Jump to content

Gliese 436 b: Difference between revisions

Coordinates: Sky map 11h 42m 11.0941s, +26° 42′ 23.652″
From Wikipedia, the free encyclopedia
Content deleted Content added
m adding link
Line 69: Line 69:
{{Planetbox end}}
{{Planetbox end}}


'''Gliese 436 b''' {{IPAc-en|ˈ|ɡ|l|iː|z|ə}} (sometimes called '''GJ 436 b'''<ref name="arXiv-20120801">{{cite journal |authors=Beust,Hervé et al. |title=Dynamical evolution of the Gliese 436 planetary system - Kozai migration as a potential source for Gliese 436b's eccentricity |url=http://arxiv.org/abs/1208.0237 |date=August 1, 2012 |journal=[[arXiv]] |arxiv=1208.0237 |accessdate=January 2, 2014 |doi = 10.1051/0004-6361/201219183 }}</ref>) is a [[Neptune]]-sized [[extrasolar planet]] orbiting the red dwarf star [[Gliese 436]].<ref>{{cite journal | url=http://www.iop.org/EJ/article/0004-637X/617/1/580/60944.html | author=Butler ''et al.''| title=A Neptune-Mass Planet Orbiting the Nearby M Dwarf GJ 436 | journal=The [[Astrophysical Journal]] | volume=617 |year=2004 | pages=580–588| doi=10.1086/425173 | last2=Vogt | first2=Steven S. | last3=Marcy | first3=Geoffrey W. | last4=Fischer | first4=Debra A. | last5=Wright | first5=Jason T. | last6=Henry | first6=Gregory W. | last7=Laughlin | first7=Greg | last8=Lissauer | first8=Jack J. | bibcode=2004ApJ...617..580B|arxiv = astro-ph/0408587 | issue=1}}</ref> It was among the smallest known [[transiting planet]]s in mass and radius until the much smaller [[Kepler (spacecraft)|Kepler]] discoveries started coming in 2010.
'''Gliese 436 b''' {{IPAc-en|ˈ|ɡ|l|iː|z|ə}} (sometimes called '''GJ 436 b'''<ref name="arXiv-20120801">{{cite journal |authors=Beust,Hervé et al. |title=Dynamical evolution of the Gliese 436 planetary system - Kozai migration as a potential source for Gliese 436b's eccentricity |url=http://arxiv.org/abs/1208.0237 |date=August 1, 2012 |journal=[[arXiv]] |arxiv=1208.0237 |accessdate=January 2, 2014 |doi = 10.1051/0004-6361/201219183 }}</ref>) is a [[Neptune]]-sized [[extrasolar planet]] orbiting the [[red dwarf]] star [[Gliese 436]].<ref>{{cite journal | url=http://www.iop.org/EJ/article/0004-637X/617/1/580/60944.html | author=Butler ''et al.''| title=A Neptune-Mass Planet Orbiting the Nearby M Dwarf GJ 436 | journal=The [[Astrophysical Journal]] | volume=617 |year=2004 | pages=580–588| doi=10.1086/425173 | last2=Vogt | first2=Steven S. | last3=Marcy | first3=Geoffrey W. | last4=Fischer | first4=Debra A. | last5=Wright | first5=Jason T. | last6=Henry | first6=Gregory W. | last7=Laughlin | first7=Greg | last8=Lissauer | first8=Jack J. | bibcode=2004ApJ...617..580B|arxiv = astro-ph/0408587 | issue=1}}</ref> It was among the smallest known [[transiting planet]]s in mass and radius until the much smaller [[Kepler (spacecraft)|Kepler]] discoveries started coming in 2010.


In December 2013, NASA reported that [[clouds]] may have been detected in the [[Exoplanet#Atmosphere|atmosphere]] of GJ 436 b.<ref name="NASA-20131231">{{cite web |last1=Harrington |first1=J.D. |last2=Weaver |first2=Donna |last3=Villard |first3=Ray |title=Release 13-383 - NASA's Hubble Sees Cloudy Super-Worlds With Chance for More Clouds |url=http://www.nasa.gov/press/2013/december/nasas-hubble-sees-cloudy-super-worlds-with-chance-for-more-clouds/ |date=December 31, 2013 |work=[[NASA]] |accessdate=January 1, 2014 }}</ref><ref name="NAT-20140101a">{{cite journal |last=Moses |first=Julianne |title=Extrasolar planets: Cloudy with a chance of dustballs |url=http://www.nature.com/nature/journal/v505/n7481/full/505031a.html |date=January 1, 2014 |journal=[[Nature (journal)]] |volume=505 |pages=31-32 |doi=10.1038/505031a |accessdate=January 1, 2014 |bibcode = 2014Natur.505...31M }}</ref><ref name="NAT-20140101b">{{cite journal |authors=Knutson, Heather et al. |title=A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b |url=http://www.nature.com/nature/journal/v505/n7481/full/nature12887.html |date=January 1, 2014 |journal=[[Nature (journal)]] |volume=505 |pages=66-68 |doi=10.1038/nature12887 |accessdate=January 1, 2014 |arxiv = 1401.3350 |bibcode = 2014Natur.505...66K }}</ref><ref name="NAT-20140101c">{{cite journal |authors=Kreidberg, Laura et al. |title=Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b |url=http://www.nature.com/nature/journal/v505/n7481/full/nature12888.html |date=January 1, 2014 |journal=[[Nature (journal)]] |volume=505 |pages=69-72 |doi=10.1038/nature12888 |accessdate=January 1, 2014 |arxiv = 1401.0022 |bibcode = 2014Natur.505...69K }}</ref>
In December 2013, NASA reported that [[clouds]] may have been detected in the [[Exoplanet#Atmosphere|atmosphere]] of GJ 436 b.<ref name="NASA-20131231">{{cite web |last1=Harrington |first1=J.D. |last2=Weaver |first2=Donna |last3=Villard |first3=Ray |title=Release 13-383 - NASA's Hubble Sees Cloudy Super-Worlds With Chance for More Clouds |url=http://www.nasa.gov/press/2013/december/nasas-hubble-sees-cloudy-super-worlds-with-chance-for-more-clouds/ |date=December 31, 2013 |work=[[NASA]] |accessdate=January 1, 2014 }}</ref><ref name="NAT-20140101a">{{cite journal |last=Moses |first=Julianne |title=Extrasolar planets: Cloudy with a chance of dustballs |url=http://www.nature.com/nature/journal/v505/n7481/full/505031a.html |date=January 1, 2014 |journal=[[Nature (journal)]] |volume=505 |pages=31-32 |doi=10.1038/505031a |accessdate=January 1, 2014 |bibcode = 2014Natur.505...31M }}</ref><ref name="NAT-20140101b">{{cite journal |authors=Knutson, Heather et al. |title=A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b |url=http://www.nature.com/nature/journal/v505/n7481/full/nature12887.html |date=January 1, 2014 |journal=[[Nature (journal)]] |volume=505 |pages=66-68 |doi=10.1038/nature12887 |accessdate=January 1, 2014 |arxiv = 1401.3350 |bibcode = 2014Natur.505...66K }}</ref><ref name="NAT-20140101c">{{cite journal |authors=Kreidberg, Laura et al. |title=Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b |url=http://www.nature.com/nature/journal/v505/n7481/full/nature12888.html |date=January 1, 2014 |journal=[[Nature (journal)]] |volume=505 |pages=69-72 |doi=10.1038/nature12888 |accessdate=January 1, 2014 |arxiv = 1401.0022 |bibcode = 2014Natur.505...69K }}</ref>

Revision as of 14:02, 25 September 2014

Template:Planetbox begin Template:Planetbox image Template:Planetbox star Template:Planetbox orbit Template:Planetbox character Template:Planetbox discovery Template:Planetbox catalog Template:Planetbox reference Template:Planetbox end

Gliese 436 b /ˈɡlzə/ (sometimes called GJ 436 b[1]) is a Neptune-sized extrasolar planet orbiting the red dwarf star Gliese 436.[2] It was among the smallest known transiting planets in mass and radius until the much smaller Kepler discoveries started coming in 2010.

In December 2013, NASA reported that clouds may have been detected in the atmosphere of GJ 436 b.[3][4][5][6]

Discovery

File:GJ 436 b rv.pdf
The radial velocity trend of Gliese 436, caused by the presence of Gliese 436 b

Gliese 436 b was discovered in August 2004 by R. Paul Butler and Geoffrey Marcy of the Carnegie Institute of Washington and University of California, Berkeley, respectively, using the radial velocity method. Together with 55 Cancri e, it was then the first of a new class of planets with a minimum mass (M sini) similar to Neptune.

The planet was recorded to transit its star by an automatic process at NMSU on January 11, 2005, but this event went unheeded at the time.[7] In 2007, Gillon led a team which observed the transit, grazing the stellar disc relative to Earth. Transit observations led to the determination of Gliese 436 b's exact mass and radius, both of which are very similar to Neptune. Gliese 436 b then became the smallest known transiting extrasolar planet. The planet is about 4000 km larger in diameter than Uranus and 5000 km larger than Neptune and a bit more massive. Gliese 436b (also known as GJ 436b) orbits its star at a distance of 4,000,000 km or 15 times closer than Mercury's average distance from the sun.

Physical characteristics

Possible interior structure of Gliese 436 b

The planet's surface temperature is estimated from measurements taken as it passes behind the star to be 712 K (439 °C).[8] This temperature is significantly higher than would be expected if the planet were only heated by radiation from its star (which had been, in a Reuters article from a month prior to this measurement, estimated at 520 K). Whatever energy that tidal effects deliver to the planet does not notably affect its temperature.[9] Its discoverers allowed for a temperature increase due to a greenhouse effect.[10]

Its main constituent was initially predicted to be hot "ice" in various exotic high-pressure forms,[10][11] which remains solid because of the planet's gravity despite the high temperatures.[12] The planet could have formed further from its current position, as a gas giant, and migrated inwards with the other gas giants. As it arrived in range, the star would have blown off the planet's hydrogen layer via coronal mass ejection.[13]

However when the radius became better known, ice alone was not enough to account for it. An outer layer of hydrogen and helium up to ten percent in mass would be needed on top of the ice to account for the observed planetary radius.[8][14] This obviates the need for an ice core. Alternatively, the planet may be a super-earth.[15]

Observations of the planet's brightness temperature with the Spitzer Space Telescope suggest a possible thermochemical disequilibrium in the atmosphere of this exoplanet. Results published in Nature suggest that Gliese 436b's dayside atmosphere is abundant in CO and deficient in methane (CH4) by a factor of ~7,000. This result is unexpected because, based on current models at this temperature, the atmospheric carbon should prefer CH4 over CO.[16][17][18][19]

Orbital characteristics

One orbit around the star takes only about 2 days, 15.5 hours. Gliese 436 b's orbit is likely misaligned with its star's rotation.[18]

This planet should not be as eccentric as is measured. To have maintained its eccentricity over time requires that it be accompanied by another planet.[8][20]

In 2012 two candidate planets were proposed.[21]

See also

References

  1. ^ "Dynamical evolution of the Gliese 436 planetary system - Kozai migration as a potential source for Gliese 436b's eccentricity". arXiv. August 1, 2012. arXiv:1208.0237. doi:10.1051/0004-6361/201219183. Retrieved January 2, 2014. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  2. ^ Butler; Vogt, Steven S.; Marcy, Geoffrey W.; Fischer, Debra A.; Wright, Jason T.; Henry, Gregory W.; Laughlin, Greg; Lissauer, Jack J.; et al. (2004). "A Neptune-Mass Planet Orbiting the Nearby M Dwarf GJ 436". The Astrophysical Journal. 617 (1): 580–588. arXiv:astro-ph/0408587. Bibcode:2004ApJ...617..580B. doi:10.1086/425173. {{cite journal}}: Explicit use of et al. in: |author= (help)
  3. ^ Harrington, J.D.; Weaver, Donna; Villard, Ray (December 31, 2013). "Release 13-383 - NASA's Hubble Sees Cloudy Super-Worlds With Chance for More Clouds". NASA. Retrieved January 1, 2014.
  4. ^ Moses, Julianne (January 1, 2014). "Extrasolar planets: Cloudy with a chance of dustballs". Nature (journal). 505: 31–32. Bibcode:2014Natur.505...31M. doi:10.1038/505031a. Retrieved January 1, 2014.
  5. ^ "A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b". Nature (journal). 505: 66–68. January 1, 2014. arXiv:1401.3350. Bibcode:2014Natur.505...66K. doi:10.1038/nature12887. Retrieved January 1, 2014. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  6. ^ "Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b". Nature (journal). 505: 69–72. January 1, 2014. arXiv:1401.0022. Bibcode:2014Natur.505...69K. doi:10.1038/nature12888. Retrieved January 1, 2014. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  7. ^ Coughlin, Jeffrey L.; Stringfellow, Guy S.; Becker, Andrew C.; Mercedes Lopez-Morales; Fabio Mezzalira; Tom Krajci (2008). "New observations and a possible detection of parameter variations in the transits of Gliese 436b". The Astrophysical Journal. 689 (2): L149–L152. arXiv:0809.1664. Bibcode:2008ApJ...689L.149C. doi:10.1086/595822.
  8. ^ a b c Drake Deming; Joseph Harrington; Gregory Laughlin; Sara Seager; Navarro, Sarah B.; Bowman, William C.; Karen Horning (2007). "Spitzer Transit and Secondary Eclipse Photometry of GJ 436b". The Astrophysical Journal. 667 (2): L199–L202. arXiv:0707.2778. Bibcode:2007ApJ...667L.199D. doi:10.1086/522496.
  9. ^ Brian Jackson; Richard Greenberg; Rory Barnes (2008). "Tidal Heating of Extra-Solar Planets". The Astrophysical Journal. 681 (2): 1631–1638. arXiv:0803.0026. Bibcode:2008ApJ...681.1631J. doi:10.1086/587641.
  10. ^ a b M. Gillon; et al. (2007). "Detection of transits of the nearby hot Neptune GJ 436 b" (PDF). Astronomy and Astrophysics. 472 (2): L13–L16. arXiv:0705.2219. Bibcode:2007A&A...472L..13G. doi:10.1051/0004-6361:20077799. {{cite journal}}: Explicit use of et al. in: |author= (help)
  11. ^ Shiga, David (6 May 2007). "Strange alien world made of "hot ice"". New Scientist. Retrieved 2007-05-16.
  12. ^ Fox, Maggie (May 16, 2007). "Hot "ice" may cover recently discovered planet". Science News. Scientific American.com. Retrieved 2008-08-06.
  13. ^ H. Lammer; et al. (2007). "The impact of nonthermal loss processes on planet masses from Neptunes to Jupiters" (PDF). Geophysical Research Abstracts. 9 (07850). {{cite journal}}: Explicit use of et al. in: |author= (help) By analogy with Gliese 876 d.
  14. ^ Bean, J.L.; et al. (2008). "A Hubble Space Telescope transit light curve for GJ 436b". Astronomy & Astrophysics. {{cite journal}}: Explicit use of et al. in: |author= (help)
  15. ^ E. R. Adams, S. Seager, and L. Elkins-Tanton (February 2008). "Ocean Planet or Thick Atmosphere: On the Mass-Radius Relationship for Solid Exoplanets with Massive Atmospheres". The Astrophysical Journal. 673 (2): 1160–1164. arXiv:0710.4941. Bibcode:2008ApJ...673.1160A. doi:10.1086/524925.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. ^ "Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b". Nature. 464: 1161–1164. 22 April 2010. arXiv:1010.4591. Bibcode:2010Natur.464.1161S. doi:10.1038/nature09013.
  17. ^ GJ436b - Where's the methane? Planetary Sciences Group at the University of Central Florida, Orlando
  18. ^ a b Knutson, Heather A. (2011). "A Spitzer Transmission Spectrum for the Exoplanet GJ 436b". Astrophysical Journal. 735, 27. arXiv:1104.2901. Bibcode:2011ApJ...735...27K. doi:10.1088/0004-637X/735/1/27.
  19. ^ LINE, Michael R.; VASISHT, Gautam; CHEN, Pin; ANGERHAUSEN, D.; YANG, Yuk L. (2011). "Thermochemical and Photochemical Kinetics in Cooler Hydrogen Dominated Extrasolar Planets". Astrophysical Journal. 738, 32. arXiv:1104.3183. Bibcode:2011ApJ...738...32L. doi:10.1088/0004-637X/738/1/32., abstract in the arXiv titled "Thermochemistry and Photochemistry in Cooler Hydrogen Dominated Extrasolar Planets: The Case of GJ436b"
  20. ^ Bean, Jacob L.; Andreas Seifahrt (2008). "Observational Consequences of the Recently Proposed Super-Earth Orbiting GJ436". arXiv:0806.3270 [astro-ph].
  21. ^ Reuters (July 2012). "Alien exoplanet smaller than Earth discovered". Sydney Morning Herald. Retrieved 19 July 2012. {{cite web}}: |author= has generic name (help)

Selected media articles

Media related to Gliese 436 b at Wikimedia Commons

Artist's conception of Gliese 436 b