Jump to content

Rutin: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
T7chang (talk | contribs)
No edit summary
Occurrences: Added description of new peer reviewed research identifying Rutin in Samoa's native plant.
Tags: Mobile edit Mobile web edit
Line 53: Line 53:


Citrus leaves contain rutin at concentrations of 11 and 7 g/kg in orange and lime trees respectively.<ref>[https://pubmed.ncbi.nlm.nih.gov/25749617/] p.8 fig. 7</ref>
Citrus leaves contain rutin at concentrations of 11 and 7 g/kg in orange and lime trees respectively.<ref>[https://pubmed.ncbi.nlm.nih.gov/25749617/] p.8 fig. 7</ref>

In 2021, [[Samoa|Samoan]] researchers identified rutin in the native plant "matalafi" (''[[Psychotria insularum]]'').<ref>https://www.pnas.org/content/118/45/e2100880118</ref><ref>https://www.theguardian.com/world/2021/nov/04/plant-in-traditional-samoa-medicine-could-be-as-effective-as-ibuprofen-study-shows</ref>


== Metabolism ==
== Metabolism ==

Revision as of 16:11, 7 November 2021

Rutin
Rutin
Names
IUPAC name
3′,4′,5,7-Tetrahydroxy-3-[α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyloxy]flavone
Preferred IUPAC name
(42S,43R,44S,45S,46R,72R,73R,74R,75R,76S)-13,14,25,27,43,44,45,73,74,75-Decahydroxy-76-methyl-24H-3,6-dioxa-2(2,3)-[1]benzopyrana-4(2,6),7(2)-bis(oxana)-1(1)-benzenaheptaphane-24-one
Other names
Rutoside (INN)
Phytomelin
Sophorin
Birutan
Eldrin
Birutan Forte
Rutin trihydrate
Globularicitrin
Violaquercitrin
Quercetin rutinoside
Identifiers
3D model (JSmol)
ChemSpider
DrugBank
ECHA InfoCard 100.005.287 Edit this at Wikidata
KEGG
RTECS number
  • VM2975000
UNII
  • InChI=1S/C27H30O16/c1-8-17(32)20(35)22(37)26(40-8)39-7-15-18(33)21(36)23(38)27(42-15)43-25-19(34)16-13(31)5-10(28)6-14(16)41-24(25)9-2-3-11(29)12(30)4-9/h2-6,8,15,17-18,20-23,26-33,35-38H,7H2,1H3/t8-,15+,17-,18+,20+,21-,22+,23+,26+,27-/m0/s1
  • CC1C(C(C(C(O1)OCC2C(C(C(C(O2)OC3=C(OC4=CC(=CC(=C4C3=O)O)O)C5=CC(=C(C=C5)O)O)O)O)O)O)O)O
Properties
C27H30O16
Molar mass 610.521 g·mol−1
Appearance Solid
Melting point 242 °C (468 °F; 515 K)
12.5 mg/100 mL[1]
13 mg/100mL[2]
Pharmacology
C05CA01 (WHO)
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
0
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Rutin, also called rutoside, quercetin-3-O-rutinoside and sophorin, is the glycoside combining the flavonol quercetin and the disaccharide rutinose (α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranose). It is a citrus flavonoid found in a wide variety of plants including citrus.

Occurrences

Rutin is one of the phenolic compounds found in the invasive plant species Carpobrotus edulis and contributes to the antibacterial[3] properties of the plant.

Its name comes from the name of Ruta graveolens, a plant that also contains rutin.

Various citrus fruit peels contain 32 to 49 mg/g of flavonoids expressed as rutin equivalents.[4]

Citrus leaves contain rutin at concentrations of 11 and 7 g/kg in orange and lime trees respectively.[5]

In 2021, Samoan researchers identified rutin in the native plant "matalafi" (Psychotria insularum).[6][7]

Metabolism

The enzyme quercitrinase can be found in Aspergillus flavus.[8] It is an enzyme in the rutin catabolic pathway.[9]

In food

Rutin is a citrus flavonoid glycoside found in many plants including buckwheat,[10] the leaves and petioles of Rheum species, and asparagus. Tartary buckwheat seeds have been found to contain more rutin (about 0.8–1.7% dry weight) than common buckwheat seeds (0.01% dry weight).[10] Rutin is one of the primary flavonols found in 'clingstone' peaches.[11] It is also found in green tea infusions.[12]

Approximate rutin content per 100g of selected foods, in milligrams per 100 milliliters:[13]

Sortable table
Numeric Alphabetic
332 Capers, spice
45 Olive [Black], raw
36 Buckwheat, whole grain flour
23 Asparagus, raw
19 Black raspberry, raw
11 Red raspberry, raw
9 Buckwheat, groats, thermally treated
6 Buckwheat, refined flour
6 Greencurrant
6 Plum, fresh
5 Blackcurrant, raw
4 Blackberry, raw
3 Tomato (Cherry), whole, raw
2 Prune
2 Fenugreek
2 Marjoram, dried
2 Tea (Black), infusion
1 Grape, raisin
1 Zucchini, raw
1 Apricot, raw
1 Tea (Green), infusion
0 Apple
0 Redcurrant
0 Grape (green)
0 Tomato, whole, raw


Research

Rutin (rutoside or rutinoside)[14] and other dietary flavonols are under preliminary clinical research for their potential biological effects, such as in reducing post-thrombotic syndrome, venous insufficiency, or endothelial dysfunction, but there was no high-quality evidence for their safe and effective uses as of 2018.[14][15][16][needs update] As a flavonol among similar flavonoids, rutin has low bioavailability due to poor absorption, high metabolism, and rapid excretion that collectively make its potential for use as a therapeutic agent limited.[14]

Biosynthesis

The biosynthesis pathway of rutin in mulberry (Morus alba L.) leaves begins with phenylalanine, which produces cinnamic acid under the action of phenylalanine ammonia lyase (PAL). Cinnamic acid is catalyzed by cinnamic acid-4-hydroxylase (C4H) and 4-coumarate-CoA ligase (4CL) to form p-coumaroyl-CoA. Subsequently, chalcone synthase (CHS) catalyzes the condensation of p-coumaroyl-CoA and three molecules of malonyl-CoA to produce naringenin chalcone, which is eventually converted into naringenin flavanone with the participation of chalcone isomerase (CHI). With the action of flavanone 3-hydroxylas (F3H), dihydrokaempferol (DHK) is generated. DHK can be further hydroxylated by flavonoid 3´-hydroxylase (F3'H) to produce dihydroquercetin (DHQ), which is then catalyzed by flavonol synthase (FLS) to form quercetin. After quercetin is catalyzed by UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT) to form isoquercitrin, finally, the formation of rutin from isoquercitrin is catalyzed by flavonoid 3-O-glucoside L-rhamnosyltransferase.[17]

References

  1. ^ Merck Index, 12th Edition, 8456
  2. ^ Krewson CF, Naghski J (Nov 1952). "Some physical properties of rutin". Journal of the American Pharmaceutical Association. 41 (11): 582–7. doi:10.1002/jps.3030411106. PMID 12999623.
  3. ^ van der Watt E, Pretorius JC (2001). "Purification and identification of active antibacterial components in Carpobrotusedulis L.". Journal of Ethnopharmacology. 76 (1): 87–91. doi:10.1016/S0378-8741(01)00197-0. PMID 11378287.
  4. ^ [1] p. 280 Table 1
  5. ^ [2] p.8 fig. 7
  6. ^ https://www.pnas.org/content/118/45/e2100880118
  7. ^ https://www.theguardian.com/world/2021/nov/04/plant-in-traditional-samoa-medicine-could-be-as-effective-as-ibuprofen-study-shows
  8. ^ quercitrinase on www.brenda-enzymes.org
  9. ^ Tranchimand S, Brouant P, Iacazio G (Nov 2010). "The rutin catabolic pathway with special emphasis on quercetinase". Biodegradation. 21 (6): 833–59. doi:10.1007/s10532-010-9359-7. PMID 20419500. S2CID 30101803.
  10. ^ a b Kreft S, Knapp M, Kreft I (Nov 1999). "Extraction of rutin from buckwheat (Fagopyrum esculentumMoench) seeds and determination by capillary electrophoresis". Journal of Agricultural and Food Chemistry. 47 (11): 4649–52. doi:10.1021/jf990186p. PMID 10552865.
  11. ^ Chang S, Tan C, Frankel EN, Barrett DM (Feb 2000). "Low-density lipoprotein antioxidant activity of phenolic compounds and polyphenol oxidase activity in selected clingstone peach cultivars". Journal of Agricultural and Food Chemistry. 48 (2): 147–51. doi:10.1021/jf9904564. PMID 10691607.
  12. ^ Malagutti AR, Zuin V, Cavalheiro ÉT, Henrique Mazo L (2006). "Determination of Rutin in Green Tea Infusions Using Square-Wave Voltammetry with a Rigid Carbon-Polyurethane Composite Electrode". Electroanalysis. 18 (10): 1028–1034. doi:10.1002/elan.200603496.
  13. ^ "foods in which the polyphenol Quercetin 3-O-rutinoside is found". Phenol-Explorer v 3.6. June 2015.
  14. ^ a b c "Flavonoids". Micronutrient Information Center, Linus Pauling Institute, Oregon State University, Corvallis, Oregon. November 2015. Retrieved 25 February 2018.
  15. ^ Morling, J. R; Yeoh, S. E; Kolbach, D. N (November 2018). "Rutosides for treatment of post-thrombotic syndrome". Cochrane Database of Systematic Reviews. 11 (11): CD005625. doi:10.1002/14651858.CD005625.pub4. PMC 6517027. PMID 30406640.
  16. ^ Martinez-Zapata, M. J; Vernooij, R. W; Uriona Tuma, S. M; Stein, A. T; Moreno, R. M; Vargas, E; Capellà, D; Bonfill Cosp, X (2016). "Phlebotonics for venous insufficiency". Cochrane Database of Systematic Reviews. 4: CD003229. doi:10.1002/14651858.CD003229.pub3. PMC 7173720. PMID 27048768.
  17. ^ Yu X, Liu J, Wan J, Zhao L, Liu Y, Wei Y, Ouyang Z. Cloning, prokaryotic expression, and enzyme activity of a UDP-glucose flavonoid 3-o-glycosyltransferase from mulberry (Morus alba L.) leaves. Phcog Mag 2020;16:441-7
  • Media related to Rutin at Wikimedia Commons