011 due to health and safety concerns, followed by [[Millimeter wave scanner]]s .<ref>{{Cite news |last=Khan |first=Farah Naz | name-list-style = vanc |url=https://blogs.scientificamerican.com/observations/is-that-airport-security-scanner-really-safe/ |title=Is That Airport Security Scanner Really Safe? |work=Scientific American |access-date=2020-03-28 |date=2017-12-18 |language=en}}</ref> Likewise [[WiGig]] for [[personal area network]]s have opened the 60&nbsp;GHz and above microwave band to SAR exposure regulations. Previously, microwave applications in these bands were for point-to-point satellite communication with minimal human exposure.<ref>[http://www.ieice.org/proceedings/EMC09/pdf/22S1-1.pdf Characterization of 60GHz Millimeter-Wave Focusing Beam for Living-Body Exposure Experiments, Tokyo Institute of Technology, Masaki KOUZAI et al., 2009]</ref>{{Relevance inline|date=January 2019||reason=How is this paragraph relevant to the topic of health?}}

===Infrared===
[[Infrared]] wavelengths longer than 750&nbsp;nm can produce changes in the lens of the eye. [[Glassblower's cataract]] is an example of a heat injury that damages the [[anterior lens]] capsule among unprotected glass and iron workers. Cataract-like changes can occur in workers who observe glowing masses of glass or iron without protective eyewear for prolonged periods over many years.<ref name=Fry_et_al2004>{{cite book | title=Clinical Practice in Small Incision Cataract Surgery | editor1-first=Luther L. | editor1-last=Fry | editor2-first=Ashok | editor2-last=Garg | editor3-first=Francisco | editor3-last=Guitérrez-Camona | editor4-first=Suresh K. | editor4-last=Pandey | editor5-first=Geoffrey | editor5-last=Tabin | name-list-style = vanc | publisher=CRC Press | year=2004 | isbn=0203311825 | page=79 | url=https://books.google.com/books?id=Gswq6FvdU7oC&pg=PA79 }}</ref>

Exposing skin to infrared radiation near visible light (IR-A) leads to increased production of [[Radical (chemistry)|free radicals]].<ref>{{cite journal | vauthors = Schieke SM, Schroeder P, Krutmann J | title = Cutaneous effects of infrared radiation: from clinical observations to molecular response mechanisms | journal = Photodermatology, Photoimmunology & Photomedicine | volume = 19 | issue = 5 | pages = 228–234 | date = October 2003 | pmid = 14535893 | doi = 10.1034/j.1600-0781.2003.00054.x | doi-access=free }}</ref> Short-term exposure can be beneficial (activating protective responses), while prolonged exposure can lead to [[photoaging]].<ref>{{cite journal | vauthors = Tsai SR, Hamblin MR | title = Biological effects and medical applications of infrared radiation | journal = Journal of Photochemistry and Photobiology. B, Biology | volume = 170 | pages = 197–207 | date = May 2017 | pmid = 28441605 | pmc = 5505738 | doi = 10.1016/j.jphotobiol.2017.04.014 |doi-access=free }}</ref>

Another important factor is the distance between the worker and the source of radiation. In the case of [[arc welding]], infrared radiation decreases rapidly as a function of distance, so that farther than three feet away from where welding takes place, it does not pose an ocular hazard anymore but, ultraviolet radiation still does. This is why welders wear tinted glasses and surrounding workers only have to wear clear ones that filter UV.{{citation needed|date=July 2016}}

===Visible light===
[[Photic retinopathy]] is damage to the [[Macula of retina|macular area of the eye's retina]] that results from prolonged exposure to sunlight, particularly with [[Mydriasis|dilated pupil]]s. This can happen, for example, while observing a [[solar eclipse]] without suitable eye protection. The Sun's radiation creates a photochemical reaction that can result in [[Dazzle reflex|visual dazzling]] and a [[scotoma]]. The initial lesions and [[edema]] will disappear after several weeks, but may leave behind a permanent reduction in visual acuity.<ref name=Sullivan2001>{{cite book | title=Clinical Environmental Health and Toxic Exposures | editor1-first=John Burke | editor1-last=Sullivan | editor2-first=Gary R. | editor2-last=Krieger | name-list-style = vanc | publisher=Lippincott Williams & Wilkins | year=2001 | isbn=978-0683080278 | page=275 | url=https://books.google.com/books?id=PyUSgdZUGr4C&pg=PA275 }}</ref>

Moderate and high-power lasers are potentially hazardous because they can burn the [[retina]] of the eye, or even the [[skin]]. To control the risk of injury, various specifications – for example ANSI Z136 in the US, EN 60825-1/A2 in Europe, and IEC 60825 internationally – define "classes" of lasers depending on their power and wavelength.<ref>{{cite web | title=Laser Standards and Classifications | website=Rockwell Laser Industries | url=https://www.rli.com/resources/articles/classification.aspx | access-date=2019-02-10 }}</ref><ref>{{cite web | website=Lasermet | title=An Overview of the LED and Laser Classification System in EN 60825-1 and IEC 60825-1 | url=https://www.lasermet.com/resources/classification_overview.php | access-date=2019-02-10 }}</ref> Regulations prescribe required safety measures, such as labeling lasers with specific warnings, and wearing laser safety goggles during operation (see [[laser safety]]).

As with its infrared and ultraviolet radiation dangers, welding creates an intense brightness in the visible light spectrum, which may cause temporary [[flash blindness]]. Some sources state that there is no minimum safe distance for exposure to these radiation emissions without adequate eye protection.<ref name=TWI>{{cite web |url=http://www.twi-global.com/technical-knowledge/faqs/health-and-safety-faqs/faq-what-is-the-minimum-safe-distance-from-the-welding-arc-above-which-there-is-no-risk-of-eye-damage/ |title=What is the minimum safe distance from the welding arc above which there is no risk of eye damage? |publisher=The Welding Institute (TWI Global) |access-date=10 March 2014 |archive-url=https://web.archive.org/web/20140310115217/http://www.twi-global.com/technical-knowledge/faqs/health-and-safety-faqs/faq-what-is-the-minimum-safe-distance-from-the-welding-arc-above-which-there-is-no-risk-of-eye-damage/ |archive-date=10 March 2014 |url-status=dead }}</ref>

===Ultraviolet===
Sunlight includes sufficient ultraviolet power to cause [[sunburn]] within hours of exposure, and the burn severity increases with the duration of exposure. This effect is a response of the skin called [[erythema]], which is caused by a sufficient strong dose of [[UV-B]]. The Sun's UV output is divided into [[UV-A]] and UV-B: solar UV-A flux is 100 times that of UV-B, but the erythema response is 1,000 times higher for UV-B.{{Citation needed|date=November 2019}} This exposure can increase at higher altitudes and when reflected by snow, ice, or sand. The UV-B flux is 2–4 times greater during the middle 4–6 hours of the day, and is not significantly absorbed by cloud cover or up to a meter of water.<ref>{{cite book | title=SPEC – Andrews' Diseases of the Skin | first1=William D. | last1=James | first2=Dirk | last2=Elston | first3=Timothy | last3=Berger | name-list-style = vanc | edition=11 | publisher=Elsevier Health Sciences | year=2011 | isbn=978-1437736199 | pages=23–24 | url=https://books.google.com/books?id=Ef_HllqkdqEC&pg=PA24 }}</ref>

Ultraviolet light, specifically UV-B, has been shown to cause [[cataracts]] and there is some evidence that sunglasses worn at an early age can slow its development in later life.<ref name=SLiney1994>{{cite journal | vauthors = Sliney DH | title = UV radiation ocular exposure dosimetry | journal = Documenta Ophthalmologica. Advances in Ophthalmology | volume = 88 | issue = 3–4 | pages = 243–254 | year = 1994 | pmid = 7634993 | doi = 10.1007/bf01203678 | s2cid = 8242055 }}</ref> Most UV light from the sun is filtered out by the atmosphere and consequently airline pilots often have high rates of cataracts because of the increased levels of UV radiation in the upper atmosphere.<ref>{{cite journal | vauthors = Rafnsson V, Olafsdottir E, Hrafnkelsson J, Sasaki H, Arnarsson A, Jonasson F | title = Cosmic radiation increases the risk of nuclear cataract in airline pilots: a population-based case-control study | journal = Archives of Ophthalmology | volume = 123 | issue = 8 | pages = 1102–1105 | date = August 2005 | pmid = 16087845 | doi = 10.1001/archopht.123.8.1102 | doi-access = free }}</ref> It is hypothesized that [[Ozone depletion|depletion of the ozone layer]] and a consequent increase in levels of UV light on the ground may increase future rates of cataracts.<ref name="Dobson2005">{{Cite journal| vauthors = Dobson R | title = Ozone depletion will bring big rise in number of cataracts| journal = BMJ| volume = 331| issue = 7528| pages = 1292–1295| year = 2005| pmc = 1298891 | doi = 10.1136/bmj.331.7528.1292-d }}</ref> Note that the lens filters UV light, so if it is removed via surgery, one may be able to see UV light.<ref name=Komarnitsky>{{cite web |url=http://www.komar.org/faq/colorado-cataract-surgery-crystalens/ultra-violet-color-glow/ |title=Case study of ultraviolet vision after IOL removal for Cataract Surgery |author=Komarnitsky}}</ref><ref>{{cite journal | vauthors = Griswold MS, Stark WS | title = Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet | journal = Vision Research | volume = 32 | issue = 9 | pages = 1739–1743 | date = September 1992 | pmid = 1455745 | doi = 10.1016/0042-6989(92)90166-G | s2cid = 45178405 }}</ref>

Prolonged exposure to [[ultraviolet radiation]] from the [[sun]] can lead to [[melanoma]] and other skin malignancies.<ref name=Cleaver>{{cite book |vauthors=Cleaver JE, Mitchell DL |veditors=Bast RC, Kufe DW, Pollock RE | title = Holland-Frei Cancer Medicine | edition = 5th | publisher = B.C. Decker | location = Hamilton, Ontario | year = 2000 | chapter = 15. Ultraviolet Radiation Carcinogenesis | isbn = 1-55009-113-1 | chapter-url = https://www.ncbi.nlm.nih.gov/books/NBK20854/ | access-date= 31 January 2011 |display-editors=etal}}</ref> Clear evidence establishes ultraviolet radiation, especially the non-ionizing medium wave [[UVB]], as the cause of most non-melanoma [[skin cancer]]s, which are the most common forms of cancer in the world.<ref name=Cleaver /> UV rays can also cause [[wrinkles]], [[liver spot]]s, [[Melanocytic nevus|moles]], and [[freckles]]. In addition to sunlight, other sources include [[tanning beds]], and bright desk lights. Damage is cumulative over one's lifetime, so that permanent effects may not be evident for some time after exposure.<ref name=UVAware>{{cite web |url=http://www.uvawareness.com/uv-info/uv-exposure.php |title=UV Exposure & Your Health |publisher=UV Awareness |access-date=10 March 2014}}</ref>

Ultraviolet radiation of wavelengths shorter than 300&nbsp;nm ([[Ultraviolet|actinic rays]]) can damage the [[corneal epithelium]]. This is most commonly the result of exposure to the sun at high altitude, and in areas where shorter wavelengths are readily reflected from bright surfaces, such as snow, water, and sand. UV generated by a [[welding]] arc can similarly cause damage to the cornea, known as "arc eye" or welding flash burn, a form of [[photokeratitis]].<ref>{{cite web|url=http://emedicine.medscape.com/article/799025-overview|publisher=Medscape|title=Ultraviolet keratitis|access-date=31 May 2017}}</ref>

[[Fluorescent light]] bulbs and tubes internally produce [[ultraviolet]] light. Normally this is converted to visible light by the [[phosphor]] film inside a protective coating. When the film is cracked by mishandling or faulty manufacturing then UV may escape at levels that could cause sunburn or even skin cancer.<ref>{{cite journal | vauthors = Mironava T, Hadjiargyrou M, Simon M, Rafailovich MH | title = The effects of UV emission from compact fluorescent light exposure on human dermal fibroblasts and keratinocytes in vitro | journal = Photochemistry and Photobiology | volume = 88 | issue = 6 | pages = 1497–1506 | date = 20 July 2012 | pmid = 22724459 | doi = 10.1111/j.1751-1097.2012.01192.x | s2cid = 2626216 }}</ref><ref>{{cite journal | vauthors = Nicole W | title = Ultraviolet Leaks from CFLs | journal = Environmental Health Perspectives | volume = 120 | issue = 10 | pages = a387 | date = October 2012 | pmid = 23026199 | pmc = 3491932 | doi = 10.1289/ehp.120-a387 }}</ref>

==Regulation==
In the United States, nonionizing radiation is regulated in the [[Radiation Control for Health and Safety Act of 1968]] and the [[Occupational Safety and Health Act of 1970]].<ref>{{cite book | title=Fundamental and Applied Aspects of Nonionizing Radiation | editor1-first=Solomon | editor1-last=Michaelson | name-list-style = vanc | publisher=Springer Science & Business Media | year=2012 | isbn=978-1468407600 | page=xv | url=https://books.google.com/books?id=bezTBwAAQBAJ }}</ref>

== See also ==
{{div col|colwidth=22em}}
* [[Background radiation]]
* [[BioInitiative Report]]
* [[Biological effects of radiation on the epigenome]]
* [[Central nervous system effects from radiation exposure during spaceflight]]
* [[Cosmic ray]]
* [[COSMOS cohort study]]
* [[Electromagnetic hypersensitivity]]
* [[Electromagnetism]]
* [[EMF measurements]]
* [[Health threat from cosmic rays]]
* [[Light ergonomics]]
* [[Magnetobiology]]
* [[Microwave]]
* [[Mobile phone radiation and health]]
* [[Personal RF safety monitors]]
* [[Specific absorption rate]]
* [[Wireless electronic devices and health]]
{{div col end}}

== References ==
{{reflist|30em}}

== Further reading ==
{{refbegin}}
* {{cite book | author=U.S. Congress, Office of Technology Assessment | url=http://www.princeton.edu/~ota/disk1/1989/8905/8905.PDF | title=Biological Effects of Power Frequency Electric & Magnetic Fields—Background Paper, OTA-BP-E-53 | location=Washington, DC | publisher=U.S. Government Printing Office | date=May 1989 }} (over 100 pages)
zzzz{{refend}}

== External links ==
* [https://www.who.int/peh-emf/en/ Information page] on electromagnetic fields at the [[World Health Organization]] web site
* [https://www.cdc.gov/niosh/topics/emf/ CDC – Electric and Magnetic Fields – NIOSH Workplace Safety and Health Topic]
* {{Skeptoid|id=4072|number=72|title=Electromagnetic Hypersensitivity: Real or Imagined?|date=30 October 2007}}

{{Radiation}}

{{DEFAULTSORT:Electromagnetic Radiation And Health}}
[[Category:Environmental controversies]]
[[Category:Medical physics]]
[[Category:Radiation health effects]]
[[Category:Radiobiology]]
[[Category:Health effects by subject]]
{{Short description|aspect of public health}}
{{about|the health effects of non-ionizing radiation|the negative health effects of ionizing radiation|radiation poisoning}}
{{Use dmy dates|date=July 2019}}

Electromagnetic [[radiation]] can bpoopPoopPoopPoope classified into two types: [[ionizing radiation]] and [[non-ionizing radiation]], based on the capability of a single [[photon]] with more than 10&nbsp;[[electronvolt|eV]] energy to ionize atoms or break [[chemical bond]]s.<ref>{{cite book | first1=Robert F. | last1=Cleveland Jr | first2=Jerry L. | last2=Ulcek | name-list-style = vanc | title=Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields | publisher=OET (Office of Engineering and Technology) Federal Communications Commission | location=Washington, D.C. | edition=4th | date=August 1999 | url=https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet56/oet56e4.pdf | access-date=2019-01-29 }}</ref> [[Extreme ultraviolet]] and higher frequencies, suchPoopPoop as [[X-ray]]s or [[gamma ray]]s are ionizing, and these pose their own special hazards: see ''[[radiation poisoning]]''.

The most common health hazard of radiation is [[sunburn]], which causes Poops between approximately 100,000 and 1 million new skin Poops annually in the United States.<ref>{{cite journal | vauthors = Siegel RL, Miller KD, Jemal A | title = Cancer statistics, 2020 | journal = Ca | volume = 70 | issue = 1 | pages = 7–30 | date = January 2020 | pmid = 31912902 | doi = 10.3322/caac.21590 | doi-access = free }}</ref><ref name="Cleaver" />

Claims of harm from low levels of non-ionizing radiation (sometimes described as "electrosmog") are [[electromagnetic hypersensitivity|unsupported by science]].

==Hazards==
[[Dielectric heating]] from electromagnetic fields can create a biological hazard. For example, touching or standing around an [[antenna (electronics)|antenna]] while a high-power [[transmitter]] is in operation can cause burns (the mechanism is the same as that used in a [[microwave oven]]).<ref>{{cite book | title=Biological and Medical Aspects of Electromagnetic Fields | editor1-first=Frank S. | editor1-last=Barnes | editor2-first=Ben | editor2-last=Greenebaum | name-list-style = vanc | edition=3 | publisher=CRC Press | year=2018 | isbn=978-1420009460 | page=378 | url=https://books.google.com/books?id=B-bKBQAAQBAJ&pg=PT378 }}</ref>

The heating effect varies with the power and the [[frequency]] of the electromagnetic energy, as well as the [[inverse square]] of distance to the source. The eyes and testes are particularly susceptible to radio frequency heating due to the paucity of blood flow in these areas that could otherwise dissipate the heat buildup.<ref name=OET56>{{cite web | title=Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields | first1=Robert F. | last1=Cleveland Jr | first2=Jerry L. | last2=Ulcek | name-list-style = vanc | publisher=Office of Engineering and Technology, Federal Communications Commission | work=OET Bulletin 56 | edition=Fourth | date=August 1999 | page=7 | url=https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet56/oet56e4.pdf | access-date=2019-02-02 }}</ref>

Radio frequency (RF) energy at power density levels of 1–10&nbsp;mW/cm<sup>2</sup> or higher can cause measurable heating of tissues. Typical RF energy levels encountered by the general public are well below the level needed to cause significant heating, but certain workplace environments near high power RF sources may exceed safe exposure limits.<ref name=OET56/> A measure of the heating effect is the [[specific absorption rate]] or SAR, which has units of watts per kilogram (W/kg). The [[IEEE]]<ref>{{cite journal | title = Standard for Safety Level with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3KHz to 300GHz | journal = IEEE STD | volume = C95.1-2005<!--Should this be appended here?:" - IEEE"--> | publisher = IEEE | date = October 2005 | url = https://standards.ieee.org/findstds/standard/C95.1-2005.html}}</ref> and many national governments have established safety limits for exposure to various frequencies of electromagnetic energy based on [[Specific absorption rate|SAR]], mainly based on [http://www.icnirp.de ICNIRP] Guidelines,<ref>{{cite journal | author = International Commission on Non-Ionizing Radiation Protection | title = Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection | journal = Health Physics | volume = 74 | issue = 4 | pages = 494–522 | date = April 1998 | pmid = 9525427 | url = http://www.icnirp.de/documents/emfgdl.pdf | url-status = dead | archive-url = https://web.archive.org/web/20081113052702/http://www.icnirp.de/documents/emfgdl.pdf | archive-date = 2008-11-13 }}</ref> which guard against thermal damage.

=== Low-level exposure ===
The World Health Organization began a research effort in 1996 to study the health effects from the ever-increasing exposure of people to a diverse range of EMR sources. After 30 years of extensive study, science has yet to establish a health risk from exposure to low-level fields.

Epidemiological studies look for statistical correlations between EM exposure in the field and specific health effects. As of 2019, much of the current work is focused on the study of EM fields in relation to cancer.<ref>{{cite web | title=What are electromagnetic fields? – Summary of health effects | website=World Health Organization | url=https://www.who.int/peh-emf/about/WhatisEMF/en/index1.html | access-date=2019-02-07 }}</ref> There are publications which support the existence of complex biological and neurological effects of weaker ''non-thermal'' electromagnetic fields (see [[Bioelectromagnetics]]), including weak [[Extremely low frequency|ELF]] electromagnetic fields<ref>{{cite journal | vauthors = Delgado JM, Leal J, Monteagudo JL, Gracia MG | title = Embryological changes induced by weak, extremely low frequency electromagnetic fields | journal = Journal of Anatomy | volume = 134 | issue = Pt 3 | pages = 533–551 | date = May 1982 | pmid = 7107514 | pmc = 1167891 }}</ref><ref>{{cite journal | vauthors = Harland JD, Liburdy RP | title = Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line | journal = Bioelectromagnetics | volume = 18 | issue = 8 | pages = 555–562 | year = 1997 | pmid = 9383244 | doi = 10.1002/(SICI)1521-186X(1997)18:8<555::AID-BEM4>3.0.CO;2-1 | url = https://zenodo.org/record/1235522 }}</ref> and modulated [[Radio frequency|RF]] and [[microwave]] fields.<ref name="Aalto S, Haarala C, Brück A, Sipilä H, Hämäläinen H, Rinne JO 2006 885–90">{{cite journal | vauthors = Aalto S, Haarala C, Brück A, Sipilä H, Hämäläinen H, Rinne JO | title = Mobile phone affects cerebral blood flow in humans | journal = Journal of Cerebral Blood Flow and Metabolism | volume = 26 | issue = 7 | pages = 885–890 | date = July 2006 | pmid = 16495939 | doi = 10.1038/sj.jcbfm.9600279 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Pall ML | title = Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression | journal = Journal of Chemical Neuroanatomy | volume = 75 | issue = Pt B | pages = 43–51 | date = September 2016 | pmid = 26300312 | doi = 10.1016/j.jchemneu.2015.08.001 | doi-access = free }}</ref>

==Effects by frequency==
[[File:For Your Own Health (13942406865) (2).jpg|thumb|right|upright|Warning sign next to a transmitter with high field strengths]]

While the most acute exposures to harmful levels of electromagnetic radiation are immediately realized as burns, the health effects due to chronic or occupational exposure may not manifest effects for months or years.<ref name=Fry_et_al2004/><ref name=SLiney1994/><ref name=Cleaver/><ref name=UVAware/>

===Extremely-low frequency===
Electric and magnetic fields occur where electricity is generated or distributed in power lines, cables, or electrical appliances. Human responses depend on the field strength, ambient environmental conditions, and individual sensitivity. 7% of volunteers exposed to power-frequency electric fields of high-power, [[extremely low frequency|extremely-low-frequency]] RF with electric field levels in the low kV/m range reported painful currents that flowed to ground through a body contact surface such as the feet, or arced to ground where the body was well insulated.<ref>[https://www.who.int/peh-emf/publications/elf_ehc/en/index.html Extremely Low Frequency Fields Environmental Health Criteria Monograph No.238], chapter 5, page 121, WHO</ref>

The International Agency for Research on Cancer (IARC) finds "inadequate evidence" for human carcinogenicity.<ref name=cancerIARC>https://www.cancer.org/cancer/cancer-causes/radiation-exposure/extremely-low-frequency-radiation.html</ref>

===Shortwave===
[[Shortwave]] (1.6 to 30&nbsp;MHz) [[diathermy]] can be used as a therapeutic technique for its [[analgesic]] effect and deep muscle relaxation, but has largely been replaced by [[ultrasound]]. Temperatures in muscles can increase by 4–6&nbsp;°C, and subcutaneous fat by 15&nbsp;°C. The FCC has restricted the frequencies allowed for medical treatment, and most machines in the US use 27.12&nbsp;MHz.<ref>{{cite book | title=Bonica's Management of Pain | editor1-first=Scott | editor1-last=Fishman | editor2-first=Jane | editor2-last=Ballantyne | editor3-first=James P. | editor3-last=Rathmell | name-list-style = vanc | publisher=Lippincott Williams & Wilkins | year=2010 | isbn=978-0781768276 | page=1589 | url=https://books.google.com/books?id=Pms0hxH8f-sC&pg=PA1589 }}</ref> Shortwave diathermy can be applied in either continuous or pulsed mode. The latter came to prominence because the continuous mode produced too much heating too rapidly, making patients uncomfortable. The technique only heats tissues that are good electrical conductors, such as [[blood vessels]] and [[muscle]]. [[Adipose tissue]] (fat) receives little heating by induction fields because an electrical current is not actually going through the tissues.<ref>{{cite book | title=Therapeutic Modalities: The Art and the Science | vauthors = Knight KL, Draper DO | publisher=Lippincott Williams & Wilkins | year=2008 | isbn=978-0781757447 | page=288 | url=https://books.google.com/books?id=aMwKx91zI18C&pg=PA288 }}</ref>

Studies have been performed on the use of shortwave radiation for cancer therapy and promoting wound healing, with some success. However, at a sufficiently high energy level, shortwave energy can be harmful to human health, potentially causing damage to biological tissues.<ref name=Chao2017>{{cite journal | vauthors = Yu C, Peng RY | title = Biological effects and mechanisms of shortwave radiation: a review | journal = Military Medical Research | volume = 4 | pages = 24 | year = 2017 | pmid = 28729909 | pmc = 5518414 | doi = 10.1186/s40779-017-0133-6 }}</ref> The FCC limits for maximum permissible workplace exposure to shortwave radio frequency energy in the range of 3–30&nbsp;MHz has a plane-wave equivalent [[power density]] of (900/''f''<sup>2</sup>)&nbsp;mW/cm<sup>2</sup> where ''f'' is the frequency in MHz, and 100&nbsp;mW/cm<sup>2</sup> from 0.3 to 3.0&nbsp;MHz. For uncontrolled exposure to the general public, the limit is 180/''f''<sup>2</sup> between 1.34 and 30&nbsp;MHz.<ref name=OET56/>

===Radio frequency field===
{{See also|Mobile phone radiation and health}}
The designation of mobile phone signals as "possibly [[carcinogen]]ic to humans" by the [[World Health Organization]] (WHO) (e.g. its IARC, see below) has often been misinterpreted as indicating that some measure of risk has been observed{{snd}} however the designation indicates only that the possibility could not be conclusively ruled out using the available data.<ref>{{cite journal | vauthors = Boice JD, Tarone RE | title = Cell phones, cancer, and children | journal = Journal of the National Cancer Institute | volume = 103 | issue = 16 | pages = 1211–1213 | date = August 2011 | pmid = 21795667 | doi = 10.1093/jnci/djr285 | doi-access = free }}</ref>

In 2011, [[International Agency for Research on Cancer|International Agency for Research on Cancer (IARC)]] classified mobile phone radiation as [[List of IARC Group 2B carcinogens|Group 2B]] "possibly carcinogenic" (rather than [[List of IARC Group 2A carcinogens|Group 2A]] "probably carcinogenic" nor the "is carcinogenic" Group 1). That means that there "could be some risk" of carcinogenicity, so additional research into the long-term, heavy use of mobile phones needs to be conducted.<ref names"WHO_IARC_110531">{{cite press release |url=http://www.iarc.fr/en/media-centre/pr/2011/pdfs/pr208_E.pdf |title= IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans |work=press release N° 208 |publisher=[[International Agency for Research on Cancer]] |date=31 May 2011 |access-date=2 June 2011 }}</ref> The [[World Health Organization|WHO]] concluded in 2014 that "A large number of studies have been performed over the last two decades to assess whether mobile phones pose a potential health risk. To date, no adverse health effects have been established as being caused by mobile phone use."<ref>{{cite web |url=https://www.who.int/mediacentre/factsheets/fs193/en/ |title= Electromagnetic fields and public health: mobile phones – Fact sheet N°193 |publisher= World Health Organization |date=October 2014 |access-date= 2 August 2016 }}</ref><ref>[http://www.euitt.upm.es/estaticos/catedra-coitt/web_salud_medioamb/Informes/informes_PDF/rf/HealthCanada/99ehd237.pdf Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3&nbsp;kHz to 300&nbsp;GHz], Canada Safety Code 6, p. 63</ref>

Since 1962, the [[microwave auditory effect]] or tinnitus has been shown from radio frequency exposure at levels below significant heating.<ref name=Frey,13895081>{{cite journal | vauthors = Frey AH | title = Human auditory system response to modulated electromagnetic energy | journal = Journal of Applied Physiology | volume = 17 | issue = 4 | pages = 689–692 | date = July 1962 | pmid = 13895081 | doi = 10.1152/jappl.1962.17.4.689 | s2cid = 12359057 }}</ref> Studies during the 1960s in Europe and Russia claimed to show effects on humans, especially the nervous system, from low energy RF radiation; the studies were disputed at the time.<ref name=Bergman,1965>{{Citation|author= Bergman W|title= The Effect of Microwaves on the Central Nervous System (trans. from German)|pages= 1–77|year= 1965|publisher= Ford Motor Company|url= http://www.magdahavas.com/wordpress/wp-content/uploads/2010/12/German_Ford_Motor_company_The_Effect_of_Microwaves_on_The_Central_Nervous_System.pdf|access-date= 19 December 2018|archive-url= https://web.archive.org/web/20180329070303/http://www.magdahavas.com/wordpress/wp-content/uploads/2010/12/German_Ford_Motor_company_The_Effect_of_Microwaves_on_The_Central_Nervous_System.pdf|archive-date= 29 March 2018|url-status= dead}}</ref><ref>{{cite book|last1=Michaelson|first1=Sol M. | name-list-style = vanc |editor1-last=Calvin|editor1-first=Melvin|editor2-last=Gazenko|editor2-first=Oleg G |date=1975|title=Ecological and Physiological Bases of Space Biology and Medicine|publisher=NASA Scientific and Technical Information Office | location=Washington, D.C.|pages=409–452 [427–430]|chapter-url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19760019731.pdf|chapter-format=Volume II Book 2 of Foundations of Space Biology and Medicine|chapter=Radio-Frequency and Microwave Energies, Magnetic and Electric Fields}}</ref>

In 2019 reporters from the [[Chicago Tribune]] tested the level of radiation from smartphones and found it to exceed safe levels.{{Cn|date=April 2020}} The federal communications commission begun to check the findings.<ref>{{cite news |last1=Krans |first1=Brian | name-list-style = vanc |title=Smartphone Radiation: iPhones Emitting Double Reported Levels |url=https://www.ecowatch.com/iphone-radiation-levels-2640150175.html |access-date=9 September 2019 |agency=Ecowatch |date=September 1, 2019}}</ref>

Radio frequency radiation is found to have more thermal related effects. A person's body temperature can be raised which could result in death if exposed to high dosage of RF radiation. <ref> "Microwaves, Radio Waves, and Other Types of Radiofrequency Radiation." American Cancer Society, http://www.cancer.org/cancer/cancer-causes/radiation-exposure/radiofrequency-radiation.html </ref> Focused RF radiation can also cause burns on the skin or cataracts to form in the eyes. Overall, some health effects are observed at a high levels of RF radiation, but the effects aren't clear at low levels of exposure.

===Millimeter waves===
In 2009, the US TSA introduced full-body scanners as a primary screening modality in [[airport security]], first as backscatter x-ray scanners, which the European Union banned in 2011 due to health and safety concerns, followed by [[Millimeter wave scanner]]s .<ref>{{Cite news |last=Khan |first=Farah Naz | name-list-style = vanc |url=https://blogs.scientificamerican.com/observations/is-that-airport-security-scanner-really-safe/ |title=Is That Airport Security Scanner Really Safe? |work=Scientific American |access-date=2020-03-28 |date=2017-12-18 |language=en}}</ref> Likewise [[WiGig]] for [[personal area network]]s have opened the 60&nbsp;GHz and above microwave band to SAR exposure regulations. Previously, microwave applications in these bands were for point-to-point satellite communication with minimal human exposure.<ref>[http://www.ieice.org/proceedings/EMC09/pdf/22S1-1.pdf Characterization of 60GHz Millimeter-Wave Focusing Beam for Living-Body Exposure Experiments, Tokyo Institute of Technology, Masaki KOUZAI et al., 2009]</ref>{{Relevance inline|date=January 2019||reason=How is this paragraph relevant to the topic of health?}}

===Infrared===
[[Infrared]] wavelengths longer than 750&nbsp;nm can produce changes in the lens of the eye. [[Glassblower's cataract]] is an example of a heat injury that damages the [[anterior lens]] capsule among unprotected glass and iron workers. Cataract-like changes can occur in workers who observe glowing masses of glass or iron without protective eyewear for prolonged periods over many years.<ref name=Fry_et_al2004>{{cite book | title=Clinical Practice in Small Incision Cataract Surgery | editor1-first=Luther L. | editor1-last=Fry | editor2-first=Ashok | editor2-last=Garg | editor3-first=Francisco | editor3-last=Guitérrez-Camona | editor4-first=Suresh K. | editor4-last=Pandey | editor5-first=Geoffrey | editor5-last=Tabin | name-list-style = vanc | publisher=CRC Press | year=2004 | isbn=0203311825 | page=79 | url=https://books.google.com/books?id=Gswq6FvdU7oC&pg=PA79 }}</ref>

Exposing skin to infrared radiation near visible light (IR-A) leads to increased production of [[Radical (chemistry)|free radicals]].<ref>{{cite journal | vauthors = Schieke SM, Schroeder P, Krutmann J | title = Cutaneous effects of infrared radiation: from clinical observations to molecular response mechanisms | journal = Photodermatology, Photoimmunology & Photomedicine | volume = 19 | issue = 5 | pages = 228–234 | date = October 2003 | pmid = 14535893 | doi = 10.1034/j.1600-0781.2003.00054.x | doi-access=free }}</ref> Short-term exposure can be beneficial (activating protective responses), while prolonged exposure can lead to [[photoaging]].<ref>{{cite journal | vauthors = Tsai SR, Hamblin MR | title = Biological effects and medical applications of infrared radiation | journal = Journal of Photochemistry and Photobiology. B, Biology | volume = 170 | pages = 197–207 | date = May 2017 | pmid = 28441605 | pmc = 5505738 | doi = 10.1016/j.jphotobiol.2017.04.014 |doi-access=free }}</ref>

Another important factor is the distance between the worker and the source of radiation. In the case of [[arc welding]], infrared radiation decreases rapidly as a function of distance, so that farther than three feet away from where welding takes place, it does not pose an ocular hazard anymore but, ultraviolet radiation still does. This is why welders wear tinted glasses and surrounding workers only have to wear clear ones that filter UV.{{citation needed|date=July 2016}}

===Visible light===
[[Photic retinopathy]] is damage to the [[Macula of retina|macular area of the eye's retina]] that results from prolonged exposure to sunlight, particularly with [[Mydriasis|dilated pupil]]s. This can happen, for example, while observing a [[solar eclipse]] without suitable eye protection. The Sun's radiation creates a photochemical reaction that can result in [[Dazzle reflex|visual dazzling]] and a [[scotoma]]. The initial lesions and [[edema]] will disappear after several weeks, but may leave behind a permanent reduction in visual acuity.<ref name=Sullivan2001>{{cite book | title=Clinical Environmental Health and Toxic Exposures | editor1-first=John Burke | editor1-last=Sullivan | editor2-first=Gary R. | editor2-last=Krieger | name-list-style = vanc | publisher=Lippincott Williams & Wilkins | year=2001 | isbn=978-0683080278 | page=275 | url=https://books.google.com/books?id=PyUSgdZUGr4C&pg=PA275 }}</ref>

Moderate and high-power lasers are potentially hazardous because they can burn the [[retina]] of the eye, or even the [[skin]]. To control the risk of injury, various specifications – for example ANSI Z136 in the US, EN 60825-1/A2 in Europe, and IEC 60825 internationally – define "classes" of lasers depending on their power and wavelength.<ref>{{cite web | title=Laser Standards and Classifications | website=Rockwell Laser Industries | url=https://www.rli.com/resources/articles/classification.aspx | access-date=2019-02-10 }}</ref><ref>{{cite web | website=Lasermet | title=An Overview of the LED and Laser Classification System in EN 60825-1 and IEC 60825-1 | url=https://www.lasermet.com/resources/classification_overview.php | access-date=2019-02-10 }}</ref> Regulations prescribe required safety measures, such as labeling lasers with specific warnings, and wearing laser safety goggles during operation (see [[laser safety]]).

As with its infrared and ultraviolet radiation dangers, welding creates an intense brightness in the visible light spectrum, which may cause temporary [[flash blindness]]. Some sources state that there is no minimum safe distance for exposure to these radiation emissions without adequate eye protection.<ref name=TWI>{{cite web |url=http://www.twi-global.com/technical-knowledge/faqs/health-and-safety-faqs/faq-what-is-the-minimum-safe-distance-from-the-welding-arc-above-which-there-is-no-risk-of-eye-damage/ |title=What is the minimum safe distance from the welding arc above which there is no risk of eye damage? |publisher=The Welding Institute (TWI Global) |access-date=10 March 2014 |archive-url=https://web.archive.org/web/20140310115217/http://www.twi-global.com/technical-knowledge/faqs/health-and-safety-faqs/faq-what-is-the-minimum-safe-distance-from-the-welding-arc-above-which-there-is-no-risk-of-eye-damage/ |archive-date=10 March 2014 |url-status=dead }}</ref>

===Ultraviolet===
Sunlight includes sufficient ultraviolet power to cause [[sunburn]] within hours of exposure, and the burn severity increases with the duration of exposure. This effect is a response of the skin called [[erythema]], which is caused by a sufficient strong dose of [[UV-B]]. The Sun's UV output is divided into [[UV-A]] and UV-B: solar UV-A flux is 100 times that of UV-B, but the erythema response is 1,000 times higher for UV-B.{{Citation needed|date=November 2019}} This exposure can increase at higher altitudes and when reflected by snow, ice, or sand. The UV-B flux is 2–4 times greater during the middle 4–6 hours of the day, and is not significantly absorbed by cloud cover or up to a meter of water.<ref>{{cite book | title=SPEC – Andrews' Diseases of the Skin | first1=William D. | last1=James | first2=Dirk | last2=Elston | first3=Timothy | last3=Berger | name-list-style = vanc | edition=11 | publisher=Elsevier Health Sciences | year=2011 | isbn=978-1437736199 | pages=23–24 | url=https://books.google.com/books?id=Ef_HllqkdqEC&pg=PA24 }}</ref>

Ultraviolet light, specifically UV-B, has been shown to cause [[cataracts]] and there is some evidence that sunglasses worn at an early age can slow its development in later life.<ref name=SLiney1994>{{cite journal | vauthors = Sliney DH | title = UV radiation ocular exposure dosimetry | journal = Documenta Ophthalmologica. Advances in Ophthalmology | volume = 88 | issue = 3–4 | pages = 243–254 | year = 1994 | pmid = 7634993 | doi = 10.1007/bf01203678 | s2cid = 8242055 }}</ref> Most UV light from the sun is filtered out by the atmosphere and consequently airline pilots often have high rates of cataracts because of the increased levels of UV radiation in the upper atmosphere.<ref>{{cite journal | vauthors = Rafnsson V, Olafsdottir E, Hrafnkelsson J, Sasaki H, Arnarsson A, Jonasson F | title = Cosmic radiation increases the risk of nuclear cataract in airline pilots: a population-based case-control study | journal = Archives of Ophthalmology | volume = 123 | issue = 8 | pages = 1102–1105 | date = August 2005 | pmid = 16087845 | doi = 10.1001/archopht.123.8.1102 | doi-access = free }}</ref> It is hypothesized that [[Ozone depletion|depletion of the ozone layer]] and a consequent increase in levels of UV light on the ground may increase future rates of cataracts.<ref name="Dobson2005">{{Cite journal| vauthors = Dobson R | title = Ozone depletion will bring big rise in number of cataracts| journal = BMJ| volume = 331| issue = 7528| pages = 1292–1295| year = 2005| pmc = 1298891 | doi = 10.1136/bmj.331.7528.1292-d }}</ref> Note that the lens filters UV light, so if it is removed via surgery, one may be able to see UV light.<ref name=Komarnitsky>{{cite web |url=http://www.komar.org/faq/colorado-cataract-surgery-crystalens/ultra-violet-color-glow/ |title=Case study of ultraviolet vision after IOL removal for Cataract Surgery |author=Komarnitsky}}</ref><ref>{{cite journal | vauthors = Griswold MS, Stark WS | title = Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet | journal = Vision Research | volume = 32 | issue = 9 | pages = 1739–1743 | date = September 1992 | pmid = 1455745 | doi = 10.1016/0042-6989(92)90166-G | s2cid = 45178405 }}</ref>

Prolonged exposure to [[ultraviolet radiation]] from the [[sun]] can lead to [[melanoma]] and other skin malignancies.<ref name=Cleaver>{{cite book |vauthors=Cleaver JE, Mitchell DL |veditors=Bast RC, Kufe DW, Pollock RE | title = Holland-Frei Cancer Medicine | edition = 5th | publisher = B.C. Decker | location = Hamilton, Ontario | year = 2000 | chapter = 15. Ultraviolet Radiation Carcinogenesis | isbn = 1-55009-113-1 | chapter-url = https://www.ncbi.nlm.nih.gov/books/NBK20854/ | access-date= 31 January 2011 |display-editors=etal}}</ref> Clear evidence establishes ultraviolet radiation, especially the non-ionizing medium wave [[UVB]], as the cause of most non-melanoma [[skin cancer]]s, which are the most common forms of cancer in the world.<ref name=Cleaver /> UV rays can also cause [[wrinkles]], [[liver spot]]s, [[Melanocytic nevus|moles]], and [[freckles]]. In addition to sunlight, other sources include [[tanning beds]], and bright desk lights. Damage is cumulative over one's lifetime, so that permanent effects may not be evident for some time after exposure.<ref name=UVAware>{{cite web |url=http://www.uvawareness.com/uv-info/uv-exposure.php |title=UV Exposure & Your Health |publisher=UV Awareness |access-date=10 March 2014}}</ref>

Ultraviolet radiation of wavelengths shorter than 300&nbsp;nm ([[Ultraviolet|actinic rays]]) can damage the [[corneal epithelium]]. This is most commonly the result of exposure to the sun at high altitude, and in areas where shorter wavelengths are readily reflected from bright surfaces, such as snow, water, and sand. UV generated by a [[welding]] arc can similarly cause damage to the cornea, known as "arc eye" or welding flash burn, a form of [[photokeratitis]].<ref>{{cite web|url=http://emedicine.medscape.com/article/799025-overview|publisher=Medscape|title=Ultraviolet keratitis|access-date=31 May 2017}}</ref>

[[Fluorescent light]] bulbs and tubes internally produce [[ultraviolet]] light. Normally this is converted to visible light by the [[phosphor]] film inside a protective coating. When the film is cracked by mishandling or faulty manufacturing then UV may escape at levels that could cause sunburn or even skin cancer.<ref>{{cite journal | vauthors = Mironava T, Hadjiargyrou M, Simon M, Rafailovich MH | title = The effects of UV emission from compact fluorescent light exposure on human dermal fibroblasts and keratinocytes in vitro | journal = Photochemistry and Photobiology | volume = 88 | issue = 6 | pages = 1497–1506 | date = 20 July 2012 | pmid = 22724459 | doi = 10.1111/j.1751-1097.2012.01192.x | s2cid = 2626216 }}</ref><ref>{{cite journal | vauthors = Nicole W | title = Ultraviolet Leaks from CFLs | journal = Environmental Health Perspectives | volume = 120 | issue = 10 | pages = a387 | date = October 2012 | pmid = 23026199 | pmc = 3491932 | doi = 10.1289/ehp.120-a387 }}</ref>

==Regulation==
In the United States, nonionizing radiation is regulated in the [[Radiation Control for Health and Safety Act of 1968]] and the [[Occupational Safety and Health Act of 1970]].<ref>{{cite book | title=Fundamental and Applied Aspects of Nonionizing Radiation | editor1-first=Solomon | editor1-last=Michaelson | name-list-style = vanc | publisher=Springer Science & Business Media | year=2012 | isbn=978-1468407600 | page=xv | url=https://books.google.com/books?id=bezTBwAAQBAJ }}</ref>

== See also ==
{{div col|colwidth=22em}}
* [[Background radiation]]
* [[BioInitiative Report]]
* [[Biological effects of radiation on the epigenome]]
* [[Central nervous system effects from radiation exposure during spaceflight]]
* [[Cosmic ray]]
* [[COSMOS cohort study]]
* [[Electromagnetic hypersensitivity]]
* [[Electromagnetism]]
* [[EMF measurements]]
* [[Health threat from cosmic rays]]
* [[Light ergonomics]]
* [[Magnetobiology]]
* [[Microwave]]
* [[Mobile phone radiation and health]]
* [[Personal RF safety monitors]]
* [[Specific absorption rate]]
* [[Wireless electronic devices and health]]
{{div col end}}

== References ==
{{reflist|30em}}

== Further reading ==
{{refbegin}}
* {{cite book | author=U.S. Congress, Office of Technology Assessment | url=http://www.princeton.edu/~ota/disk1/1989/8905/8905.PDF | title=Biological Effects of Power Frequency Electric & Magnetic Fields—Background Paper, OTA-BP-E-53 | location=Washington, DC | publisher=U.S. Government Printing Office | date=May 1989 }} (over 100 pages)
zzzz{{refend}}


== External links ==
== External links ==

Revision as of 18:14, 4 May 2021

Electromagnetic radiation can bpoopPoopPoopPoope classified into two types: ionizing radiation and non-ionizing radiation, based on the capability of a single photon with more than 10 eV energy to ionize atoms or break chemical bonds.[1] Extreme ultraviolet and higher frequencies, suchPoopPoop as X-rays or gamma rays are ionizing, and these pose their own special hazards: see radiation poisoning.

The most common health hazard of radiation is sunburn, which causes Poops between approximately 100,000 and 1 million new skin Poops annually in the United States.[2][3]

Claims of harm from low levels of non-ionizing radiation (sometimes described as "electrosmog") are unsupported by science.

Hazards

Dielectric heating from electromagnetic fields can create a biological hazard. For example, touching or standing around an antenna while a high-power transmitter is in operation can cause burns (the mechanism is the same as that used in a microwave oven).[4]

The heating effect varies with the power and the frequency of the electromagnetic energy, as well as the inverse square of distance to the source. The eyes and testes are particularly susceptible to radio frequency heating due to the paucity of blood flow in these areas that could otherwise dissipate the heat buildup.[5]

Radio frequency (RF) energy at power density levels of 1–10 mW/cm2 or higher can cause measurable heating of tissues. Typical RF energy levels encountered by the general public are well below the level needed to cause significant heating, but certain workplace environments near high power RF sources may exceed safe exposure limits.[5] A measure of the heating effect is the specific absorption rate or SAR, which has units of watts per kilogram (W/kg). The IEEE[6] and many national governments have established safety limits for exposure to various frequencies of electromagnetic energy based on SAR, mainly based on ICNIRP Guidelines,[7] which guard against thermal damage.

Low-level exposure

The World Health Organization began a research effort in 1996 to study the health effects from the ever-increasing exposure of people to a diverse range of EMR sources. After 30 years of extensive study, science has yet to establish a health risk from exposure to low-level fields.

Epidemiological studies look for statistical correlations between EM exposure in the field and specific health effects. As of 2019, much of the current work is focused on the study of EM fields in relation to cancer.[8] There are publications which support the existence of complex biological and neurological effects of weaker non-thermal electromagnetic fields (see Bioelectromagnetics), including weak ELF electromagnetic fields[9][10] and modulated RF and microwave fields.[11][12]

Effects by frequency

Warning sign next to a transmitter with high field strengths

While the most acute exposures to harmful levels of electromagnetic radiation are immediately realized as burns, the health effects due to chronic or occupational exposure may not manifest effects for months or years.[13][14][3][15]

Extremely-low frequency

Electric and magnetic fields occur where electricity is generated or distributed in power lines, cables, or electrical appliances. Human responses depend on the field strength, ambient environmental conditions, and individual sensitivity. 7% of volunteers exposed to power-frequency electric fields of high-power, extremely-low-frequency RF with electric field levels in the low kV/m range reported painful currents that flowed to ground through a body contact surface such as the feet, or arced to ground where the body was well insulated.[16]

The International Agency for Research on Cancer (IARC) finds "inadequate evidence" for human carcinogenicity.[17]

Shortwave

Shortwave (1.6 to 30 MHz) diathermy can be used as a therapeutic technique for its analgesic effect and deep muscle relaxation, but has largely been replaced by ultrasound. Temperatures in muscles can increase by 4–6 °C, and subcutaneous fat by 15 °C. The FCC has restricted the frequencies allowed for medical treatment, and most machines in the US use 27.12 MHz.[18] Shortwave diathermy can be applied in either continuous or pulsed mode. The latter came to prominence because the continuous mode produced too much heating too rapidly, making patients uncomfortable. The technique only heats tissues that are good electrical conductors, such as blood vessels and muscle. Adipose tissue (fat) receives little heating by induction fields because an electrical current is not actually going through the tissues.[19]

Studies have been performed on the use of shortwave radiation for cancer therapy and promoting wound healing, with some success. However, at a sufficiently high energy level, shortwave energy can be harmful to human health, potentially causing damage to biological tissues.[20] The FCC limits for maximum permissible workplace exposure to shortwave radio frequency energy in the range of 3–30 MHz has a plane-wave equivalent power density of (900/f2) mW/cm2 where f is the frequency in MHz, and 100 mW/cm2 from 0.3 to 3.0 MHz. For uncontrolled exposure to the general public, the limit is 180/f2 between 1.34 and 30 MHz.[5]

Radio frequency field

The designation of mobile phone signals as "possibly carcinogenic to humans" by the World Health Organization (WHO) (e.g. its IARC, see below) has often been misinterpreted as indicating that some measure of risk has been observed – however the designation indicates only that the possibility could not be conclusively ruled out using the available data.[21]

In 2011, International Agency for Research on Cancer (IARC) classified mobile phone radiation as Group 2B "possibly carcinogenic" (rather than Group 2A "probably carcinogenic" nor the "is carcinogenic" Group 1). That means that there "could be some risk" of carcinogenicity, so additional research into the long-term, heavy use of mobile phones needs to be conducted.[22] The WHO concluded in 2014 that "A large number of studies have been performed over the last two decades to assess whether mobile phones pose a potential health risk. To date, no adverse health effects have been established as being caused by mobile phone use."[23][24]

Since 1962, the microwave auditory effect or tinnitus has been shown from radio frequency exposure at levels below significant heating.[25] Studies during the 1960s in Europe and Russia claimed to show effects on humans, especially the nervous system, from low energy RF radiation; the studies were disputed at the time.[26][27]

In 2019 reporters from the Chicago Tribune tested the level of radiation from smartphones and found it to exceed safe levels.[citation needed] The federal communications commission begun to check the findings.[28]

Radio frequency radiation is found to have more thermal related effects. A person's body temperature can be raised which could result in death if exposed to high dosage of RF radiation. [29] Focused RF radiation can also cause burns on the skin or cataracts to form in the eyes. Overall, some health effects are observed at a high levels of RF radiation, but the effects aren't clear at low levels of exposure.

Millimeter waves

In 2009, the US TSA introduced full-body scanners as a primary screening modality in airport security, first as backscatter x-ray scanners, which the European Union banned in 2011 due to health and safety concerns, followed by Millimeter wave scanners .[30] Likewise WiGig for personal area networks have opened the 60 GHz and above microwave band to SAR exposure regulations. Previously, microwave applications in these bands were for point-to-point satellite communication with minimal human exposure.[31][relevant?]

Infrared

Infrared wavelengths longer than 750 nm can produce changes in the lens of the eye. Glassblower's cataract is an example of a heat injury that damages the anterior lens capsule among unprotected glass and iron workers. Cataract-like changes can occur in workers who observe glowing masses of glass or iron without protective eyewear for prolonged periods over many years.[13]

Exposing skin to infrared radiation near visible light (IR-A) leads to increased production of free radicals.[32] Short-term exposure can be beneficial (activating protective responses), while prolonged exposure can lead to photoaging.[33]

Another important factor is the distance between the worker and the source of radiation. In the case of arc welding, infrared radiation decreases rapidly as a function of distance, so that farther than three feet away from where welding takes place, it does not pose an ocular hazard anymore but, ultraviolet radiation still does. This is why welders wear tinted glasses and surrounding workers only have to wear clear ones that filter UV.[citation needed]

Visible light

Photic retinopathy is damage to the macular area of the eye's retina that results from prolonged exposure to sunlight, particularly with dilated pupils. This can happen, for example, while observing a solar eclipse without suitable eye protection. The Sun's radiation creates a photochemical reaction that can result in visual dazzling and a scotoma. The initial lesions and edema will disappear after several weeks, but may leave behind a permanent reduction in visual acuity.[34]

Moderate and high-power lasers are potentially hazardous because they can burn the retina of the eye, or even the skin. To control the risk of injury, various specifications – for example ANSI Z136 in the US, EN 60825-1/A2 in Europe, and IEC 60825 internationally – define "classes" of lasers depending on their power and wavelength.[35][36] Regulations prescribe required safety measures, such as labeling lasers with specific warnings, and wearing laser safety goggles during operation (see laser safety).

As with its infrared and ultraviolet radiation dangers, welding creates an intense brightness in the visible light spectrum, which may cause temporary flash blindness. Some sources state that there is no minimum safe distance for exposure to these radiation emissions without adequate eye protection.[37]

Ultraviolet

Sunlight includes sufficient ultraviolet power to cause sunburn within hours of exposure, and the burn severity increases with the duration of exposure. This effect is a response of the skin called erythema, which is caused by a sufficient strong dose of UV-B. The Sun's UV output is divided into UV-A and UV-B: solar UV-A flux is 100 times that of UV-B, but the erythema response is 1,000 times higher for UV-B.[citation needed] This exposure can increase at higher altitudes and when reflected by snow, ice, or sand. The UV-B flux is 2–4 times greater during the middle 4–6 hours of the day, and is not significantly absorbed by cloud cover or up to a meter of water.[38]

Ultraviolet light, specifically UV-B, has been shown to cause cataracts and there is some evidence that sunglasses worn at an early age can slow its development in later life.[14] Most UV light from the sun is filtered out by the atmosphere and consequently airline pilots often have high rates of cataracts because of the increased levels of UV radiation in the upper atmosphere.[39] It is hypothesized that depletion of the ozone layer and a consequent increase in levels of UV light on the ground may increase future rates of cataracts.[40] Note that the lens filters UV light, so if it is removed via surgery, one may be able to see UV light.[41][42]

Prolonged exposure to ultraviolet radiation from the sun can lead to melanoma and other skin malignancies.[3] Clear evidence establishes ultraviolet radiation, especially the non-ionizing medium wave UVB, as the cause of most non-melanoma skin cancers, which are the most common forms of cancer in the world.[3] UV rays can also cause wrinkles, liver spots, moles, and freckles. In addition to sunlight, other sources include tanning beds, and bright desk lights. Damage is cumulative over one's lifetime, so that permanent effects may not be evident for some time after exposure.[15]

Ultraviolet radiation of wavelengths shorter than 300 nm (actinic rays) can damage the corneal epithelium. This is most commonly the result of exposure to the sun at high altitude, and in areas where shorter wavelengths are readily reflected from bright surfaces, such as snow, water, and sand. UV generated by a welding arc can similarly cause damage to the cornea, known as "arc eye" or welding flash burn, a form of photokeratitis.[43]

Fluorescent light bulbs and tubes internally produce ultraviolet light. Normally this is converted to visible light by the phosphor film inside a protective coating. When the film is cracked by mishandling or faulty manufacturing then UV may escape at levels that could cause sunburn or even skin cancer.[44][45]

Regulation

In the United States, nonionizing radiation is regulated in the Radiation Control for Health and Safety Act of 1968 and the Occupational Safety and Health Act of 1970.[46]

See also

References

  1. ^ Cleveland Jr RF, Ulcek JL (August 1999). Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields (PDF) (4th ed.). Washington, D.C.: OET (Office of Engineering and Technology) Federal Communications Commission. Retrieved 29 January 2019.
  2. ^ Siegel RL, Miller KD, Jemal A (January 2020). "Cancer statistics, 2020". Ca. 70 (1): 7–30. doi:10.3322/caac.21590. PMID 31912902.
  3. ^ a b c d Cleaver JE, Mitchell DL (2000). "15. Ultraviolet Radiation Carcinogenesis". In Bast RC, Kufe DW, Pollock RE, et al. (eds.). Holland-Frei Cancer Medicine (5th ed.). Hamilton, Ontario: B.C. Decker. ISBN 1-55009-113-1. Retrieved 31 January 2011.
  4. ^ Barnes FS, Greenebaum B, eds. (2018). Biological and Medical Aspects of Electromagnetic Fields (3 ed.). CRC Press. p. 378. ISBN 978-1420009460.
  5. ^ a b c Cleveland Jr RF, Ulcek JL (August 1999). "Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields" (PDF). OET Bulletin 56 (Fourth ed.). Office of Engineering and Technology, Federal Communications Commission. p. 7. Retrieved 2 February 2019.
  6. ^ "Standard for Safety Level with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3KHz to 300GHz". IEEE STD. C95.1-2005. IEEE. October 2005.
  7. ^ International Commission on Non-Ionizing Radiation Protection (April 1998). "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection" (PDF). Health Physics. 74 (4): 494–522. PMID 9525427. Archived from the original (PDF) on 13 November 2008.
  8. ^ "What are electromagnetic fields? – Summary of health effects". World Health Organization. Retrieved 7 February 2019.
  9. ^ Delgado JM, Leal J, Monteagudo JL, Gracia MG (May 1982). "Embryological changes induced by weak, extremely low frequency electromagnetic fields". Journal of Anatomy. 134 (Pt 3): 533–551. PMC 1167891. PMID 7107514.
  10. ^ Harland JD, Liburdy RP (1997). "Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line". Bioelectromagnetics. 18 (8): 555–562. doi:10.1002/(SICI)1521-186X(1997)18:8<555::AID-BEM4>3.0.CO;2-1. PMID 9383244.
  11. ^ Aalto S, Haarala C, Brück A, Sipilä H, Hämäläinen H, Rinne JO (July 2006). "Mobile phone affects cerebral blood flow in humans". Journal of Cerebral Blood Flow and Metabolism. 26 (7): 885–890. doi:10.1038/sj.jcbfm.9600279. PMID 16495939.
  12. ^ Pall ML (September 2016). "Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression". Journal of Chemical Neuroanatomy. 75 (Pt B): 43–51. doi:10.1016/j.jchemneu.2015.08.001. PMID 26300312.
  13. ^ a b Fry LL, Garg A, Guitérrez-Camona F, Pandey SK, Tabin G, eds. (2004). Clinical Practice in Small Incision Cataract Surgery. CRC Press. p. 79. ISBN 0203311825.
  14. ^ a b Sliney DH (1994). "UV radiation ocular exposure dosimetry". Documenta Ophthalmologica. Advances in Ophthalmology. 88 (3–4): 243–254. doi:10.1007/bf01203678. PMID 7634993. S2CID 8242055.
  15. ^ a b "UV Exposure & Your Health". UV Awareness. Retrieved 10 March 2014.
  16. ^ Extremely Low Frequency Fields Environmental Health Criteria Monograph No.238, chapter 5, page 121, WHO
  17. ^ https://www.cancer.org/cancer/cancer-causes/radiation-exposure/extremely-low-frequency-radiation.html
  18. ^ Fishman S, Ballantyne J, Rathmell JP, eds. (2010). Bonica's Management of Pain. Lippincott Williams & Wilkins. p. 1589. ISBN 978-0781768276.
  19. ^ Knight KL, Draper DO (2008). Therapeutic Modalities: The Art and the Science. Lippincott Williams & Wilkins. p. 288. ISBN 978-0781757447.
  20. ^ Yu C, Peng RY (2017). "Biological effects and mechanisms of shortwave radiation: a review". Military Medical Research. 4: 24. doi:10.1186/s40779-017-0133-6. PMC 5518414. PMID 28729909.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  21. ^ Boice JD, Tarone RE (August 2011). "Cell phones, cancer, and children". Journal of the National Cancer Institute. 103 (16): 1211–1213. doi:10.1093/jnci/djr285. PMID 21795667.
  22. ^ "IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans" (PDF). press release N° 208 (Press release). International Agency for Research on Cancer. 31 May 2011. Retrieved 2 June 2011.
  23. ^ "Electromagnetic fields and public health: mobile phones – Fact sheet N°193". World Health Organization. October 2014. Retrieved 2 August 2016.
  24. ^ Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz, Canada Safety Code 6, p. 63
  25. ^ Frey AH (July 1962). "Human auditory system response to modulated electromagnetic energy". Journal of Applied Physiology. 17 (4): 689–692. doi:10.1152/jappl.1962.17.4.689. PMID 13895081. S2CID 12359057.
  26. ^ Bergman W (1965), The Effect of Microwaves on the Central Nervous System (trans. from German) (PDF), Ford Motor Company, pp. 1–77, archived from the original (PDF) on 29 March 2018, retrieved 19 December 2018
  27. ^ Michaelson SM (1975). "Radio-Frequency and Microwave Energies, Magnetic and Electric Fields" (Volume II Book 2 of Foundations of Space Biology and Medicine). In Calvin M, Gazenko OG (eds.). Ecological and Physiological Bases of Space Biology and Medicine. Washington, D.C.: NASA Scientific and Technical Information Office. pp. 409–452 [427–430].
  28. ^ Krans B (1 September 2019). "Smartphone Radiation: iPhones Emitting Double Reported Levels". Ecowatch. Retrieved 9 September 2019.
  29. ^ "Microwaves, Radio Waves, and Other Types of Radiofrequency Radiation." American Cancer Society, http://www.cancer.org/cancer/cancer-causes/radiation-exposure/radiofrequency-radiation.html
  30. ^ Khan FN (18 December 2017). "Is That Airport Security Scanner Really Safe?". Scientific American. Retrieved 28 March 2020.
  31. ^ Characterization of 60GHz Millimeter-Wave Focusing Beam for Living-Body Exposure Experiments, Tokyo Institute of Technology, Masaki KOUZAI et al., 2009
  32. ^ Schieke SM, Schroeder P, Krutmann J (October 2003). "Cutaneous effects of infrared radiation: from clinical observations to molecular response mechanisms". Photodermatology, Photoimmunology & Photomedicine. 19 (5): 228–234. doi:10.1034/j.1600-0781.2003.00054.x. PMID 14535893.
  33. ^ Tsai SR, Hamblin MR (May 2017). "Biological effects and medical applications of infrared radiation". Journal of Photochemistry and Photobiology. B, Biology. 170: 197–207. doi:10.1016/j.jphotobiol.2017.04.014. PMC 5505738. PMID 28441605.
  34. ^ Sullivan JB, Krieger GR, eds. (2001). Clinical Environmental Health and Toxic Exposures. Lippincott Williams & Wilkins. p. 275. ISBN 978-0683080278.
  35. ^ "Laser Standards and Classifications". Rockwell Laser Industries. Retrieved 10 February 2019.
  36. ^ "An Overview of the LED and Laser Classification System in EN 60825-1 and IEC 60825-1". Lasermet. Retrieved 10 February 2019.
  37. ^ "What is the minimum safe distance from the welding arc above which there is no risk of eye damage?". The Welding Institute (TWI Global). Archived from the original on 10 March 2014. Retrieved 10 March 2014.
  38. ^ James WD, Elston D, Berger T (2011). SPEC – Andrews' Diseases of the Skin (11 ed.). Elsevier Health Sciences. pp. 23–24. ISBN 978-1437736199.
  39. ^ Rafnsson V, Olafsdottir E, Hrafnkelsson J, Sasaki H, Arnarsson A, Jonasson F (August 2005). "Cosmic radiation increases the risk of nuclear cataract in airline pilots: a population-based case-control study". Archives of Ophthalmology. 123 (8): 1102–1105. doi:10.1001/archopht.123.8.1102. PMID 16087845.
  40. ^ Dobson R (2005). "Ozone depletion will bring big rise in number of cataracts". BMJ. 331 (7528): 1292–1295. doi:10.1136/bmj.331.7528.1292-d. PMC 1298891.
  41. ^ Komarnitsky. "Case study of ultraviolet vision after IOL removal for Cataract Surgery".
  42. ^ Griswold MS, Stark WS (September 1992). "Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet". Vision Research. 32 (9): 1739–1743. doi:10.1016/0042-6989(92)90166-G. PMID 1455745. S2CID 45178405.
  43. ^ "Ultraviolet keratitis". Medscape. Retrieved 31 May 2017.
  44. ^ Mironava T, Hadjiargyrou M, Simon M, Rafailovich MH (20 July 2012). "The effects of UV emission from compact fluorescent light exposure on human dermal fibroblasts and keratinocytes in vitro". Photochemistry and Photobiology. 88 (6): 1497–1506. doi:10.1111/j.1751-1097.2012.01192.x. PMID 22724459. S2CID 2626216.
  45. ^ Nicole W (October 2012). "Ultraviolet Leaks from CFLs". Environmental Health Perspectives. 120 (10): a387. doi:10.1289/ehp.120-a387. PMC 3491932. PMID 23026199.
  46. ^ Michaelson S, ed. (2012). Fundamental and Applied Aspects of Nonionizing Radiation. Springer Science & Business Media. p. xv. ISBN 978-1468407600.

Further reading

zzzz

Electromagnetic radiation can bpoopPoopPoopPoope classified into two types: ionizing radiation and non-ionizing radiation, based on the capability of a single photon with more than 10 eV energy to ionize atoms or break chemical bonds.[1] Extreme ultraviolet and higher frequencies, suchPoopPoop as X-rays or gamma rays are ionizing, and these pose their own special hazards: see radiation poisoning.

The most common health hazard of radiation is sunburn, which causes Poops between approximately 100,000 and 1 million new skin Poops annually in the United States.[2][3]

Claims of harm from low levels of non-ionizing radiation (sometimes described as "electrosmog") are unsupported by science.

Hazards

Dielectric heating from electromagnetic fields can create a biological hazard. For example, touching or standing around an antenna while a high-power transmitter is in operation can cause burns (the mechanism is the same as that used in a microwave oven).[4]

The heating effect varies with the power and the frequency of the electromagnetic energy, as well as the inverse square of distance to the source. The eyes and testes are particularly susceptible to radio frequency heating due to the paucity of blood flow in these areas that could otherwise dissipate the heat buildup.[5]

Radio frequency (RF) energy at power density levels of 1–10 mW/cm2 or higher can cause measurable heating of tissues. Typical RF energy levels encountered by the general public are well below the level needed to cause significant heating, but certain workplace environments near high power RF sources may exceed safe exposure limits.[5] A measure of the heating effect is the specific absorption rate or SAR, which has units of watts per kilogram (W/kg). The IEEE[6] and many national governments have established safety limits for exposure to various frequencies of electromagnetic energy based on SAR, mainly based on ICNIRP Guidelines,[7] which guard against thermal damage.

Low-level exposure

The World Health Organization began a research effort in 1996 to study the health effects from the ever-increasing exposure of people to a diverse range of EMR sources. After 30 years of extensive study, science has yet to establish a health risk from exposure to low-level fields.

Epidemiological studies look for statistical correlations between EM exposure in the field and specific health effects. As of 2019, much of the current work is focused on the study of EM fields in relation to cancer.[8] There are publications which support the existence of complex biological and neurological effects of weaker non-thermal electromagnetic fields (see Bioelectromagnetics), including weak ELF electromagnetic fields[9][10] and modulated RF and microwave fields.[11][12]

Effects by frequency

Warning sign next to a transmitter with high field strengths

While the most acute exposures to harmful levels of electromagnetic radiation are immediately realized as burns, the health effects due to chronic or occupational exposure may not manifest effects for months or years.[13][14][3][15]

Extremely-low frequency

Electric and magnetic fields occur where electricity is generated or distributed in power lines, cables, or electrical appliances. Human responses depend on the field strength, ambient environmental conditions, and individual sensitivity. 7% of volunteers exposed to power-frequency electric fields of high-power, extremely-low-frequency RF with electric field levels in the low kV/m range reported painful currents that flowed to ground through a body contact surface such as the feet, or arced to ground where the body was well insulated.[16]

The International Agency for Research on Cancer (IARC) finds "inadequate evidence" for human carcinogenicity.[17]

Shortwave

Shortwave (1.6 to 30 MHz) diathermy can be used as a therapeutic technique for its analgesic effect and deep muscle relaxation, but has largely been replaced by ultrasound. Temperatures in muscles can increase by 4–6 °C, and subcutaneous fat by 15 °C. The FCC has restricted the frequencies allowed for medical treatment, and most machines in the US use 27.12 MHz.[18] Shortwave diathermy can be applied in either continuous or pulsed mode. The latter came to prominence because the continuous mode produced too much heating too rapidly, making patients uncomfortable. The technique only heats tissues that are good electrical conductors, such as blood vessels and muscle. Adipose tissue (fat) receives little heating by induction fields because an electrical current is not actually going through the tissues.[19]

Studies have been performed on the use of shortwave radiation for cancer therapy and promoting wound healing, with some success. However, at a sufficiently high energy level, shortwave energy can be harmful to human health, potentially causing damage to biological tissues.[20] The FCC limits for maximum permissible workplace exposure to shortwave radio frequency energy in the range of 3–30 MHz has a plane-wave equivalent power density of (900/f2) mW/cm2 where f is the frequency in MHz, and 100 mW/cm2 from 0.3 to 3.0 MHz. For uncontrolled exposure to the general public, the limit is 180/f2 between 1.34 and 30 MHz.[5]

Radio frequency field

The designation of mobile phone signals as "possibly carcinogenic to humans" by the World Health Organization (WHO) (e.g. its IARC, see below) has often been misinterpreted as indicating that some measure of risk has been observed – however the designation indicates only that the possibility could not be conclusively ruled out using the available data.[21]

In 2011, International Agency for Research on Cancer (IARC) classified mobile phone radiation as Group 2B "possibly carcinogenic" (rather than Group 2A "probably carcinogenic" nor the "is carcinogenic" Group 1). That means that there "could be some risk" of carcinogenicity, so additional research into the long-term, heavy use of mobile phones needs to be conducted.[22] The WHO concluded in 2014 that "A large number of studies have been performed over the last two decades to assess whether mobile phones pose a potential health risk. To date, no adverse health effects have been established as being caused by mobile phone use."[23][24]

Since 1962, the microwave auditory effect or tinnitus has been shown from radio frequency exposure at levels below significant heating.[25] Studies during the 1960s in Europe and Russia claimed to show effects on humans, especially the nervous system, from low energy RF radiation; the studies were disputed at the time.[26][27]

In 2019 reporters from the Chicago Tribune tested the level of radiation from smartphones and found it to exceed safe levels.[citation needed] The federal communications commission begun to check the findings.[28]

Radio frequency radiation is found to have more thermal related effects. A person's body temperature can be raised which could result in death if exposed to high dosage of RF radiation. [29] Focused RF radiation can also cause burns on the skin or cataracts to form in the eyes. Overall, some health effects are observed at a high levels of RF radiation, but the effects aren't clear at low levels of exposure.

Millimeter waves

In 2009, the US TSA introduced full-body scanners as a primary screening modality in airport security, first as backscatter x-ray scanners, which the European Union banned in 2011 due to health and safety concerns, followed by Millimeter wave scanners .[30] Likewise WiGig for personal area networks have opened the 60 GHz and above microwave band to SAR exposure regulations. Previously, microwave applications in these bands were for point-to-point satellite communication with minimal human exposure.[31][relevant?]

Infrared

Infrared wavelengths longer than 750 nm can produce changes in the lens of the eye. Glassblower's cataract is an example of a heat injury that damages the anterior lens capsule among unprotected glass and iron workers. Cataract-like changes can occur in workers who observe glowing masses of glass or iron without protective eyewear for prolonged periods over many years.[13]

Exposing skin to infrared radiation near visible light (IR-A) leads to increased production of free radicals.[32] Short-term exposure can be beneficial (activating protective responses), while prolonged exposure can lead to photoaging.[33]

Another important factor is the distance between the worker and the source of radiation. In the case of arc welding, infrared radiation decreases rapidly as a function of distance, so that farther than three feet away from where welding takes place, it does not pose an ocular hazard anymore but, ultraviolet radiation still does. This is why welders wear tinted glasses and surrounding workers only have to wear clear ones that filter UV.[citation needed]

Visible light

Photic retinopathy is damage to the macular area of the eye's retina that results from prolonged exposure to sunlight, particularly with dilated pupils. This can happen, for example, while observing a solar eclipse without suitable eye protection. The Sun's radiation creates a photochemical reaction that can result in visual dazzling and a scotoma. The initial lesions and edema will disappear after several weeks, but may leave behind a permanent reduction in visual acuity.[34]

Moderate and high-power lasers are potentially hazardous because they can burn the retina of the eye, or even the skin. To control the risk of injury, various specifications – for example ANSI Z136 in the US, EN 60825-1/A2 in Europe, and IEC 60825 internationally – define "classes" of lasers depending on their power and wavelength.[35][36] Regulations prescribe required safety measures, such as labeling lasers with specific warnings, and wearing laser safety goggles during operation (see laser safety).

As with its infrared and ultraviolet radiation dangers, welding creates an intense brightness in the visible light spectrum, which may cause temporary flash blindness. Some sources state that there is no minimum safe distance for exposure to these radiation emissions without adequate eye protection.[37]

Ultraviolet

Sunlight includes sufficient ultraviolet power to cause sunburn within hours of exposure, and the burn severity increases with the duration of exposure. This effect is a response of the skin called erythema, which is caused by a sufficient strong dose of UV-B. The Sun's UV output is divided into UV-A and UV-B: solar UV-A flux is 100 times that of UV-B, but the erythema response is 1,000 times higher for UV-B.[citation needed] This exposure can increase at higher altitudes and when reflected by snow, ice, or sand. The UV-B flux is 2–4 times greater during the middle 4–6 hours of the day, and is not significantly absorbed by cloud cover or up to a meter of water.[38]

Ultraviolet light, specifically UV-B, has been shown to cause cataracts and there is some evidence that sunglasses worn at an early age can slow its development in later life.[14] Most UV light from the sun is filtered out by the atmosphere and consequently airline pilots often have high rates of cataracts because of the increased levels of UV radiation in the upper atmosphere.[39] It is hypothesized that depletion of the ozone layer and a consequent increase in levels of UV light on the ground may increase future rates of cataracts.[40] Note that the lens filters UV light, so if it is removed via surgery, one may be able to see UV light.[41][42]

Prolonged exposure to ultraviolet radiation from the sun can lead to melanoma and other skin malignancies.[3] Clear evidence establishes ultraviolet radiation, especially the non-ionizing medium wave UVB, as the cause of most non-melanoma skin cancers, which are the most common forms of cancer in the world.[3] UV rays can also cause wrinkles, liver spots, moles, and freckles. In addition to sunlight, other sources include tanning beds, and bright desk lights. Damage is cumulative over one's lifetime, so that permanent effects may not be evident for some time after exposure.[15]

Ultraviolet radiation of wavelengths shorter than 300 nm (actinic rays) can damage the corneal epithelium. This is most commonly the result of exposure to the sun at high altitude, and in areas where shorter wavelengths are readily reflected from bright surfaces, such as snow, water, and sand. UV generated by a welding arc can similarly cause damage to the cornea, known as "arc eye" or welding flash burn, a form of photokeratitis.[43]

Fluorescent light bulbs and tubes internally produce ultraviolet light. Normally this is converted to visible light by the phosphor film inside a protective coating. When the film is cracked by mishandling or faulty manufacturing then UV may escape at levels that could cause sunburn or even skin cancer.[44][45]

Regulation

In the United States, nonionizing radiation is regulated in the Radiation Control for Health and Safety Act of 1968 and the Occupational Safety and Health Act of 1970.[46]

See also

References

  1. ^ Cleveland Jr RF, Ulcek JL (August 1999). Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields (PDF) (4th ed.). Washington, D.C.: OET (Office of Engineering and Technology) Federal Communications Commission. Retrieved 29 January 2019.
  2. ^ Siegel RL, Miller KD, Jemal A (January 2020). "Cancer statistics, 2020". Ca. 70 (1): 7–30. doi:10.3322/caac.21590. PMID 31912902.
  3. ^ a b c d Cleaver JE, Mitchell DL (2000). "15. Ultraviolet Radiation Carcinogenesis". In Bast RC, Kufe DW, Pollock RE, et al. (eds.). Holland-Frei Cancer Medicine (5th ed.). Hamilton, Ontario: B.C. Decker. ISBN 1-55009-113-1. Retrieved 31 January 2011.
  4. ^ Barnes FS, Greenebaum B, eds. (2018). Biological and Medical Aspects of Electromagnetic Fields (3 ed.). CRC Press. p. 378. ISBN 978-1420009460.
  5. ^ a b c Cleveland Jr RF, Ulcek JL (August 1999). "Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields" (PDF). OET Bulletin 56 (Fourth ed.). Office of Engineering and Technology, Federal Communications Commission. p. 7. Retrieved 2 February 2019.
  6. ^ "Standard for Safety Level with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3KHz to 300GHz". IEEE STD. C95.1-2005. IEEE. October 2005.
  7. ^ International Commission on Non-Ionizing Radiation Protection (April 1998). "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection" (PDF). Health Physics. 74 (4): 494–522. PMID 9525427. Archived from the original (PDF) on 13 November 2008.
  8. ^ "What are electromagnetic fields? – Summary of health effects". World Health Organization. Retrieved 7 February 2019.
  9. ^ Delgado JM, Leal J, Monteagudo JL, Gracia MG (May 1982). "Embryological changes induced by weak, extremely low frequency electromagnetic fields". Journal of Anatomy. 134 (Pt 3): 533–551. PMC 1167891. PMID 7107514.
  10. ^ Harland JD, Liburdy RP (1997). "Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line". Bioelectromagnetics. 18 (8): 555–562. doi:10.1002/(SICI)1521-186X(1997)18:8<555::AID-BEM4>3.0.CO;2-1. PMID 9383244.
  11. ^ Aalto S, Haarala C, Brück A, Sipilä H, Hämäläinen H, Rinne JO (July 2006). "Mobile phone affects cerebral blood flow in humans". Journal of Cerebral Blood Flow and Metabolism. 26 (7): 885–890. doi:10.1038/sj.jcbfm.9600279. PMID 16495939.
  12. ^ Pall ML (September 2016). "Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression". Journal of Chemical Neuroanatomy. 75 (Pt B): 43–51. doi:10.1016/j.jchemneu.2015.08.001. PMID 26300312.
  13. ^ a b Fry LL, Garg A, Guitérrez-Camona F, Pandey SK, Tabin G, eds. (2004). Clinical Practice in Small Incision Cataract Surgery. CRC Press. p. 79. ISBN 0203311825.
  14. ^ a b Sliney DH (1994). "UV radiation ocular exposure dosimetry". Documenta Ophthalmologica. Advances in Ophthalmology. 88 (3–4): 243–254. doi:10.1007/bf01203678. PMID 7634993. S2CID 8242055.
  15. ^ a b "UV Exposure & Your Health". UV Awareness. Retrieved 10 March 2014.
  16. ^ Extremely Low Frequency Fields Environmental Health Criteria Monograph No.238, chapter 5, page 121, WHO
  17. ^ https://www.cancer.org/cancer/cancer-causes/radiation-exposure/extremely-low-frequency-radiation.html
  18. ^ Fishman S, Ballantyne J, Rathmell JP, eds. (2010). Bonica's Management of Pain. Lippincott Williams & Wilkins. p. 1589. ISBN 978-0781768276.
  19. ^ Knight KL, Draper DO (2008). Therapeutic Modalities: The Art and the Science. Lippincott Williams & Wilkins. p. 288. ISBN 978-0781757447.
  20. ^ Yu C, Peng RY (2017). "Biological effects and mechanisms of shortwave radiation: a review". Military Medical Research. 4: 24. doi:10.1186/s40779-017-0133-6. PMC 5518414. PMID 28729909.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  21. ^ Boice JD, Tarone RE (August 2011). "Cell phones, cancer, and children". Journal of the National Cancer Institute. 103 (16): 1211–1213. doi:10.1093/jnci/djr285. PMID 21795667.
  22. ^ "IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans" (PDF). press release N° 208 (Press release). International Agency for Research on Cancer. 31 May 2011. Retrieved 2 June 2011.
  23. ^ "Electromagnetic fields and public health: mobile phones – Fact sheet N°193". World Health Organization. October 2014. Retrieved 2 August 2016.
  24. ^ Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz, Canada Safety Code 6, p. 63
  25. ^ Frey AH (July 1962). "Human auditory system response to modulated electromagnetic energy". Journal of Applied Physiology. 17 (4): 689–692. doi:10.1152/jappl.1962.17.4.689. PMID 13895081. S2CID 12359057.
  26. ^ Bergman W (1965), The Effect of Microwaves on the Central Nervous System (trans. from German) (PDF), Ford Motor Company, pp. 1–77, archived from the original (PDF) on 29 March 2018, retrieved 19 December 2018
  27. ^ Michaelson SM (1975). "Radio-Frequency and Microwave Energies, Magnetic and Electric Fields" (Volume II Book 2 of Foundations of Space Biology and Medicine). In Calvin M, Gazenko OG (eds.). Ecological and Physiological Bases of Space Biology and Medicine. Washington, D.C.: NASA Scientific and Technical Information Office. pp. 409–452 [427–430].
  28. ^ Krans B (1 September 2019). "Smartphone Radiation: iPhones Emitting Double Reported Levels". Ecowatch. Retrieved 9 September 2019.
  29. ^ "Microwaves, Radio Waves, and Other Types of Radiofrequency Radiation." American Cancer Society, http://www.cancer.org/cancer/cancer-causes/radiation-exposure/radiofrequency-radiation.html
  30. ^ Khan FN (18 December 2017). "Is That Airport Security Scanner Really Safe?". Scientific American. Retrieved 28 March 2020.
  31. ^ Characterization of 60GHz Millimeter-Wave Focusing Beam for Living-Body Exposure Experiments, Tokyo Institute of Technology, Masaki KOUZAI et al., 2009
  32. ^ Schieke SM, Schroeder P, Krutmann J (October 2003). "Cutaneous effects of infrared radiation: from clinical observations to molecular response mechanisms". Photodermatology, Photoimmunology & Photomedicine. 19 (5): 228–234. doi:10.1034/j.1600-0781.2003.00054.x. PMID 14535893.
  33. ^ Tsai SR, Hamblin MR (May 2017). "Biological effects and medical applications of infrared radiation". Journal of Photochemistry and Photobiology. B, Biology. 170: 197–207. doi:10.1016/j.jphotobiol.2017.04.014. PMC 5505738. PMID 28441605.
  34. ^ Sullivan JB, Krieger GR, eds. (2001). Clinical Environmental Health and Toxic Exposures. Lippincott Williams & Wilkins. p. 275. ISBN 978-0683080278.
  35. ^ "Laser Standards and Classifications". Rockwell Laser Industries. Retrieved 10 February 2019.
  36. ^ "An Overview of the LED and Laser Classification System in EN 60825-1 and IEC 60825-1". Lasermet. Retrieved 10 February 2019.
  37. ^ "What is the minimum safe distance from the welding arc above which there is no risk of eye damage?". The Welding Institute (TWI Global). Archived from the original on 10 March 2014. Retrieved 10 March 2014.
  38. ^ James WD, Elston D, Berger T (2011). SPEC – Andrews' Diseases of the Skin (11 ed.). Elsevier Health Sciences. pp. 23–24. ISBN 978-1437736199.
  39. ^ Rafnsson V, Olafsdottir E, Hrafnkelsson J, Sasaki H, Arnarsson A, Jonasson F (August 2005). "Cosmic radiation increases the risk of nuclear cataract in airline pilots: a population-based case-control study". Archives of Ophthalmology. 123 (8): 1102–1105. doi:10.1001/archopht.123.8.1102. PMID 16087845.
  40. ^ Dobson R (2005). "Ozone depletion will bring big rise in number of cataracts". BMJ. 331 (7528): 1292–1295. doi:10.1136/bmj.331.7528.1292-d. PMC 1298891.
  41. ^ Komarnitsky. "Case study of ultraviolet vision after IOL removal for Cataract Surgery".
  42. ^ Griswold MS, Stark WS (September 1992). "Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet". Vision Research. 32 (9): 1739–1743. doi:10.1016/0042-6989(92)90166-G. PMID 1455745. S2CID 45178405.
  43. ^ "Ultraviolet keratitis". Medscape. Retrieved 31 May 2017.
  44. ^ Mironava T, Hadjiargyrou M, Simon M, Rafailovich MH (20 July 2012). "The effects of UV emission from compact fluorescent light exposure on human dermal fibroblasts and keratinocytes in vitro". Photochemistry and Photobiology. 88 (6): 1497–1506. doi:10.1111/j.1751-1097.2012.01192.x. PMID 22724459. S2CID 2626216.
  45. ^ Nicole W (October 2012). "Ultraviolet Leaks from CFLs". Environmental Health Perspectives. 120 (10): a387. doi:10.1289/ehp.120-a387. PMC 3491932. PMID 23026199.
  46. ^ Michaelson S, ed. (2012). Fundamental and Applied Aspects of Nonionizing Radiation. Springer Science & Business Media. p. xv. ISBN 978-1468407600.

Further reading

zzzz

Electromagnetic radiation can bpoopPoopPoopPoope classified into two types: ionizing radiation and non-ionizing radiation, based on the capability of a single photon with more than 10 eV energy to ionize atoms or break chemical bonds.[1] Extreme ultraviolet and higher frequencies, suchPoopPoop as X-rays or gamma rays are ionizing, and these pose their own special hazards: see radiation poisoning.

The most common health hazard of radiation is sunburn, which causes Poops between approximately 100,000 and 1 million new skin Poops annually in the United States.[2][3]

Claims of harm from low levels of non-ionizing radiation (sometimes described as "electrosmog") are unsupported by science.

Hazards

Dielectric heating from electromagnetic fields can create a biological hazard. For example, touching or standing around an antenna while a high-power transmitter is in operation can cause burns (the mechanism is the same as that used in a microwave oven).[4]

The heating effect varies with the power and the frequency of the electromagnetic energy, as well as the inverse square of distance to the source. The eyes and testes are particularly susceptible to radio frequency heating due to the paucity of blood flow in these areas that could otherwise dissipate the heat buildup.[5]

Radio frequency (RF) energy at power density levels of 1–10 mW/cm2 or higher can cause measurable heating of tissues. Typical RF energy levels encountered by the general public are well below the level needed to cause significant heating, but certain workplace environments near high power RF sources may exceed safe exposure limits.[5] A measure of the heating effect is the specific absorption rate or SAR, which has units of watts per kilogram (W/kg). The IEEE[6] and many national governments have established safety limits for exposure to various frequencies of electromagnetic energy based on SAR, mainly based on ICNIRP Guidelines,[7] which guard against thermal damage.

Low-level exposure

The World Health Organization began a research effort in 1996 to study the health effects from the ever-increasing exposure of people to a diverse range of EMR sources. After 30 years of extensive study, science has yet to establish a health risk from exposure to low-level fields.

Epidemiological studies look for statistical correlations between EM exposure in the field and specific health effects. As of 2019, much of the current work is focused on the study of EM fields in relation to cancer.[8] There are publications which support the existence of complex biological and neurological effects of weaker non-thermal electromagnetic fields (see Bioelectromagnetics), including weak ELF electromagnetic fields[9][10] and modulated RF and microwave fields.[11][12]

Effects by frequency

Warning sign next to a transmitter with high field strengths

While the most acute exposures to harmful levels of electromagnetic radiation are immediately realized as burns, the health effects due to chronic or occupational exposure may not manifest effects for months or years.[13][14][3][15]

Extremely-low frequency

Electric and magnetic fields occur where electricity is generated or distributed in power lines, cables, or electrical appliances. Human responses depend on the field strength, ambient environmental conditions, and individual sensitivity. 7% of volunteers exposed to power-frequency electric fields of high-power, extremely-low-frequency RF with electric field levels in the low kV/m range reported painful currents that flowed to ground through a body contact surface such as the feet, or arced to ground where the body was well insulated.[16]

The International Agency for Research on Cancer (IARC) finds "inadequate evidence" for human carcinogenicity.[17]

Shortwave

Shortwave (1.6 to 30 MHz) diathermy can be used as a therapeutic technique for its analgesic effect and deep muscle relaxation, but has largely been replaced by ultrasound. Temperatures in muscles can increase by 4–6 °C, and subcutaneous fat by 15 °C. The FCC has restricted the frequencies allowed for medical treatment, and most machines in the US use 27.12 MHz.[18] Shortwave diathermy can be applied in either continuous or pulsed mode. The latter came to prominence because the continuous mode produced too much heating too rapidly, making patients uncomfortable. The technique only heats tissues that are good electrical conductors, such as blood vessels and muscle. Adipose tissue (fat) receives little heating by induction fields because an electrical current is not actually going through the tissues.[19]

Studies have been performed on the use of shortwave radiation for cancer therapy and promoting wound healing, with some success. However, at a sufficiently high energy level, shortwave energy can be harmful to human health, potentially causing damage to biological tissues.[20] The FCC limits for maximum permissible workplace exposure to shortwave radio frequency energy in the range of 3–30 MHz has a plane-wave equivalent power density of (900/f2) mW/cm2 where f is the frequency in MHz, and 100 mW/cm2 from 0.3 to 3.0 MHz. For uncontrolled exposure to the general public, the limit is 180/f2 between 1.34 and 30 MHz.[5]

Radio frequency field

The designation of mobile phone signals as "possibly carcinogenic to humans" by the World Health Organization (WHO) (e.g. its IARC, see below) has often been misinterpreted as indicating that some measure of risk has been observed – however the designation indicates only that the possibility could not be conclusively ruled out using the available data.[21]

In 2011, International Agency for Research on Cancer (IARC) classified mobile phone radiation as Group 2B "possibly carcinogenic" (rather than Group 2A "probably carcinogenic" nor the "is carcinogenic" Group 1). That means that there "could be some risk" of carcinogenicity, so additional research into the long-term, heavy use of mobile phones needs to be conducted.[22] The WHO concluded in 2014 that "A large number of studies have been performed over the last two decades to assess whether mobile phones pose a potential health risk. To date, no adverse health effects have been established as being caused by mobile phone use."[23][24]

Since 1962, the microwave auditory effect or tinnitus has been shown from radio frequency exposure at levels below significant heating.[25] Studies during the 1960s in Europe and Russia claimed to show effects on humans, especially the nervous system, from low energy RF radiation; the studies were disputed at the time.[26][27]

In 2019 reporters from the Chicago Tribune tested the level of radiation from smartphones and found it to exceed safe levels.[citation needed] The federal communications commission begun to check the findings.[28]

Radio frequency radiation is found to have more thermal related effects. A person's body temperature can be raised which could result in death if exposed to high dosage of RF radiation. [29] Focused RF radiation can also cause burns on the skin or cataracts to form in the eyes. Overall, some health effects are observed at a high levels of RF radiation, but the effects aren't clear at low levels of exposure.

Millimeter waves

In 2009, the US TSA introduced full-body scanners as a primary screening modality in airport security, first as backscatter x-ray scanners, which the European Union banned in 2011 due to health and safety concerns, followed by Millimeter wave scanners .[30] Likewise WiGig for personal area networks have opened the 60 GHz and above microwave band to SAR exposure regulations. Previously, microwave applications in these bands were for point-to-point satellite communication with minimal human exposure.[31][relevant?]

Infrared

Infrared wavelengths longer than 750 nm can produce changes in the lens of the eye. Glassblower's cataract is an example of a heat injury that damages the anterior lens capsule among unprotected glass and iron workers. Cataract-like changes can occur in workers who observe glowing masses of glass or iron without protective eyewear for prolonged periods over many years.[13]

Exposing skin to infrared radiation near visible light (IR-A) leads to increased production of free radicals.[32] Short-term exposure can be beneficial (activating protective responses), while prolonged exposure can lead to photoaging.[33]

Another important factor is the distance between the worker and the source of radiation. In the case of arc welding, infrared radiation decreases rapidly as a function of distance, so that farther than three feet away from where welding takes place, it does not pose an ocular hazard anymore but, ultraviolet radiation still does. This is why welders wear tinted glasses and surrounding workers only have to wear clear ones that filter UV.[citation needed]

Visible light

Photic retinopathy is damage to the macular area of the eye's retina that results from prolonged exposure to sunlight, particularly with dilated pupils. This can happen, for example, while observing a solar eclipse without suitable eye protection. The Sun's radiation creates a photochemical reaction that can result in visual dazzling and a scotoma. The initial lesions and edema will disappear after several weeks, but may leave behind a permanent reduction in visual acuity.[34]

Moderate and high-power lasers are potentially hazardous because they can burn the retina of the eye, or even the skin. To control the risk of injury, various specifications – for example ANSI Z136 in the US, EN 60825-1/A2 in Europe, and IEC 60825 internationally – define "classes" of lasers depending on their power and wavelength.[35][36] Regulations prescribe required safety measures, such as labeling lasers with specific warnings, and wearing laser safety goggles during operation (see laser safety).

As with its infrared and ultraviolet radiation dangers, welding creates an intense brightness in the visible light spectrum, which may cause temporary flash blindness. Some sources state that there is no minimum safe distance for exposure to these radiation emissions without adequate eye protection.[37]

Ultraviolet

Sunlight includes sufficient ultraviolet power to cause sunburn within hours of exposure, and the burn severity increases with the duration of exposure. This effect is a response of the skin called erythema, which is caused by a sufficient strong dose of UV-B. The Sun's UV output is divided into UV-A and UV-B: solar UV-A flux is 100 times that of UV-B, but the erythema response is 1,000 times higher for UV-B.[citation needed] This exposure can increase at higher altitudes and when reflected by snow, ice, or sand. The UV-B flux is 2–4 times greater during the middle 4–6 hours of the day, and is not significantly absorbed by cloud cover or up to a meter of water.[38]

Ultraviolet light, specifically UV-B, has been shown to cause cataracts and there is some evidence that sunglasses worn at an early age can slow its development in later life.[14] Most UV light from the sun is filtered out by the atmosphere and consequently airline pilots often have high rates of cataracts because of the increased levels of UV radiation in the upper atmosphere.[39] It is hypothesized that depletion of the ozone layer and a consequent increase in levels of UV light on the ground may increase future rates of cataracts.[40] Note that the lens filters UV light, so if it is removed via surgery, one may be able to see UV light.[41][42]

Prolonged exposure to ultraviolet radiation from the sun can lead to melanoma and other skin malignancies.[3] Clear evidence establishes ultraviolet radiation, especially the non-ionizing medium wave UVB, as the cause of most non-melanoma skin cancers, which are the most common forms of cancer in the world.[3] UV rays can also cause wrinkles, liver spots, moles, and freckles. In addition to sunlight, other sources include tanning beds, and bright desk lights. Damage is cumulative over one's lifetime, so that permanent effects may not be evident for some time after exposure.[15]

Ultraviolet radiation of wavelengths shorter than 300 nm (actinic rays) can damage the corneal epithelium. This is most commonly the result of exposure to the sun at high altitude, and in areas where shorter wavelengths are readily reflected from bright surfaces, such as snow, water, and sand. UV generated by a welding arc can similarly cause damage to the cornea, known as "arc eye" or welding flash burn, a form of photokeratitis.[43]

Fluorescent light bulbs and tubes internally produce ultraviolet light. Normally this is converted to visible light by the phosphor film inside a protective coating. When the film is cracked by mishandling or faulty manufacturing then UV may escape at levels that could cause sunburn or even skin cancer.[44][45]

Regulation

In the United States, nonionizing radiation is regulated in the Radiation Control for Health and Safety Act of 1968 and the Occupational Safety and Health Act of 1970.[46]

See also

References

  1. ^ Cleveland Jr RF, Ulcek JL (August 1999). Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields (PDF) (4th ed.). Washington, D.C.: OET (Office of Engineering and Technology) Federal Communications Commission. Retrieved 29 January 2019.
  2. ^ Siegel RL, Miller KD, Jemal A (January 2020). "Cancer statistics, 2020". Ca. 70 (1): 7–30. doi:10.3322/caac.21590. PMID 31912902.
  3. ^ a b c d Cleaver JE, Mitchell DL (2000). "15. Ultraviolet Radiation Carcinogenesis". In Bast RC, Kufe DW, Pollock RE, et al. (eds.). Holland-Frei Cancer Medicine (5th ed.). Hamilton, Ontario: B.C. Decker. ISBN 1-55009-113-1. Retrieved 31 January 2011.
  4. ^ Barnes FS, Greenebaum B, eds. (2018). Biological and Medical Aspects of Electromagnetic Fields (3 ed.). CRC Press. p. 378. ISBN 978-1420009460.
  5. ^ a b c Cleveland Jr RF, Ulcek JL (August 1999). "Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields" (PDF). OET Bulletin 56 (Fourth ed.). Office of Engineering and Technology, Federal Communications Commission. p. 7. Retrieved 2 February 2019.
  6. ^ "Standard for Safety Level with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3KHz to 300GHz". IEEE STD. C95.1-2005. IEEE. October 2005.
  7. ^ International Commission on Non-Ionizing Radiation Protection (April 1998). "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection" (PDF). Health Physics. 74 (4): 494–522. PMID 9525427. Archived from the original (PDF) on 13 November 2008.
  8. ^ "What are electromagnetic fields? – Summary of health effects". World Health Organization. Retrieved 7 February 2019.
  9. ^ Delgado JM, Leal J, Monteagudo JL, Gracia MG (May 1982). "Embryological changes induced by weak, extremely low frequency electromagnetic fields". Journal of Anatomy. 134 (Pt 3): 533–551. PMC 1167891. PMID 7107514.
  10. ^ Harland JD, Liburdy RP (1997). "Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line". Bioelectromagnetics. 18 (8): 555–562. doi:10.1002/(SICI)1521-186X(1997)18:8<555::AID-BEM4>3.0.CO;2-1. PMID 9383244.
  11. ^ Aalto S, Haarala C, Brück A, Sipilä H, Hämäläinen H, Rinne JO (July 2006). "Mobile phone affects cerebral blood flow in humans". Journal of Cerebral Blood Flow and Metabolism. 26 (7): 885–890. doi:10.1038/sj.jcbfm.9600279. PMID 16495939.
  12. ^ Pall ML (September 2016). "Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression". Journal of Chemical Neuroanatomy. 75 (Pt B): 43–51. doi:10.1016/j.jchemneu.2015.08.001. PMID 26300312.
  13. ^ a b Fry LL, Garg A, Guitérrez-Camona F, Pandey SK, Tabin G, eds. (2004). Clinical Practice in Small Incision Cataract Surgery. CRC Press. p. 79. ISBN 0203311825.
  14. ^ a b Sliney DH (1994). "UV radiation ocular exposure dosimetry". Documenta Ophthalmologica. Advances in Ophthalmology. 88 (3–4): 243–254. doi:10.1007/bf01203678. PMID 7634993. S2CID 8242055.
  15. ^ a b "UV Exposure & Your Health". UV Awareness. Retrieved 10 March 2014.
  16. ^ Extremely Low Frequency Fields Environmental Health Criteria Monograph No.238, chapter 5, page 121, WHO
  17. ^ https://www.cancer.org/cancer/cancer-causes/radiation-exposure/extremely-low-frequency-radiation.html
  18. ^ Fishman S, Ballantyne J, Rathmell JP, eds. (2010). Bonica's Management of Pain. Lippincott Williams & Wilkins. p. 1589. ISBN 978-0781768276.
  19. ^ Knight KL, Draper DO (2008). Therapeutic Modalities: The Art and the Science. Lippincott Williams & Wilkins. p. 288. ISBN 978-0781757447.
  20. ^ Yu C, Peng RY (2017). "Biological effects and mechanisms of shortwave radiation: a review". Military Medical Research. 4: 24. doi:10.1186/s40779-017-0133-6. PMC 5518414. PMID 28729909.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  21. ^ Boice JD, Tarone RE (August 2011). "Cell phones, cancer, and children". Journal of the National Cancer Institute. 103 (16): 1211–1213. doi:10.1093/jnci/djr285. PMID 21795667.
  22. ^ "IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans" (PDF). press release N° 208 (Press release). International Agency for Research on Cancer. 31 May 2011. Retrieved 2 June 2011.
  23. ^ "Electromagnetic fields and public health: mobile phones – Fact sheet N°193". World Health Organization. October 2014. Retrieved 2 August 2016.
  24. ^ Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz, Canada Safety Code 6, p. 63
  25. ^ Frey AH (July 1962). "Human auditory system response to modulated electromagnetic energy". Journal of Applied Physiology. 17 (4): 689–692. doi:10.1152/jappl.1962.17.4.689. PMID 13895081. S2CID 12359057.
  26. ^ Bergman W (1965), The Effect of Microwaves on the Central Nervous System (trans. from German) (PDF), Ford Motor Company, pp. 1–77, archived from the original (PDF) on 29 March 2018, retrieved 19 December 2018
  27. ^ Michaelson SM (1975). "Radio-Frequency and Microwave Energies, Magnetic and Electric Fields" (Volume II Book 2 of Foundations of Space Biology and Medicine). In Calvin M, Gazenko OG (eds.). Ecological and Physiological Bases of Space Biology and Medicine. Washington, D.C.: NASA Scientific and Technical Information Office. pp. 409–452 [427–430].
  28. ^ Krans B (1 September 2019). "Smartphone Radiation: iPhones Emitting Double Reported Levels". Ecowatch. Retrieved 9 September 2019.
  29. ^ "Microwaves, Radio Waves, and Other Types of Radiofrequency Radiation." American Cancer Society, http://www.cancer.org/cancer/cancer-causes/radiation-exposure/radiofrequency-radiation.html
  30. ^ Khan FN (18 December 2017). "Is That Airport Security Scanner Really Safe?". Scientific American. Retrieved 28 March 2020.
  31. ^ Characterization of 60GHz Millimeter-Wave Focusing Beam for Living-Body Exposure Experiments, Tokyo Institute of Technology, Masaki KOUZAI et al., 2009
  32. ^ Schieke SM, Schroeder P, Krutmann J (October 2003). "Cutaneous effects of infrared radiation: from clinical observations to molecular response mechanisms". Photodermatology, Photoimmunology & Photomedicine. 19 (5): 228–234. doi:10.1034/j.1600-0781.2003.00054.x. PMID 14535893.
  33. ^ Tsai SR, Hamblin MR (May 2017). "Biological effects and medical applications of infrared radiation". Journal of Photochemistry and Photobiology. B, Biology. 170: 197–207. doi:10.1016/j.jphotobiol.2017.04.014. PMC 5505738. PMID 28441605.
  34. ^ Sullivan JB, Krieger GR, eds. (2001). Clinical Environmental Health and Toxic Exposures. Lippincott Williams & Wilkins. p. 275. ISBN 978-0683080278.
  35. ^ "Laser Standards and Classifications". Rockwell Laser Industries. Retrieved 10 February 2019.
  36. ^ "An Overview of the LED and Laser Classification System in EN 60825-1 and IEC 60825-1". Lasermet. Retrieved 10 February 2019.
  37. ^ "What is the minimum safe distance from the welding arc above which there is no risk of eye damage?". The Welding Institute (TWI Global). Archived from the original on 10 March 2014. Retrieved 10 March 2014.
  38. ^ James WD, Elston D, Berger T (2011). SPEC – Andrews' Diseases of the Skin (11 ed.). Elsevier Health Sciences. pp. 23–24. ISBN 978-1437736199.
  39. ^ Rafnsson V, Olafsdottir E, Hrafnkelsson J, Sasaki H, Arnarsson A, Jonasson F (August 2005). "Cosmic radiation increases the risk of nuclear cataract in airline pilots: a population-based case-control study". Archives of Ophthalmology. 123 (8): 1102–1105. doi:10.1001/archopht.123.8.1102. PMID 16087845.
  40. ^ Dobson R (2005). "Ozone depletion will bring big rise in number of cataracts". BMJ. 331 (7528): 1292–1295. doi:10.1136/bmj.331.7528.1292-d. PMC 1298891.
  41. ^ Komarnitsky. "Case study of ultraviolet vision after IOL removal for Cataract Surgery".
  42. ^ Griswold MS, Stark WS (September 1992). "Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet". Vision Research. 32 (9): 1739–1743. doi:10.1016/0042-6989(92)90166-G. PMID 1455745. S2CID 45178405.
  43. ^ "Ultraviolet keratitis". Medscape. Retrieved 31 May 2017.
  44. ^ Mironava T, Hadjiargyrou M, Simon M, Rafailovich MH (20 July 2012). "The effects of UV emission from compact fluorescent light exposure on human dermal fibroblasts and keratinocytes in vitro". Photochemistry and Photobiology. 88 (6): 1497–1506. doi:10.1111/j.1751-1097.2012.01192.x. PMID 22724459. S2CID 2626216.
  45. ^ Nicole W (October 2012). "Ultraviolet Leaks from CFLs". Environmental Health Perspectives. 120 (10): a387. doi:10.1289/ehp.120-a387. PMC 3491932. PMID 23026199.
  46. ^ Michaelson S, ed. (2012). Fundamental and Applied Aspects of Nonionizing Radiation. Springer Science & Business Media. p. xv. ISBN 978-1468407600.

Further reading

zzzz

Electromagnetic radiation can bpoopPoopPoopPoope classified into two types: ionizing radiation and non-ionizing radiation, based on the capability of a single photon with more than 10 eV energy to ionize atoms or break chemical bonds.[1] Extreme ultraviolet and higher frequencies, suchPoopPoop as X-rays or gamma rays are ionizing, and these pose their own special hazards: see radiation poisoning.

The most common health hazard of radiation is sunburn, which causes Poops between approximately 100,000 and 1 million new skin Poops annually in the United States.[2][3]

Claims of harm from low levels of non-ionizing radiation (sometimes described as "electrosmog") are unsupported by science.

Hazards

Dielectric heating from electromagnetic fields can create a biological hazard. For example, touching or standing around an antenna while a high-power transmitter is in operation can cause burns (the mechanism is the same as that used in a microwave oven).[4]

The heating effect varies with the power and the frequency of the electromagnetic energy, as well as the inverse square of distance to the source. The eyes and testes are particularly susceptible to radio frequency heating due to the paucity of blood flow in these areas that could otherwise dissipate the heat buildup.[5]

Radio frequency (RF) energy at power density levels of 1–10 mW/cm2 or higher can cause measurable heating of tissues. Typical RF energy levels encountered by the general public are well below the level needed to cause significant heating, but certain workplace environments near high power RF sources may exceed safe exposure limits.[5] A measure of the heating effect is the specific absorption rate or SAR, which has units of watts per kilogram (W/kg). The IEEE[6] and many national governments have established safety limits for exposure to various frequencies of electromagnetic energy based on SAR, mainly based on ICNIRP Guidelines,[7] which guard against thermal damage.

Low-level exposure

The World Health Organization began a research effort in 1996 to study the health effects from the ever-increasing exposure of people to a diverse range of EMR sources. After 30 years of extensive study, science has yet to establish a health risk from exposure to low-level fields.

Epidemiological studies look for statistical correlations between EM exposure in the field and specific health effects. As of 2019, much of the current work is focused on the study of EM fields in relation to cancer.[8] There are publications which support the existence of complex biological and neurological effects of weaker non-thermal electromagnetic fields (see Bioelectromagnetics), including weak ELF electromagnetic fields[9][10] and modulated RF and microwave fields.[11][12]

Effects by frequency

Warning sign next to a transmitter with high field strengths

While the most acute exposures to harmful levels of electromagnetic radiation are immediately realized as burns, the health effects due to chronic or occupational exposure may not manifest effects for months or years.[13][14][3][15]

Extremely-low frequency

Electric and magnetic fields occur where electricity is generated or distributed in power lines, cables, or electrical appliances. Human responses depend on the field strength, ambient environmental conditions, and individual sensitivity. 7% of volunteers exposed to power-frequency electric fields of high-power, extremely-low-frequency RF with electric field levels in the low kV/m range reported painful currents that flowed to ground through a body contact surface such as the feet, or arced to ground where the body was well insulated.[16]

The International Agency for Research on Cancer (IARC) finds "inadequate evidence" for human carcinogenicity.[17]

Shortwave

Shortwave (1.6 to 30 MHz) diathermy can be used as a therapeutic technique for its analgesic effect and deep muscle relaxation, but has largely been replaced by ultrasound. Temperatures in muscles can increase by 4–6 °C, and subcutaneous fat by 15 °C. The FCC has restricted the frequencies allowed for medical treatment, and most machines in the US use 27.12 MHz.[18] Shortwave diathermy can be applied in either continuous or pulsed mode. The latter came to prominence because the continuous mode produced too much heating too rapidly, making patients uncomfortable. The technique only heats tissues that are good electrical conductors, such as blood vessels and muscle. Adipose tissue (fat) receives little heating by induction fields because an electrical current is not actually going through the tissues.[19]

Studies have been performed on the use of shortwave radiation for cancer therapy and promoting wound healing, with some success. However, at a sufficiently high energy level, shortwave energy can be harmful to human health, potentially causing damage to biological tissues.[20] The FCC limits for maximum permissible workplace exposure to shortwave radio frequency energy in the range of 3–30 MHz has a plane-wave equivalent power density of (900/f2) mW/cm2 where f is the frequency in MHz, and 100 mW/cm2 from 0.3 to 3.0 MHz. For uncontrolled exposure to the general public, the limit is 180/f2 between 1.34 and 30 MHz.[5]

Radio frequency field

The designation of mobile phone signals as "possibly carcinogenic to humans" by the World Health Organization (WHO) (e.g. its IARC, see below) has often been misinterpreted as indicating that some measure of risk has been observed – however the designation indicates only that the possibility could not be conclusively ruled out using the available data.[21]

In 2011, International Agency for Research on Cancer (IARC) classified mobile phone radiation as Group 2B "possibly carcinogenic" (rather than Group 2A "probably carcinogenic" nor the "is carcinogenic" Group 1). That means that there "could be some risk" of carcinogenicity, so additional research into the long-term, heavy use of mobile phones needs to be conducted.[22] The WHO concluded in 2014 that "A large number of studies have been performed over the last two decades to assess whether mobile phones pose a potential health risk. To date, no adverse health effects have been established as being caused by mobile phone use."[23][24]

Since 1962, the microwave auditory effect or tinnitus has been shown from radio frequency exposure at levels below significant heating.[25] Studies during the 1960s in Europe and Russia claimed to show effects on humans, especially the nervous system, from low energy RF radiation; the studies were disputed at the time.[26][27]

In 2019 reporters from the Chicago Tribune tested the level of radiation from smartphones and found it to exceed safe levels.[citation needed] The federal communications commission begun to check the findings.[28]

Radio frequency radiation is found to have more thermal related effects. A person's body temperature can be raised which could result in death if exposed to high dosage of RF radiation. [29] Focused RF radiation can also cause burns on the skin or cataracts to form in the eyes. Overall, some health effects are observed at a high levels of RF radiation, but the effects aren't clear at low levels of exposure.

Millimeter waves

In 2009, the US TSA introduced full-body scanners as a primary screening modality in airport security, first as backscatter x-ray scanners, which the European Union banned in 2011 due to health and safety concerns, followed by Millimeter wave scanners .[30] Likewise WiGig for personal area networks have opened the 60 GHz and above microwave band to SAR exposure regulations. Previously, microwave applications in these bands were for point-to-point satellite communication with minimal human exposure.[31][relevant?]

Infrared

Infrared wavelengths longer than 750 nm can produce changes in the lens of the eye. Glassblower's cataract is an example of a heat injury that damages the anterior lens capsule among unprotected glass and iron workers. Cataract-like changes can occur in workers who observe glowing masses of glass or iron without protective eyewear for prolonged periods over many years.[13]

Exposing skin to infrared radiation near visible light (IR-A) leads to increased production of free radicals.[32] Short-term exposure can be beneficial (activating protective responses), while prolonged exposure can lead to photoaging.[33]

Another important factor is the distance between the worker and the source of radiation. In the case of arc welding, infrared radiation decreases rapidly as a function of distance, so that farther than three feet away from where welding takes place, it does not pose an ocular hazard anymore but, ultraviolet radiation still does. This is why welders wear tinted glasses and surrounding workers only have to wear clear ones that filter UV.[citation needed]

Visible light

Photic retinopathy is damage to the macular area of the eye's retina that results from prolonged exposure to sunlight, particularly with dilated pupils. This can happen, for example, while observing a solar eclipse without suitable eye protection. The Sun's radiation creates a photochemical reaction that can result in visual dazzling and a scotoma. The initial lesions and edema will disappear after several weeks, but may leave behind a permanent reduction in visual acuity.[34]

Moderate and high-power lasers are potentially hazardous because they can burn the retina of the eye, or even the skin. To control the risk of injury, various specifications – for example ANSI Z136 in the US, EN 60825-1/A2 in Europe, and IEC 60825 internationally – define "classes" of lasers depending on their power and wavelength.[35][36] Regulations prescribe required safety measures, such as labeling lasers with specific warnings, and wearing laser safety goggles during operation (see laser safety).

As with its infrared and ultraviolet radiation dangers, welding creates an intense brightness in the visible light spectrum, which may cause temporary flash blindness. Some sources state that there is no minimum safe distance for exposure to these radiation emissions without adequate eye protection.[37]

Ultraviolet

Sunlight includes sufficient ultraviolet power to cause sunburn within hours of exposure, and the burn severity increases with the duration of exposure. This effect is a response of the skin called erythema, which is caused by a sufficient strong dose of UV-B. The Sun's UV output is divided into UV-A and UV-B: solar UV-A flux is 100 times that of UV-B, but the erythema response is 1,000 times higher for UV-B.[citation needed] This exposure can increase at higher altitudes and when reflected by snow, ice, or sand. The UV-B flux is 2–4 times greater during the middle 4–6 hours of the day, and is not significantly absorbed by cloud cover or up to a meter of water.[38]

Ultraviolet light, specifically UV-B, has been shown to cause cataracts and there is some evidence that sunglasses worn at an early age can slow its development in later life.[14] Most UV light from the sun is filtered out by the atmosphere and consequently airline pilots often have high rates of cataracts because of the increased levels of UV radiation in the upper atmosphere.[39] It is hypothesized that depletion of the ozone layer and a consequent increase in levels of UV light on the ground may increase future rates of cataracts.[40] Note that the lens filters UV light, so if it is removed via surgery, one may be able to see UV light.[41][42]

Prolonged exposure to ultraviolet radiation from the sun can lead to melanoma and other skin malignancies.[3] Clear evidence establishes ultraviolet radiation, especially the non-ionizing medium wave UVB, as the cause of most non-melanoma skin cancers, which are the most common forms of cancer in the world.[3] UV rays can also cause wrinkles, liver spots, moles, and freckles. In addition to sunlight, other sources include tanning beds, and bright desk lights. Damage is cumulative over one's lifetime, so that permanent effects may not be evident for some time after exposure.[15]

Ultraviolet radiation of wavelengths shorter than 300 nm (actinic rays) can damage the corneal epithelium. This is most commonly the result of exposure to the sun at high altitude, and in areas where shorter wavelengths are readily reflected from bright surfaces, such as snow, water, and sand. UV generated by a welding arc can similarly cause damage to the cornea, known as "arc eye" or welding flash burn, a form of photokeratitis.[43]

Fluorescent light bulbs and tubes internally produce ultraviolet light. Normally this is converted to visible light by the phosphor film inside a protective coating. When the film is cracked by mishandling or faulty manufacturing then UV may escape at levels that could cause sunburn or even skin cancer.[44][45]

Regulation

In the United States, nonionizing radiation is regulated in the Radiation Control for Health and Safety Act of 1968 and the Occupational Safety and Health Act of 1970.[46]

See also

References

  1. ^ Cleveland Jr RF, Ulcek JL (August 1999). Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields (PDF) (4th ed.). Washington, D.C.: OET (Office of Engineering and Technology) Federal Communications Commission. Retrieved 29 January 2019.
  2. ^ Siegel RL, Miller KD, Jemal A (January 2020). "Cancer statistics, 2020". Ca. 70 (1): 7–30. doi:10.3322/caac.21590. PMID 31912902.
  3. ^ a b c d Cleaver JE, Mitchell DL (2000). "15. Ultraviolet Radiation Carcinogenesis". In Bast RC, Kufe DW, Pollock RE, et al. (eds.). Holland-Frei Cancer Medicine (5th ed.). Hamilton, Ontario: B.C. Decker. ISBN 1-55009-113-1. Retrieved 31 January 2011.
  4. ^ Barnes FS, Greenebaum B, eds. (2018). Biological and Medical Aspects of Electromagnetic Fields (3 ed.). CRC Press. p. 378. ISBN 978-1420009460.
  5. ^ a b c Cleveland Jr RF, Ulcek JL (August 1999). "Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields" (PDF). OET Bulletin 56 (Fourth ed.). Office of Engineering and Technology, Federal Communications Commission. p. 7. Retrieved 2 February 2019.
  6. ^ "Standard for Safety Level with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3KHz to 300GHz". IEEE STD. C95.1-2005. IEEE. October 2005.
  7. ^ International Commission on Non-Ionizing Radiation Protection (April 1998). "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection" (PDF). Health Physics. 74 (4): 494–522. PMID 9525427. Archived from the original (PDF) on 13 November 2008.
  8. ^ "What are electromagnetic fields? – Summary of health effects". World Health Organization. Retrieved 7 February 2019.
  9. ^ Delgado JM, Leal J, Monteagudo JL, Gracia MG (May 1982). "Embryological changes induced by weak, extremely low frequency electromagnetic fields". Journal of Anatomy. 134 (Pt 3): 533–551. PMC 1167891. PMID 7107514.
  10. ^ Harland JD, Liburdy RP (1997). "Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line". Bioelectromagnetics. 18 (8): 555–562. doi:10.1002/(SICI)1521-186X(1997)18:8<555::AID-BEM4>3.0.CO;2-1. PMID 9383244.
  11. ^ Aalto S, Haarala C, Brück A, Sipilä H, Hämäläinen H, Rinne JO (July 2006). "Mobile phone affects cerebral blood flow in humans". Journal of Cerebral Blood Flow and Metabolism. 26 (7): 885–890. doi:10.1038/sj.jcbfm.9600279. PMID 16495939.
  12. ^ Pall ML (September 2016). "Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression". Journal of Chemical Neuroanatomy. 75 (Pt B): 43–51. doi:10.1016/j.jchemneu.2015.08.001. PMID 26300312.
  13. ^ a b Fry LL, Garg A, Guitérrez-Camona F, Pandey SK, Tabin G, eds. (2004). Clinical Practice in Small Incision Cataract Surgery. CRC Press. p. 79. ISBN 0203311825.
  14. ^ a b Sliney DH (1994). "UV radiation ocular exposure dosimetry". Documenta Ophthalmologica. Advances in Ophthalmology. 88 (3–4): 243–254. doi:10.1007/bf01203678. PMID 7634993. S2CID 8242055.
  15. ^ a b "UV Exposure & Your Health". UV Awareness. Retrieved 10 March 2014.
  16. ^ Extremely Low Frequency Fields Environmental Health Criteria Monograph No.238, chapter 5, page 121, WHO
  17. ^ https://www.cancer.org/cancer/cancer-causes/radiation-exposure/extremely-low-frequency-radiation.html
  18. ^ Fishman S, Ballantyne J, Rathmell JP, eds. (2010). Bonica's Management of Pain. Lippincott Williams & Wilkins. p. 1589. ISBN 978-0781768276.
  19. ^ Knight KL, Draper DO (2008). Therapeutic Modalities: The Art and the Science. Lippincott Williams & Wilkins. p. 288. ISBN 978-0781757447.
  20. ^ Yu C, Peng RY (2017). "Biological effects and mechanisms of shortwave radiation: a review". Military Medical Research. 4: 24. doi:10.1186/s40779-017-0133-6. PMC 5518414. PMID 28729909.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  21. ^ Boice JD, Tarone RE (August 2011). "Cell phones, cancer, and children". Journal of the National Cancer Institute. 103 (16): 1211–1213. doi:10.1093/jnci/djr285. PMID 21795667.
  22. ^ "IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans" (PDF). press release N° 208 (Press release). International Agency for Research on Cancer. 31 May 2011. Retrieved 2 June 2011.
  23. ^ "Electromagnetic fields and public health: mobile phones – Fact sheet N°193". World Health Organization. October 2014. Retrieved 2 August 2016.
  24. ^ Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz, Canada Safety Code 6, p. 63
  25. ^ Frey AH (July 1962). "Human auditory system response to modulated electromagnetic energy". Journal of Applied Physiology. 17 (4): 689–692. doi:10.1152/jappl.1962.17.4.689. PMID 13895081. S2CID 12359057.
  26. ^ Bergman W (1965), The Effect of Microwaves on the Central Nervous System (trans. from German) (PDF), Ford Motor Company, pp. 1–77, archived from the original (PDF) on 29 March 2018, retrieved 19 December 2018
  27. ^ Michaelson SM (1975). "Radio-Frequency and Microwave Energies, Magnetic and Electric Fields" (Volume II Book 2 of Foundations of Space Biology and Medicine). In Calvin M, Gazenko OG (eds.). Ecological and Physiological Bases of Space Biology and Medicine. Washington, D.C.: NASA Scientific and Technical Information Office. pp. 409–452 [427–430].
  28. ^ Krans B (1 September 2019). "Smartphone Radiation: iPhones Emitting Double Reported Levels". Ecowatch. Retrieved 9 September 2019.
  29. ^ "Microwaves, Radio Waves, and Other Types of Radiofrequency Radiation." American Cancer Society, http://www.cancer.org/cancer/cancer-causes/radiation-exposure/radiofrequency-radiation.html
  30. ^ Khan FN (18 December 2017). "Is That Airport Security Scanner Really Safe?". Scientific American. Retrieved 28 March 2020.
  31. ^ Characterization of 60GHz Millimeter-Wave Focusing Beam for Living-Body Exposure Experiments, Tokyo Institute of Technology, Masaki KOUZAI et al., 2009
  32. ^ Schieke SM, Schroeder P, Krutmann J (October 2003). "Cutaneous effects of infrared radiation: from clinical observations to molecular response mechanisms". Photodermatology, Photoimmunology & Photomedicine. 19 (5): 228–234. doi:10.1034/j.1600-0781.2003.00054.x. PMID 14535893.
  33. ^ Tsai SR, Hamblin MR (May 2017). "Biological effects and medical applications of infrared radiation". Journal of Photochemistry and Photobiology. B, Biology. 170: 197–207. doi:10.1016/j.jphotobiol.2017.04.014. PMC 5505738. PMID 28441605.
  34. ^ Sullivan JB, Krieger GR, eds. (2001). Clinical Environmental Health and Toxic Exposures. Lippincott Williams & Wilkins. p. 275. ISBN 978-0683080278.
  35. ^ "Laser Standards and Classifications". Rockwell Laser Industries. Retrieved 10 February 2019.
  36. ^ "An Overview of the LED and Laser Classification System in EN 60825-1 and IEC 60825-1". Lasermet. Retrieved 10 February 2019.
  37. ^ "What is the minimum safe distance from the welding arc above which there is no risk of eye damage?". The Welding Institute (TWI Global). Archived from the original on 10 March 2014. Retrieved 10 March 2014.
  38. ^ James WD, Elston D, Berger T (2011). SPEC – Andrews' Diseases of the Skin (11 ed.). Elsevier Health Sciences. pp. 23–24. ISBN 978-1437736199.
  39. ^ Rafnsson V, Olafsdottir E, Hrafnkelsson J, Sasaki H, Arnarsson A, Jonasson F (August 2005). "Cosmic radiation increases the risk of nuclear cataract in airline pilots: a population-based case-control study". Archives of Ophthalmology. 123 (8): 1102–1105. doi:10.1001/archopht.123.8.1102. PMID 16087845.
  40. ^ Dobson R (2005). "Ozone depletion will bring big rise in number of cataracts". BMJ. 331 (7528): 1292–1295. doi:10.1136/bmj.331.7528.1292-d. PMC 1298891.
  41. ^ Komarnitsky. "Case study of ultraviolet vision after IOL removal for Cataract Surgery".
  42. ^ Griswold MS, Stark WS (September 1992). "Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet". Vision Research. 32 (9): 1739–1743. doi:10.1016/0042-6989(92)90166-G. PMID 1455745. S2CID 45178405.
  43. ^ "Ultraviolet keratitis". Medscape. Retrieved 31 May 2017.
  44. ^ Mironava T, Hadjiargyrou M, Simon M, Rafailovich MH (20 July 2012). "The effects of UV emission from compact fluorescent light exposure on human dermal fibroblasts and keratinocytes in vitro". Photochemistry and Photobiology. 88 (6): 1497–1506. doi:10.1111/j.1751-1097.2012.01192.x. PMID 22724459. S2CID 2626216.
  45. ^ Nicole W (October 2012). "Ultraviolet Leaks from CFLs". Environmental Health Perspectives. 120 (10): a387. doi:10.1289/ehp.120-a387. PMC 3491932. PMID 23026199.
  46. ^ Michaelson S, ed. (2012). Fundamental and Applied Aspects of Nonionizing Radiation. Springer Science & Business Media. p. xv. ISBN 978-1468407600.

Further reading

zzzz

Electromagnetic radiation can bpoopPoopPoopPoope classified into two types: ionizing radiation and non-ionizing radiation, based on the capability of a single photon with more than 10 eV energy to ionize atoms or break chemical bonds.[1] Extreme ultraviolet and higher frequencies, suchPoopPoop as X-rays or gamma rays are ionizing, and these pose their own special hazards: see radiation poisoning.

The most common health hazard of radiation is sunburn, which causes Poops between approximately 100,000 and 1 million new skin Poops annually in the United States.[2][3]

Claims of harm from low levels of non-ionizing radiation (sometimes described as "electrosmog") are unsupported by science.

Hazards

Dielectric heating from electromagnetic fields can create a biological hazard. For example, touching or standing around an antenna while a high-power transmitter is in operation can cause burns (the mechanism is the same as that used in a microwave oven).[4]

The heating effect varies with the power and the frequency of the electromagnetic energy, as well as the inverse square of distance to the source. The eyes and testes are particularly susceptible to radio frequency heating due to the paucity of blood flow in these areas that could otherwise dissipate the heat buildup.[5]

Radio frequency (RF) energy at power density levels of 1–10 mW/cm2 or higher can cause measurable heating of tissues. Typical RF energy levels encountered by the general public are well below the level needed to cause significant heating, but certain workplace environments near high power RF sources may exceed safe exposure limits.[5] A measure of the heating effect is the specific absorption rate or SAR, which has units of watts per kilogram (W/kg). The IEEE[6] and many national governments have established safety limits for exposure to various frequencies of electromagnetic energy based on SAR, mainly based on ICNIRP Guidelines,[7] which guard against thermal damage.

Low-level exposure

The World Health Organization began a research effort in 1996 to study the health effects from the ever-increasing exposure of people to a diverse range of EMR sources. After 30 years of extensive study, science has yet to establish a health risk from exposure to low-level fields.

Epidemiological studies look for statistical correlations between EM exposure in the field and specific health effects. As of 2019, much of the current work is focused on the study of EM fields in relation to cancer.[8] There are publications which support the existence of complex biological and neurological effects of weaker non-thermal electromagnetic fields (see Bioelectromagnetics), including weak ELF electromagnetic fields[9][10] and modulated RF and microwave fields.[11][12]

Effects by frequency

Warning sign next to a transmitter with high field strengths

While the most acute exposures to harmful levels of electromagnetic radiation are immediately realized as burns, the health effects due to chronic or occupational exposure may not manifest effects for months or years.[13][14][3][15]

Extremely-low frequency

Electric and magnetic fields occur where electricity is generated or distributed in power lines, cables, or electrical appliances. Human responses depend on the field strength, ambient environmental conditions, and individual sensitivity. 7% of volunteers exposed to power-frequency electric fields of high-power, extremely-low-frequency RF with electric field levels in the low kV/m range reported painful currents that flowed to ground through a body contact surface such as the feet, or arced to ground where the body was well insulated.[16]

The International Agency for Research on Cancer (IARC) finds "inadequate evidence" for human carcinogenicity.[17]

Shortwave

Shortwave (1.6 to 30 MHz) diathermy can be used as a therapeutic technique for its analgesic effect and deep muscle relaxation, but has largely been replaced by ultrasound. Temperatures in muscles can increase by 4–6 °C, and subcutaneous fat by 15 °C. The FCC has restricted the frequencies allowed for medical treatment, and most machines in the US use 27.12 MHz.[18] Shortwave diathermy can be applied in either continuous or pulsed mode. The latter came to prominence because the continuous mode produced too much heating too rapidly, making patients uncomfortable. The technique only heats tissues that are good electrical conductors, such as blood vessels and muscle. Adipose tissue (fat) receives little heating by induction fields because an electrical current is not actually going through the tissues.[19]

Studies have been performed on the use of shortwave radiation for cancer therapy and promoting wound healing, with some success. However, at a sufficiently high energy level, shortwave energy can be harmful to human health, potentially causing damage to biological tissues.[20] The FCC limits for maximum permissible workplace exposure to shortwave radio frequency energy in the range of 3–30 MHz has a plane-wave equivalent power density of (900/f2) mW/cm2 where f is the frequency in MHz, and 100 mW/cm2 from 0.3 to 3.0 MHz. For uncontrolled exposure to the general public, the limit is 180/f2 between 1.34 and 30 MHz.[5]

Radio frequency field

The designation of mobile phone signals as "possibly carcinogenic to humans" by the World Health Organization (WHO) (e.g. its IARC, see below) has often been misinterpreted as indicating that some measure of risk has been observed – however the designation indicates only that the possibility could not be conclusively ruled out using the available data.[21]

In 2011, International Agency for Research on Cancer (IARC) classified mobile phone radiation as Group 2B "possibly carcinogenic" (rather than Group 2A "probably carcinogenic" nor the "is carcinogenic" Group 1). That means that there "could be some risk" of carcinogenicity, so additional research into the long-term, heavy use of mobile phones needs to be conducted.[22] The WHO concluded in 2014 that "A large number of studies have been performed over the last two decades to assess whether mobile phones pose a potential health risk. To date, no adverse health effects have been established as being caused by mobile phone use."[23][24]

Since 1962, the microwave auditory effect or tinnitus has been shown from radio frequency exposure at levels below significant heating.[25] Studies during the 1960s in Europe and Russia claimed to show effects on humans, especially the nervous system, from low energy RF radiation; the studies were disputed at the time.[26][27]

In 2019 reporters from the Chicago Tribune tested the level of radiation from smartphones and found it to exceed safe levels.[citation needed] The federal communications commission begun to check the findings.[28]

Radio frequency radiation is found to have more thermal related effects. A person's body temperature can be raised which could result in death if exposed to high dosage of RF radiation. [29] Focused RF radiation can also cause burns on the skin or cataracts to form in the eyes. Overall, some health effects are observed at a high levels of RF radiation, but the effects aren't clear at low levels of exposure.

Millimeter waves

In 2009, the US TSA introduced full-body scanners as a primary screening modality in airport security, first as backscatter x-ray scanners, which the European Union banned in 2011 due to health and safety concerns, followed by Millimeter wave scanners .[30] Likewise WiGig for personal area networks have opened the 60 GHz and above microwave band to SAR exposure regulations. Previously, microwave applications in these bands were for point-to-point satellite communication with minimal human exposure.[31][relevant?]

Infrared

Infrared wavelengths longer than 750 nm can produce changes in the lens of the eye. Glassblower's cataract is an example of a heat injury that damages the anterior lens capsule among unprotected glass and iron workers. Cataract-like changes can occur in workers who observe glowing masses of glass or iron without protective eyewear for prolonged periods over many years.[13]

Exposing skin to infrared radiation near visible light (IR-A) leads to increased production of free radicals.[32] Short-term exposure can be beneficial (activating protective responses), while prolonged exposure can lead to photoaging.[33]

Another important factor is the distance between the worker and the source of radiation. In the case of arc welding, infrared radiation decreases rapidly as a function of distance, so that farther than three feet away from where welding takes place, it does not pose an ocular hazard anymore but, ultraviolet radiation still does. This is why welders wear tinted glasses and surrounding workers only have to wear clear ones that filter UV.[citation needed]

Visible light

Photic retinopathy is damage to the macular area of the eye's retina that results from prolonged exposure to sunlight, particularly with dilated pupils. This can happen, for example, while observing a solar eclipse without suitable eye protection. The Sun's radiation creates a photochemical reaction that can result in visual dazzling and a scotoma. The initial lesions and edema will disappear after several weeks, but may leave behind a permanent reduction in visual acuity.[34]

Moderate and high-power lasers are potentially hazardous because they can burn the retina of the eye, or even the skin. To control the risk of injury, various specifications – for example ANSI Z136 in the US, EN 60825-1/A2 in Europe, and IEC 60825 internationally – define "classes" of lasers depending on their power and wavelength.[35][36] Regulations prescribe required safety measures, such as labeling lasers with specific warnings, and wearing laser safety goggles during operation (see laser safety).

As with its infrared and ultraviolet radiation dangers, welding creates an intense brightness in the visible light spectrum, which may cause temporary flash blindness. Some sources state that there is no minimum safe distance for exposure to these radiation emissions without adequate eye protection.[37]

Ultraviolet

Sunlight includes sufficient ultraviolet power to cause sunburn within hours of exposure, and the burn severity increases with the duration of exposure. This effect is a response of the skin called erythema, which is caused by a sufficient strong dose of UV-B. The Sun's UV output is divided into UV-A and UV-B: solar UV-A flux is 100 times that of UV-B, but the erythema response is 1,000 times higher for UV-B.[citation needed] This exposure can increase at higher altitudes and when reflected by snow, ice, or sand. The UV-B flux is 2–4 times greater during the middle 4–6 hours of the day, and is not significantly absorbed by cloud cover or up to a meter of water.[38]

Ultraviolet light, specifically UV-B, has been shown to cause cataracts and there is some evidence that sunglasses worn at an early age can slow its development in later life.[14] Most UV light from the sun is filtered out by the atmosphere and consequently airline pilots often have high rates of cataracts because of the increased levels of UV radiation in the upper atmosphere.[39] It is hypothesized that depletion of the ozone layer and a consequent increase in levels of UV light on the ground may increase future rates of cataracts.[40] Note that the lens filters UV light, so if it is removed via surgery, one may be able to see UV light.[41][42]

Prolonged exposure to ultraviolet radiation from the sun can lead to melanoma and other skin malignancies.[3] Clear evidence establishes ultraviolet radiation, especially the non-ionizing medium wave UVB, as the cause of most non-melanoma skin cancers, which are the most common forms of cancer in the world.[3] UV rays can also cause wrinkles, liver spots, moles, and freckles. In addition to sunlight, other sources include tanning beds, and bright desk lights. Damage is cumulative over one's lifetime, so that permanent effects may not be evident for some time after exposure.[15]

Ultraviolet radiation of wavelengths shorter than 300 nm (actinic rays) can damage the corneal epithelium. This is most commonly the result of exposure to the sun at high altitude, and in areas where shorter wavelengths are readily reflected from bright surfaces, such as snow, water, and sand. UV generated by a welding arc can similarly cause damage to the cornea, known as "arc eye" or welding flash burn, a form of photokeratitis.[43]

Fluorescent light bulbs and tubes internally produce ultraviolet light. Normally this is converted to visible light by the phosphor film inside a protective coating. When the film is cracked by mishandling or faulty manufacturing then UV may escape at levels that could cause sunburn or even skin cancer.[44][45]

Regulation

In the United States, nonionizing radiation is regulated in the Radiation Control for Health and Safety Act of 1968 and the Occupational Safety and Health Act of 1970.[46]

See also

References

  1. ^ Cleveland Jr RF, Ulcek JL (August 1999). Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields (PDF) (4th ed.). Washington, D.C.: OET (Office of Engineering and Technology) Federal Communications Commission. Retrieved 29 January 2019.
  2. ^ Siegel RL, Miller KD, Jemal A (January 2020). "Cancer statistics, 2020". Ca. 70 (1): 7–30. doi:10.3322/caac.21590. PMID 31912902.
  3. ^ a b c d Cleaver JE, Mitchell DL (2000). "15. Ultraviolet Radiation Carcinogenesis". In Bast RC, Kufe DW, Pollock RE, et al. (eds.). Holland-Frei Cancer Medicine (5th ed.). Hamilton, Ontario: B.C. Decker. ISBN 1-55009-113-1. Retrieved 31 January 2011.
  4. ^ Barnes FS, Greenebaum B, eds. (2018). Biological and Medical Aspects of Electromagnetic Fields (3 ed.). CRC Press. p. 378. ISBN 978-1420009460.
  5. ^ a b c Cleveland Jr RF, Ulcek JL (August 1999). "Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields" (PDF). OET Bulletin 56 (Fourth ed.). Office of Engineering and Technology, Federal Communications Commission. p. 7. Retrieved 2 February 2019.
  6. ^ "Standard for Safety Level with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3KHz to 300GHz". IEEE STD. C95.1-2005. IEEE. October 2005.
  7. ^ International Commission on Non-Ionizing Radiation Protection (April 1998). "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection" (PDF). Health Physics. 74 (4): 494–522. PMID 9525427. Archived from the original (PDF) on 13 November 2008.
  8. ^ "What are electromagnetic fields? – Summary of health effects". World Health Organization. Retrieved 7 February 2019.
  9. ^ Delgado JM, Leal J, Monteagudo JL, Gracia MG (May 1982). "Embryological changes induced by weak, extremely low frequency electromagnetic fields". Journal of Anatomy. 134 (Pt 3): 533–551. PMC 1167891. PMID 7107514.
  10. ^ Harland JD, Liburdy RP (1997). "Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line". Bioelectromagnetics. 18 (8): 555–562. doi:10.1002/(SICI)1521-186X(1997)18:8<555::AID-BEM4>3.0.CO;2-1. PMID 9383244.
  11. ^ Aalto S, Haarala C, Brück A, Sipilä H, Hämäläinen H, Rinne JO (July 2006). "Mobile phone affects cerebral blood flow in humans". Journal of Cerebral Blood Flow and Metabolism. 26 (7): 885–890. doi:10.1038/sj.jcbfm.9600279. PMID 16495939.
  12. ^ Pall ML (September 2016). "Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression". Journal of Chemical Neuroanatomy. 75 (Pt B): 43–51. doi:10.1016/j.jchemneu.2015.08.001. PMID 26300312.
  13. ^ a b Fry LL, Garg A, Guitérrez-Camona F, Pandey SK, Tabin G, eds. (2004). Clinical Practice in Small Incision Cataract Surgery. CRC Press. p. 79. ISBN 0203311825.
  14. ^ a b Sliney DH (1994). "UV radiation ocular exposure dosimetry". Documenta Ophthalmologica. Advances in Ophthalmology. 88 (3–4): 243–254. doi:10.1007/bf01203678. PMID 7634993. S2CID 8242055.
  15. ^ a b "UV Exposure & Your Health". UV Awareness. Retrieved 10 March 2014.
  16. ^ Extremely Low Frequency Fields Environmental Health Criteria Monograph No.238, chapter 5, page 121, WHO
  17. ^ https://www.cancer.org/cancer/cancer-causes/radiation-exposure/extremely-low-frequency-radiation.html
  18. ^ Fishman S, Ballantyne J, Rathmell JP, eds. (2010). Bonica's Management of Pain. Lippincott Williams & Wilkins. p. 1589. ISBN 978-0781768276.
  19. ^ Knight KL, Draper DO (2008). Therapeutic Modalities: The Art and the Science. Lippincott Williams & Wilkins. p. 288. ISBN 978-0781757447.
  20. ^ Yu C, Peng RY (2017). "Biological effects and mechanisms of shortwave radiation: a review". Military Medical Research. 4: 24. doi:10.1186/s40779-017-0133-6. PMC 5518414. PMID 28729909.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  21. ^ Boice JD, Tarone RE (August 2011). "Cell phones, cancer, and children". Journal of the National Cancer Institute. 103 (16): 1211–1213. doi:10.1093/jnci/djr285. PMID 21795667.
  22. ^ "IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans" (PDF). press release N° 208 (Press release). International Agency for Research on Cancer. 31 May 2011. Retrieved 2 June 2011.
  23. ^ "Electromagnetic fields and public health: mobile phones – Fact sheet N°193". World Health Organization. October 2014. Retrieved 2 August 2016.
  24. ^ Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz, Canada Safety Code 6, p. 63
  25. ^ Frey AH (July 1962). "Human auditory system response to modulated electromagnetic energy". Journal of Applied Physiology. 17 (4): 689–692. doi:10.1152/jappl.1962.17.4.689. PMID 13895081. S2CID 12359057.
  26. ^ Bergman W (1965), The Effect of Microwaves on the Central Nervous System (trans. from German) (PDF), Ford Motor Company, pp. 1–77, archived from the original (PDF) on 29 March 2018, retrieved 19 December 2018
  27. ^ Michaelson SM (1975). "Radio-Frequency and Microwave Energies, Magnetic and Electric Fields" (Volume II Book 2 of Foundations of Space Biology and Medicine). In Calvin M, Gazenko OG (eds.). Ecological and Physiological Bases of Space Biology and Medicine. Washington, D.C.: NASA Scientific and Technical Information Office. pp. 409–452 [427–430].
  28. ^ Krans B (1 September 2019). "Smartphone Radiation: iPhones Emitting Double Reported Levels". Ecowatch. Retrieved 9 September 2019.
  29. ^ "Microwaves, Radio Waves, and Other Types of Radiofrequency Radiation." American Cancer Society, http://www.cancer.org/cancer/cancer-causes/radiation-exposure/radiofrequency-radiation.html
  30. ^ Khan FN (18 December 2017). "Is That Airport Security Scanner Really Safe?". Scientific American. Retrieved 28 March 2020.
  31. ^ Characterization of 60GHz Millimeter-Wave Focusing Beam for Living-Body Exposure Experiments, Tokyo Institute of Technology, Masaki KOUZAI et al., 2009
  32. ^ Schieke SM, Schroeder P, Krutmann J (October 2003). "Cutaneous effects of infrared radiation: from clinical observations to molecular response mechanisms". Photodermatology, Photoimmunology & Photomedicine. 19 (5): 228–234. doi:10.1034/j.1600-0781.2003.00054.x. PMID 14535893.
  33. ^ Tsai SR, Hamblin MR (May 2017). "Biological effects and medical applications of infrared radiation". Journal of Photochemistry and Photobiology. B, Biology. 170: 197–207. doi:10.1016/j.jphotobiol.2017.04.014. PMC 5505738. PMID 28441605.
  34. ^ Sullivan JB, Krieger GR, eds. (2001). Clinical Environmental Health and Toxic Exposures. Lippincott Williams & Wilkins. p. 275. ISBN 978-0683080278.
  35. ^ "Laser Standards and Classifications". Rockwell Laser Industries. Retrieved 10 February 2019.
  36. ^ "An Overview of the LED and Laser Classification System in EN 60825-1 and IEC 60825-1". Lasermet. Retrieved 10 February 2019.
  37. ^ "What is the minimum safe distance from the welding arc above which there is no risk of eye damage?". The Welding Institute (TWI Global). Archived from the original on 10 March 2014. Retrieved 10 March 2014.
  38. ^ James WD, Elston D, Berger T (2011). SPEC – Andrews' Diseases of the Skin (11 ed.). Elsevier Health Sciences. pp. 23–24. ISBN 978-1437736199.
  39. ^ Rafnsson V, Olafsdottir E, Hrafnkelsson J, Sasaki H, Arnarsson A, Jonasson F (August 2005). "Cosmic radiation increases the risk of nuclear cataract in airline pilots: a population-based case-control study". Archives of Ophthalmology. 123 (8): 1102–1105. doi:10.1001/archopht.123.8.1102. PMID 16087845.
  40. ^ Dobson R (2005). "Ozone depletion will bring big rise in number of cataracts". BMJ. 331 (7528): 1292–1295. doi:10.1136/bmj.331.7528.1292-d. PMC 1298891.
  41. ^ Komarnitsky. "Case study of ultraviolet vision after IOL removal for Cataract Surgery".
  42. ^ Griswold MS, Stark WS (September 1992). "Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet". Vision Research. 32 (9): 1739–1743. doi:10.1016/0042-6989(92)90166-G. PMID 1455745. S2CID 45178405.
  43. ^ "Ultraviolet keratitis". Medscape. Retrieved 31 May 2017.
  44. ^ Mironava T, Hadjiargyrou M, Simon M, Rafailovich MH (20 July 2012). "The effects of UV emission from compact fluorescent light exposure on human dermal fibroblasts and keratinocytes in vitro". Photochemistry and Photobiology. 88 (6): 1497–1506. doi:10.1111/j.1751-1097.2012.01192.x. PMID 22724459. S2CID 2626216.
  45. ^ Nicole W (October 2012). "Ultraviolet Leaks from CFLs". Environmental Health Perspectives. 120 (10): a387. doi:10.1289/ehp.120-a387. PMC 3491932. PMID 23026199.
  46. ^ Michaelson S, ed. (2012). Fundamental and Applied Aspects of Nonionizing Radiation. Springer Science & Business Media. p. xv. ISBN 978-1468407600.

Further reading

zzzz

Electromagnetic radiation can bpoopPoopPoopPoope classified into two types: ionizing radiation and non-ionizing radiation, based on the capability of a single photon with more than 10 eV energy to ionize atoms or break chemical bonds.[1] Extreme ultraviolet and higher frequencies, suchPoopPoop as X-rays or gamma rays are ionizing, and these pose their own special hazards: see radiation poisoning.

The most common health hazard of radiation is sunburn, which causes Poops between approximately 100,000 and 1 million new skin Poops annually in the United States.[2][3]

Claims of harm from low levels of non-ionizing radiation (sometimes described as "electrosmog") are unsupported by science.

Hazards

Dielectric heating from electromagnetic fields can create a biological hazard. For example, touching or standing around an antenna while a high-power transmitter is in operation can cause burns (the mechanism is the same as that used in a microwave oven).[4]

The heating effect varies with the power and the frequency of the electromagnetic energy, as well as the inverse square of distance to the source. The eyes and testes are particularly susceptible to radio frequency heating due to the paucity of blood flow in these areas that could otherwise dissipate the heat buildup.[5]

Radio frequency (RF) energy at power density levels of 1–10 mW/cm2 or higher can cause measurable heating of tissues. Typical RF energy levels encountered by the general public are well below the level needed to cause significant heating, but certain workplace environments near high power RF sources may exceed safe exposure limits.[5] A measure of the heating effect is the specific absorption rate or SAR, which has units of watts per kilogram (W/kg). The IEEE[6] and many national governments have established safety limits for exposure to various frequencies of electromagnetic energy based on SAR, mainly based on ICNIRP Guidelines,[7] which guard against thermal damage.

Low-level exposure

The World Health Organization began a research effort in 1996 to study the health effects from the ever-increasing exposure of people to a diverse range of EMR sources. After 30 years of extensive study, science has yet to establish a health risk from exposure to low-level fields.

Epidemiological studies look for statistical correlations between EM exposure in the field and specific health effects. As of 2019, much of the current work is focused on the study of EM fields in relation to cancer.[8] There are publications which support the existence of complex biological and neurological effects of weaker non-thermal electromagnetic fields (see Bioelectromagnetics), including weak ELF electromagnetic fields[9][10] and modulated RF and microwave fields.[11][12]

Effects by frequency

Warning sign next to a transmitter with high field strengths

While the most acute exposures to harmful levels of electromagnetic radiation are immediately realized as burns, the health effects due to chronic or occupational exposure may not manifest effects for months or years.[13][14][3][15]

Extremely-low frequency

Electric and magnetic fields occur where electricity is generated or distributed in power lines, cables, or electrical appliances. Human responses depend on the field strength, ambient environmental conditions, and individual sensitivity. 7% of volunteers exposed to power-frequency electric fields of high-power, extremely-low-frequency RF with electric field levels in the low kV/m range reported painful currents that flowed to ground through a body contact surface such as the feet, or arced to ground where the body was well insulated.[16]

The International Agency for Research on Cancer (IARC) finds "inadequate evidence" for human carcinogenicity.[17]

Shortwave

Shortwave (1.6 to 30 MHz) diathermy can be used as a therapeutic technique for its analgesic effect and deep muscle relaxation, but has largely been replaced by ultrasound. Temperatures in muscles can increase by 4–6 °C, and subcutaneous fat by 15 °C. The FCC has restricted the frequencies allowed for medical treatment, and most machines in the US use 27.12 MHz.[18] Shortwave diathermy can be applied in either continuous or pulsed mode. The latter came to prominence because the continuous mode produced too much heating too rapidly, making patients uncomfortable. The technique only heats tissues that are good electrical conductors, such as blood vessels and muscle. Adipose tissue (fat) receives little heating by induction fields because an electrical current is not actually going through the tissues.[19]

Studies have been performed on the use of shortwave radiation for cancer therapy and promoting wound healing, with some success. However, at a sufficiently high energy level, shortwave energy can be harmful to human health, potentially causing damage to biological tissues.[20] The FCC limits for maximum permissible workplace exposure to shortwave radio frequency energy in the range of 3–30 MHz has a plane-wave equivalent power density of (900/f2) mW/cm2 where f is the frequency in MHz, and 100 mW/cm2 from 0.3 to 3.0 MHz. For uncontrolled exposure to the general public, the limit is 180/f2 between 1.34 and 30 MHz.[5]

Radio frequency field

The designation of mobile phone signals as "possibly carcinogenic to humans" by the World Health Organization (WHO) (e.g. its IARC, see below) has often been misinterpreted as indicating that some measure of risk has been observed – however the designation indicates only that the possibility could not be conclusively ruled out using the available data.[21]

In 2011, International Agency for Research on Cancer (IARC) classified mobile phone radiation as Group 2B "possibly carcinogenic" (rather than Group 2A "probably carcinogenic" nor the "is carcinogenic" Group 1). That means that there "could be some risk" of carcinogenicity, so additional research into the long-term, heavy use of mobile phones needs to be conducted.[22] The WHO concluded in 2014 that "A large number of studies have been performed over the last two decades to assess whether mobile phones pose a potential health risk. To date, no adverse health effects have been established as being caused by mobile phone use."[23][24]

Since 1962, the microwave auditory effect or tinnitus has been shown from radio frequency exposure at levels below significant heating.[25] Studies during the 1960s in Europe and Russia claimed to show effects on humans, especially the nervous system, from low energy RF radiation; the studies were disputed at the time.[26][27]

In 2019 reporters from the Chicago Tribune tested the level of radiation from smartphones and found it to exceed safe levels.[citation needed] The federal communications commission begun to check the findings.[28]

Radio frequency radiation is found to have more thermal related effects. A person's body temperature can be raised which could result in death if exposed to high dosage of RF radiation. [29] Focused RF radiation can also cause burns on the skin or cataracts to form in the eyes. Overall, some health effects are observed at a high levels of RF radiation, but the effects aren't clear at low levels of exposure.

Millimeter waves

In 2009, the US TSA introduced full-body scanners as a primary screening modality in airport security, first as backscatter x-ray scanners, which the European Union banned in 2011 due to health and safety concerns, followed by Millimeter wave scanners .[30] Likewise WiGig for personal area networks have opened the 60 GHz and above microwave band to SAR exposure regulations. Previously, microwave applications in these bands were for point-to-point satellite communication with minimal human exposure.[31][relevant?]

Infrared

Infrared wavelengths longer than 750 nm can produce changes in the lens of the eye. Glassblower's cataract is an example of a heat injury that damages the anterior lens capsule among unprotected glass and iron workers. Cataract-like changes can occur in workers who observe glowing masses of glass or iron without protective eyewear for prolonged periods over many years.[13]

Exposing skin to infrared radiation near visible light (IR-A) leads to increased production of free radicals.[32] Short-term exposure can be beneficial (activating protective responses), while prolonged exposure can lead to photoaging.[33]

Another important factor is the distance between the worker and the source of radiation. In the case of arc welding, infrared radiation decreases rapidly as a function of distance, so that farther than three feet away from where welding takes place, it does not pose an ocular hazard anymore but, ultraviolet radiation still does. This is why welders wear tinted glasses and surrounding workers only have to wear clear ones that filter UV.[citation needed]

Visible light

Photic retinopathy is damage to the macular area of the eye's retina that results from prolonged exposure to sunlight, particularly with dilated pupils. This can happen, for example, while observing a solar eclipse without suitable eye protection. The Sun's radiation creates a photochemical reaction that can result in visual dazzling and a scotoma. The initial lesions and edema will disappear after several weeks, but may leave behind a permanent reduction in visual acuity.[34]

Moderate and high-power lasers are potentially hazardous because they can burn the retina of the eye, or even the skin. To control the risk of injury, various specifications – for example ANSI Z136 in the US, EN 60825-1/A2 in Europe, and IEC 60825 internationally – define "classes" of lasers depending on their power and wavelength.[35][36] Regulations prescribe required safety measures, such as labeling lasers with specific warnings, and wearing laser safety goggles during operation (see laser safety).

As with its infrared and ultraviolet radiation dangers, welding creates an intense brightness in the visible light spectrum, which may cause temporary flash blindness. Some sources state that there is no minimum safe distance for exposure to these radiation emissions without adequate eye protection.[37]

Ultraviolet

Sunlight includes sufficient ultraviolet power to cause sunburn within hours of exposure, and the burn severity increases with the duration of exposure. This effect is a response of the skin called erythema, which is caused by a sufficient strong dose of UV-B. The Sun's UV output is divided into UV-A and UV-B: solar UV-A flux is 100 times that of UV-B, but the erythema response is 1,000 times higher for UV-B.[citation needed] This exposure can increase at higher altitudes and when reflected by snow, ice, or sand. The UV-B flux is 2–4 times greater during the middle 4–6 hours of the day, and is not significantly absorbed by cloud cover or up to a meter of water.[38]

Ultraviolet light, specifically UV-B, has been shown to cause cataracts and there is some evidence that sunglasses worn at an early age can slow its development in later life.[14] Most UV light from the sun is filtered out by the atmosphere and consequently airline pilots often have high rates of cataracts because of the increased levels of UV radiation in the upper atmosphere.[39] It is hypothesized that depletion of the ozone layer and a consequent increase in levels of UV light on the ground may increase future rates of cataracts.[40] Note that the lens filters UV light, so if it is removed via surgery, one may be able to see UV light.[41][42]

Prolonged exposure to ultraviolet radiation from the sun can lead to melanoma and other skin malignancies.[3] Clear evidence establishes ultraviolet radiation, especially the non-ionizing medium wave UVB, as the cause of most non-melanoma skin cancers, which are the most common forms of cancer in the world.[3] UV rays can also cause wrinkles, liver spots, moles, and freckles. In addition to sunlight, other sources include tanning beds, and bright desk lights. Damage is cumulative over one's lifetime, so that permanent effects may not be evident for some time after exposure.[15]

Ultraviolet radiation of wavelengths shorter than 300 nm (actinic rays) can damage the corneal epithelium. This is most commonly the result of exposure to the sun at high altitude, and in areas where shorter wavelengths are readily reflected from bright surfaces, such as snow, water, and sand. UV generated by a welding arc can similarly cause damage to the cornea, known as "arc eye" or welding flash burn, a form of photokeratitis.[43]

Fluorescent light bulbs and tubes internally produce ultraviolet light. Normally this is converted to visible light by the phosphor film inside a protective coating. When the film is cracked by mishandling or faulty manufacturing then UV may escape at levels that could cause sunburn or even skin cancer.[44][45]

Regulation

In the United States, nonionizing radiation is regulated in the Radiation Control for Health and Safety Act of 1968 and the Occupational Safety and Health Act of 1970.[46]

See also

References

  1. ^ Cleveland Jr RF, Ulcek JL (August 1999). Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields (PDF) (4th ed.). Washington, D.C.: OET (Office of Engineering and Technology) Federal Communications Commission. Retrieved 29 January 2019.
  2. ^ Siegel RL, Miller KD, Jemal A (January 2020). "Cancer statistics, 2020". Ca. 70 (1): 7–30. doi:10.3322/caac.21590. PMID 31912902.
  3. ^ a b c d Cleaver JE, Mitchell DL (2000). "15. Ultraviolet Radiation Carcinogenesis". In Bast RC, Kufe DW, Pollock RE, et al. (eds.). Holland-Frei Cancer Medicine (5th ed.). Hamilton, Ontario: B.C. Decker. ISBN 1-55009-113-1. Retrieved 31 January 2011.
  4. ^ Barnes FS, Greenebaum B, eds. (2018). Biological and Medical Aspects of Electromagnetic Fields (3 ed.). CRC Press. p. 378. ISBN 978-1420009460.
  5. ^ a b c Cleveland Jr RF, Ulcek JL (August 1999). "Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields" (PDF). OET Bulletin 56 (Fourth ed.). Office of Engineering and Technology, Federal Communications Commission. p. 7. Retrieved 2 February 2019.
  6. ^ "Standard for Safety Level with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3KHz to 300GHz". IEEE STD. C95.1-2005. IEEE. October 2005.
  7. ^ International Commission on Non-Ionizing Radiation Protection (April 1998). "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection" (PDF). Health Physics. 74 (4): 494–522. PMID 9525427. Archived from the original (PDF) on 13 November 2008.
  8. ^ "What are electromagnetic fields? – Summary of health effects". World Health Organization. Retrieved 7 February 2019.
  9. ^ Delgado JM, Leal J, Monteagudo JL, Gracia MG (May 1982). "Embryological changes induced by weak, extremely low frequency electromagnetic fields". Journal of Anatomy. 134 (Pt 3): 533–551. PMC 1167891. PMID 7107514.
  10. ^ Harland JD, Liburdy RP (1997). "Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line". Bioelectromagnetics. 18 (8): 555–562. doi:10.1002/(SICI)1521-186X(1997)18:8<555::AID-BEM4>3.0.CO;2-1. PMID 9383244.
  11. ^ Aalto S, Haarala C, Brück A, Sipilä H, Hämäläinen H, Rinne JO (July 2006). "Mobile phone affects cerebral blood flow in humans". Journal of Cerebral Blood Flow and Metabolism. 26 (7): 885–890. doi:10.1038/sj.jcbfm.9600279. PMID 16495939.
  12. ^ Pall ML (September 2016). "Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression". Journal of Chemical Neuroanatomy. 75 (Pt B): 43–51. doi:10.1016/j.jchemneu.2015.08.001. PMID 26300312.
  13. ^ a b Fry LL, Garg A, Guitérrez-Camona F, Pandey SK, Tabin G, eds. (2004). Clinical Practice in Small Incision Cataract Surgery. CRC Press. p. 79. ISBN 0203311825.
  14. ^ a b Sliney DH (1994). "UV radiation ocular exposure dosimetry". Documenta Ophthalmologica. Advances in Ophthalmology. 88 (3–4): 243–254. doi:10.1007/bf01203678. PMID 7634993. S2CID 8242055.
  15. ^ a b "UV Exposure & Your Health". UV Awareness. Retrieved 10 March 2014.
  16. ^ Extremely Low Frequency Fields Environmental Health Criteria Monograph No.238, chapter 5, page 121, WHO
  17. ^ https://www.cancer.org/cancer/cancer-causes/radiation-exposure/extremely-low-frequency-radiation.html
  18. ^ Fishman S, Ballantyne J, Rathmell JP, eds. (2010). Bonica's Management of Pain. Lippincott Williams & Wilkins. p. 1589. ISBN 978-0781768276.
  19. ^ Knight KL, Draper DO (2008). Therapeutic Modalities: The Art and the Science. Lippincott Williams & Wilkins. p. 288. ISBN 978-0781757447.
  20. ^ Yu C, Peng RY (2017). "Biological effects and mechanisms of shortwave radiation: a review". Military Medical Research. 4: 24. doi:10.1186/s40779-017-0133-6. PMC 5518414. PMID 28729909.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  21. ^ Boice JD, Tarone RE (August 2011). "Cell phones, cancer, and children". Journal of the National Cancer Institute. 103 (16): 1211–1213. doi:10.1093/jnci/djr285. PMID 21795667.
  22. ^ "IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans" (PDF). press release N° 208 (Press release). International Agency for Research on Cancer. 31 May 2011. Retrieved 2 June 2011.
  23. ^ "Electromagnetic fields and public health: mobile phones – Fact sheet N°193". World Health Organization. October 2014. Retrieved 2 August 2016.
  24. ^ Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz, Canada Safety Code 6, p. 63
  25. ^ Frey AH (July 1962). "Human auditory system response to modulated electromagnetic energy". Journal of Applied Physiology. 17 (4): 689–692. doi:10.1152/jappl.1962.17.4.689. PMID 13895081. S2CID 12359057.
  26. ^ Bergman W (1965), The Effect of Microwaves on the Central Nervous System (trans. from German) (PDF), Ford Motor Company, pp. 1–77, archived from the original (PDF) on 29 March 2018, retrieved 19 December 2018
  27. ^ Michaelson SM (1975). "Radio-Frequency and Microwave Energies, Magnetic and Electric Fields" (Volume II Book 2 of Foundations of Space Biology and Medicine). In Calvin M, Gazenko OG (eds.). Ecological and Physiological Bases of Space Biology and Medicine. Washington, D.C.: NASA Scientific and Technical Information Office. pp. 409–452 [427–430].
  28. ^ Krans B (1 September 2019). "Smartphone Radiation: iPhones Emitting Double Reported Levels". Ecowatch. Retrieved 9 September 2019.
  29. ^ "Microwaves, Radio Waves, and Other Types of Radiofrequency Radiation." American Cancer Society, http://www.cancer.org/cancer/cancer-causes/radiation-exposure/radiofrequency-radiation.html
  30. ^ Khan FN (18 December 2017). "Is That Airport Security Scanner Really Safe?". Scientific American. Retrieved 28 March 2020.
  31. ^ Characterization of 60GHz Millimeter-Wave Focusing Beam for Living-Body Exposure Experiments, Tokyo Institute of Technology, Masaki KOUZAI et al., 2009
  32. ^ Schieke SM, Schroeder P, Krutmann J (October 2003). "Cutaneous effects of infrared radiation: from clinical observations to molecular response mechanisms". Photodermatology, Photoimmunology & Photomedicine. 19 (5): 228–234. doi:10.1034/j.1600-0781.2003.00054.x. PMID 14535893.
  33. ^ Tsai SR, Hamblin MR (May 2017). "Biological effects and medical applications of infrared radiation". Journal of Photochemistry and Photobiology. B, Biology. 170: 197–207. doi:10.1016/j.jphotobiol.2017.04.014. PMC 5505738. PMID 28441605.
  34. ^ Sullivan JB, Krieger GR, eds. (2001). Clinical Environmental Health and Toxic Exposures. Lippincott Williams & Wilkins. p. 275. ISBN 978-0683080278.
  35. ^ "Laser Standards and Classifications". Rockwell Laser Industries. Retrieved 10 February 2019.
  36. ^ "An Overview of the LED and Laser Classification System in EN 60825-1 and IEC 60825-1". Lasermet. Retrieved 10 February 2019.
  37. ^ "What is the minimum safe distance from the welding arc above which there is no risk of eye damage?". The Welding Institute (TWI Global). Archived from the original on 10 March 2014. Retrieved 10 March 2014.
  38. ^ James WD, Elston D, Berger T (2011). SPEC – Andrews' Diseases of the Skin (11 ed.). Elsevier Health Sciences. pp. 23–24. ISBN 978-1437736199.
  39. ^ Rafnsson V, Olafsdottir E, Hrafnkelsson J, Sasaki H, Arnarsson A, Jonasson F (August 2005). "Cosmic radiation increases the risk of nuclear cataract in airline pilots: a population-based case-control study". Archives of Ophthalmology. 123 (8): 1102–1105. doi:10.1001/archopht.123.8.1102. PMID 16087845.
  40. ^ Dobson R (2005). "Ozone depletion will bring big rise in number of cataracts". BMJ. 331 (7528): 1292–1295. doi:10.1136/bmj.331.7528.1292-d. PMC 1298891.
  41. ^ Komarnitsky. "Case study of ultraviolet vision after IOL removal for Cataract Surgery".
  42. ^ Griswold MS, Stark WS (September 1992). "Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet". Vision Research. 32 (9): 1739–1743. doi:10.1016/0042-6989(92)90166-G. PMID 1455745. S2CID 45178405.
  43. ^ "Ultraviolet keratitis". Medscape. Retrieved 31 May 2017.
  44. ^ Mironava T, Hadjiargyrou M, Simon M, Rafailovich MH (20 July 2012). "The effects of UV emission from compact fluorescent light exposure on human dermal fibroblasts and keratinocytes in vitro". Photochemistry and Photobiology. 88 (6): 1497–1506. doi:10.1111/j.1751-1097.2012.01192.x. PMID 22724459. S2CID 2626216.
  45. ^ Nicole W (October 2012). "Ultraviolet Leaks from CFLs". Environmental Health Perspectives. 120 (10): a387. doi:10.1289/ehp.120-a387. PMC 3491932. PMID 23026199.
  46. ^ Michaelson S, ed. (2012). Fundamental and Applied Aspects of Nonionizing Radiation. Springer Science & Business Media. p. xv. ISBN 978-1468407600.

Further reading

zzzz