Jump to content

Carbon fibers: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Reverted edits by 121.218.41.222 (talk) to last version by BrianWilloughby
No edit summary
Line 44: Line 44:


{{Unreferenced section|date=November 2009}}
{{Unreferenced section|date=November 2009}}

[[File:PAN stabilization.PNG|thumb|250px|Synthesis of carbon fieber from [[Polyacrylonitrile]] (PAN)
1) Polymerization of [[acrylonitrile]] to PAN
2) Cyclization during low temperature process
3) High temperature oxidative threatment of carbonization (hydrogen is removed)
....
after this, process of grafitization starts where nitrogen is removed and chains are joined into grafite planes
]]


A common method of manufacture involves heating the spun PAN filaments to approximately 300 °C in air, which breaks many of the hydrogen bonds and oxidizes the material. The [[oxidized]] PAN is then placed into a furnace having an inert atmosphere of a gas such as [[argon]], and heated to approximately 2000 °C, which induces graphitization of the material, changing the molecular bond structure. When heated in the correct conditions, these chains bond side-to-side (ladder polymers), forming narrow [[graphene]] sheets which eventually merge to form a single, columnar filament. The result is usually 93–95% carbon. Lower-quality fiber can be manufactured using [[Pitch (resin)|pitch]] or [[rayon]] as the precursor instead of PAN. The carbon can become further enhanced, as high modulus, or high strength carbon, by heat treatment processes. Carbon heated in the range of 1500-2000 °C (carbonization) exhibits the highest [[tensile strength]] (820,000 [[pound force per square inch|psi]], 5,650 MPa or N/mm²), while carbon fiber heated from 2500 to 3000 °C (graphitizing) exhibits a higher [[modulus of elasticity]] (77,000,000 psi or 531 GPa or 531 kN/mm²).
A common method of manufacture involves heating the spun PAN filaments to approximately 300 °C in air, which breaks many of the hydrogen bonds and oxidizes the material. The [[oxidized]] PAN is then placed into a furnace having an inert atmosphere of a gas such as [[argon]], and heated to approximately 2000 °C, which induces graphitization of the material, changing the molecular bond structure. When heated in the correct conditions, these chains bond side-to-side (ladder polymers), forming narrow [[graphene]] sheets which eventually merge to form a single, columnar filament. The result is usually 93–95% carbon. Lower-quality fiber can be manufactured using [[Pitch (resin)|pitch]] or [[rayon]] as the precursor instead of PAN. The carbon can become further enhanced, as high modulus, or high strength carbon, by heat treatment processes. Carbon heated in the range of 1500-2000 °C (carbonization) exhibits the highest [[tensile strength]] (820,000 [[pound force per square inch|psi]], 5,650 MPa or N/mm²), while carbon fiber heated from 2500 to 3000 °C (graphitizing) exhibits a higher [[modulus of elasticity]] (77,000,000 psi or 531 GPa or 531 kN/mm²).

Revision as of 07:25, 4 September 2011

Fabric made of woven carbon filaments

Carbon fiber (carbon fibre), alternatively graphite fiber, carbon graphite or CF, is a material consisting of extremely thin fibers about 0.005–0.010 mm in diameter and composed mostly of carbon atoms. The carbon atoms are bonded together in microscopic crystals that are more or less aligned parallel to the long axis of the fiber. The crystal alignment makes the fiber very strong for its size. Several thousand carbon fibers are twisted together to form a yarn, which may be used by itself or woven into a fabric.

The properties of carbon fibers such as high flexibility, high tensile strength, low weight, high temperature tolerance and low thermal expansion make them very popular in aerospace, civil engineering, military, and motorsports, along with other competition sports. However, they are relatively expensive when compared to similar fibers for example glass fibers or plastic fibers.

Carbon fibers are usually combined with other materials to form a composite. When combined with a plastic resin and wound or molded it forms carbon fiber reinforced plastic (often referred to also as carbon fiber) which is a very high strength-to-weight, extremely rigid, although somewhat brittle material. However, carbon fibers are also composed with other materials, such as with graphite to form carbon-carbon composites, which have a very high heat tolerance.

History of carbon fiber

In 1958, Roger Bacon created high-performance carbon fibers at the Union Carbide Parma Technical Center, now GrafTech International Holdings, Inc., located outside of Cleveland, Ohio.[1] Those fibers were manufactured by heating strands of rayon until they carbonized. This process proved to be inefficient, as the resulting fibers contained only about 20% carbon and had low strength and stiffness properties. In the early 1960s, a process was developed by Dr. Akio Shindo at Agency of Industrial Science and Technology of Japan, using polyacrylonitrile (PAN) as a raw material. This had produced a carbon fiber that contained about 55% carbon.

The high potential strength of carbon fiber was realized in 1963 in a process developed at the Royal Aircraft Establishment at Farnborough, Hampshire. The process was patented by the UK Ministry of Defence then licensed by the National Research Development Corporation (NRDC) to three British companies: Rolls-Royce, already making carbon fiber, Morganite and Courtaulds. They were able to establish industrial carbon fiber production facilities within a few years, and Rolls-Royce took advantage of the new material's properties to break into the American market with its RB-211 aero-engine.

Public concern arose over the ability of British industry to make the best of this breakthrough. In 1969 a House of Commons select committee inquiry into carbon fiber prophetically asked: "How then is the nation to reap the maximum benefit without it becoming yet another British invention to be exploited more successfully overseas?" Ultimately, this concern was justified. One by one the licensees pulled out of carbon-fiber manufacture. Rolls-Royce's interest was in state-of-the-art aero-engine applications. Its own production process was to enable it to be leader in the use of carbon-fiber reinforced plastics. In-house production would typically cease once reliable commercial sources became available.

Unfortunately, Rolls-Royce pushed the state-of-the-art too far, too quickly, in using carbon fiber in the engine's compressor blades, which proved vulnerable to damage from bird impact. What seemed a great British technological triumph in 1968 quickly became a disaster as Rolls-Royce's ambitious schedule for the RB-211 was endangered. Indeed, Rolls-Royce's problems became so great that the company was eventually nationalized by the British government in 1971 and the carbon-fiber production plant was sold off to form "Bristol Composites".

Given the limited market for a very expensive product of variable quality, Morganite also decided that carbon-fiber production was peripheral to its core business, leaving Courtaulds as the only big UK manufacturer.

The company continued making carbon fiber, developing two main markets: aerospace and sports equipment. The speed of production and the quality of the product were improved.

Continuing collaboration with the staff at Farnborough proved helpful in the quest for higher quality, but, ironically, Courtaulds's big advantage as manufacturer of the "Courtelle" precursor now became a weakness. Low cost and ready availability were potential advantages, but the water-based inorganic process used to produce Courtelle made it susceptible to impurities that did not affect the organic process used by other carbon-fiber manufacturers.

Nevertheless, during the 1980s Courtaulds continued to be a major supplier of carbon fiber for the sports-goods market, with Mitsubishi its main customer. But a move to expand, including building a production plant in California, turned out badly. The investment did not generate the anticipated returns, leading to a decision to pull out of the area. Courtaulds ceased carbon-fiber production in 1991, though ironically the one surviving UK carbon-fiber manufacturer continued to thrive making fiber based on Courtaulds's precursor. Inverness-based RK Carbon Fibres Ltd has concentrated on producing carbon fiber for industrial applications, and thus does not need to compete at the quality levels reached by overseas manufacturers.

During the 1970s, experimental work to find alternative raw materials led to the introduction of carbon fibers made from a petroleum pitch derived from oil processing. These fibers contained about 85% carbon and had excellent flexural strength.

Structure and properties

A 6 μm diameter carbon filament (running from bottom left to top right) compared to a human hair.

Each carbon filament thread is a bundle of many thousand carbon filaments. A single such filament is a thin tube with a diameter of 5–8 micrometers and consists almost exclusively of carbon. The earliest generation of carbon fibers (i.e., T300, and AS4) had diameters of 7-8 micrometers.[2] Later fibers (i.e., IM6) have diameters that are approximately 5 micrometers.[2]

The atomic structure of carbon fiber is similar to that of graphite, consisting of sheets of carbon atoms (graphene sheets) arranged in a regular hexagonal pattern. The difference lies in the way these sheets interlock. Graphite is a crystalline material in which the sheets are stacked parallel to one another in regular fashion. The intermolecular forces between the sheets are relatively weak Van der Waals forces, giving graphite its soft and brittle characteristics. Depending upon the precursor to make the fiber, carbon fiber may be turbostratic or graphitic, or have a hybrid structure with both graphitic and turbostratic parts present. In turbostratic carbon fiber the sheets of carbon atoms are haphazardly folded, or crumpled, together. Carbon fibers derived from Polyacrylonitrile (PAN) are turbostratic, whereas carbon fibers derived from mesophase pitch are graphitic after heat treatment at temperatures exceeding 2200 C. Turbostratic carbon fibers tend to have high tensile strength, whereas heat-treated mesophase-pitch-derived carbon fibers have high Young's modulus and high thermal conductivity.

Applications

Tail of an RC helicopter, made of Carbon fiber reinforced polymer

Carbon fiber is most notably used to reinforce composite materials, particularly the class of materials known as Carbon fiber or graphite reinforced polymers. Non-polymer materials can also be used as the matrix for carbon fibers. Due to the formation of metal carbides and corrosion considerations, carbon has seen limited success in metal matrix composite applications. Reinforced carbon-carbon (RCC) consists of carbon fiber-reinforced graphite, and is used structurally in high-temperature applications. The fiber also finds use in filtration of high-temperature gases, as an electrode with high surface area and impeccable corrosion resistance, and as an anti-static component. Molding a thin layer of carbon fibers significantly improves fire resistance of polymers or thermoset composites because a dense, compact layer of carbon fibers efficiently reflects heat.[3]

Synthesis

Each carbon filament is produced from a precursor polymer. The precursor polymer is commonly rayon, polyacrylonitrile (PAN) or petroleum pitch. For synthetic polymers such as rayon or PAN, the precursor is first spun into filaments, using chemical and mechanical processes to initially align the polymer atoms in a way to enhance the final physical properties of the completed carbon fiber. Precursor compositions and mechanical processes used during spinning may vary among manufacturers. After drawing or spinning, the polymer fibers are then heated to drive off non-carbon atoms (carbonization), producing the final carbon fiber. The carbon fibers may be further treated to improve handling qualities, then wound on to bobbins. Wound bobbins are then used to supply machines that produce carbon fiber threads or yarn.[4]

Synthesis of carbon fieber from Polyacrylonitrile (PAN) 1) Polymerization of acrylonitrile to PAN 2) Cyclization during low temperature process 3) High temperature oxidative threatment of carbonization (hydrogen is removed) .... after this, process of grafitization starts where nitrogen is removed and chains are joined into grafite planes

A common method of manufacture involves heating the spun PAN filaments to approximately 300 °C in air, which breaks many of the hydrogen bonds and oxidizes the material. The oxidized PAN is then placed into a furnace having an inert atmosphere of a gas such as argon, and heated to approximately 2000 °C, which induces graphitization of the material, changing the molecular bond structure. When heated in the correct conditions, these chains bond side-to-side (ladder polymers), forming narrow graphene sheets which eventually merge to form a single, columnar filament. The result is usually 93–95% carbon. Lower-quality fiber can be manufactured using pitch or rayon as the precursor instead of PAN. The carbon can become further enhanced, as high modulus, or high strength carbon, by heat treatment processes. Carbon heated in the range of 1500-2000 °C (carbonization) exhibits the highest tensile strength (820,000 psi, 5,650 MPa or N/mm²), while carbon fiber heated from 2500 to 3000 °C (graphitizing) exhibits a higher modulus of elasticity (77,000,000 psi or 531 GPa or 531 kN/mm²).

Textile

Precursors for carbon fibers are polyacrylonitrile (PAN), rayon and pitch. Carbon fiber filament yarns are used in several processing techniques: the direct uses are for prepregging, filament winding, pultrusion, weaving, braiding, etc. Carbon fiber yarn is rated by the linear density (weight per unit length, i.e. 1 g/1000 m = 1 tex) or by number of filaments per yarn count, in thousands. For example, 200 tex for 3,000 filaments of carbon fiber is three times as strong as 1,000 carbon fibers, but is also three times as heavy. This thread can then be used to weave a carbon fiber filament fabric or cloth. The appearance of this fabric generally depends on the linear density of the yarn and the weave chosen. Some commonly used types of weave are twill, satin and plain. Carbon fibers can be also knitted or braided.

See also

References

  1. ^ Bacon's breakthrough
  2. ^ a b W.J. Cantwell, J Morton (1991). "The impact resistance of composite materials - a review". Composites. 22 (5): 347–62. doi:10.1016/0010-4361(91)90549-V.
  3. ^ Z. Zhao and J. Gou "Improved fire retardancy of thermoset composites modified with carbon nanofibers" Sci. Technol. Adv. Mater. 10 (2009) 015005 free download
  4. ^ "How It Is Made". Retrieved 2010-04-04.

Template:Link FA