Jump to content

Cartography

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by J Borkowski (talk | contribs) at 21:35, 24 August 2007. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Cartography or mapmaking (in Greek chartis = map and graphein = write) is the study and practice of making representations of the Earth on a flat surface. The discipline of cartography combines science, aesthetics, and technical ability to create a balanced and readable representation that is capable of communicating information effectively and quickly.

One essential problem in creating maps is the simple reality that the surface of the Earth, a curved surface in three-dimensional space, must be represented in two dimensions as a flat surface. This necessarily entails some degree of distortion, which can be dealt with by utilizing projections that minimize distortion in certain areas. Furthermore, the Earth is not a regular sphere, but its shape is instead known as a geoid, which is an irregular but

Maps have traditionally been drawn and made by hand, but the recent advent and spread of computers has revolutionized cartography. Most commercial-quality maps are now made with software that falls into one of three main types; CAD, GIS, and specialized illustration software.

Maps function as tools to visualize and communicate spatial information. Spatial information is acquired from measurement of space and can be stored in a database, from which it can be extracted for a variety of purposes. Current trends in this field are moving away from analog methods of mapmaking and toward the creation of increasingly dynamic, interactive maps that can be manipulated digitally.

Cartography combines both art and science involving the use of symbols to represent certain geographic phenomena, as well as the ability to visualize the world in an abstract and scaled-down form. The cartographic process rests on the premise that the world is measurable and that we can make reliable representations or models of that reality.

History

Copy (1475) of St. Isidore's TO map of the world

Maps have been an integral part of the human story for a long time (maybe 8,000 years - nobody knows exactly, but longer than written words).[1] They were known to have existed in societies of Europe, the Middle East, China, India, and others.

The earliest known map is currently a wall painting of the ancient Turkish city of Çatal Hüyük which has been dated to the late 7th millennium BCE.[2] Other known maps of the ancient world include the Minoan “House of the Admiral” wall painting from c. 1600 BCE showing a seaside community in an oblique perspective, and an engraved map of the holy Babylonian city of Nippur, from the Kassite period (14th12th centuries BCE).[3] The ancient Greeks and Romans created maps beginning with Anaximander in the 6th century BC. In ancient China, although geographical literature spans back to the 5th century BC, the drawing of true geographical maps were not begun in earnest until the first half of the Han Dynasty (202 BC-202 AD), largely with the works of Prince Liu An (179 BC-122 BC).

Mappa mundi is the general term used to describe Medieval European maps of the world. Approximately 1,100 mappae mundi are known to have survived from the Middle Ages. Of these, some 900 are found illustrating manuscripts and the remainder exist as stand-alone documents (Woodward, p. 286).

In the Age of Exploration from the 15th century to the 17th century, cartographers both copied earlier maps (some of which had been passed down for centuries) and drew their own based on explorers' observations and new surveying techniques. The invention of the magnetic compass, telescope and sextant enabled increasing accuracy.

Due to the sheer physical difficulties inherent in cartography, map-makers frequently lifted material from earlier works without giving credit to the original cartographer. For example, one of the most famous early maps of North America is unofficially known as the Beaver Map, published in 1715 by Herman Moll. This map is an exact reproduction of a 1698 work by Nicolas de Fer. De Fer in turn had copied images that were first printed in books by Louis Hennepin, published in 1697, and François Du Creux, in 1664. By the 1700s, map-makers started to give credit to the original engraver by printing the phrase "After [the original cartographer]" on the work.[4]

Technological changes

In cartography, technology has continually changed in order to meet the demands of new generations of mapmakers and map users. The first maps were manually constructed with brushes and parchment and therefore varied in quality and were limited in distribution. The advent of magnetic devices, such as the compass and much later magnetic storage devices, allowed for the creation of far more accurate maps and the ability to store and manipulate them digitally.

Advances in mechanical devices such as the printing press, quadrant and vernier allowed for the mass production of maps and the ability to make accurate reproductions from more accurate data. Optical technology, such as the telescope, sextant and other devices that use telescopes, allowed for accurate surveying of land and the ability of mapmakers and navigators to find their latitude by measuring angles to the North Star at night or the sun at noon.

Advances in photochemical technology, such as the lithographic and photochemical processes, have allowed for the creation of maps that have fine details, do not distort in shape and resist moisture and wear. This also eliminated the need for engraving which further shortened the time it takes to make and reproduce maps.

In the late 20th century and early 21st century advances in electronic technology led to a new revolution in cartography. Specifically, computer hardware devices such as computer screens, plotters, printers, scanners (remote and document) and analytic stereo plotters along with visualization, image processing, spatial analysis and database software, have democratized and greatly expanded the making of maps. The ability to superimpose spatially located variables onto existing maps created new uses for maps and new industries to explore and exploit these potentials. See also digital raster graphic.

Map types

In understanding basic maps, the field of cartography can be divided into two general categories: general cartography and thematic cartography. General cartography involves those maps that are constructed for a general audience and thus contain a variety of features. General maps exhibit many reference and location systems and often are produced in a series. For example the 1:24,000 scale topographic maps of the United States Geological Survey (USGS) are a standard as compared to the 1:50,000 scale Canadian maps.

A topographic map is primarily concerned with the topographic description of a place, including (especially in the 20th century) the use of contour lines showing elevation. Terrain or relief can be shown in a variety of ways (see Cartographic relief depiction).

A topological map is a very general type of map, the kind you might sketch on a napkin. It often disregards scale in the interest of clarity of communicating specific route or relational information.

Thematic cartography involves maps of specific geographic themes oriented toward specific audiences. A couple of examples might be a dot map showing corn production in Indiana or a shaded area map of Ohio counties divided into numerical choropleth classes. As the volume of geographic data has exploded over the last century, thematic cartography has become increasingly useful and necessary to interpret spatial cultural and social data.

Two of the most influential American cartographers, especially in thematic cartography have been Arthur H. Robinson at the University of Wisconsin-Madison and George F. Jenks at the University of Kansas.

Map design

In order for one to create a successful map, the cartographer must take into consideration the audience. They must ask themselves, who will use this map and what will they use it for? Then, taking into account the needs of the percipient, the map can be designed accordingly. Arthur H. Robinson, an American cartographer, says if the map is not properly designed "it will be a cartographic failure." He also claims, when considering all aspects of cartography, "map design is perhaps the most complex."[5]

From the very beginning of map making, maps "have been made for some particular purpose or set of purposes".[6] The intent of the map should be illustrated in a manner in which the percipient acknowledges its purpose in a timely fashion. The term percipient refers to the person receiving information and was coined by Robinson.[7] The principle of figure-ground refers to this notion of engaging the user by presenting a clear presentation, leaving no confusion concerning the purpose of the map. This will enhance the user’s experience and keep his attention. If the user is unable to identify what is being demonstrated in a reasonable fashion, the map may be regarded as useless.

Illustrated map

Making a meaningful map is the ultimate goal. MacEachren explains that a well designed map "is convincing because it implies authenticity" (1994, pp. 9). An interesting map will no doubt engage a reader. Information richness or a map that is multivariate shows relationships within the map. Showing several variables allows comparison, which adds to the meaningfulness of the map. This also generates hypothesis and stimulates ideas and perhaps further research. In order to convey the message of the map, the creator must design it in a manner which will aid the reader in the overall understanding of its purpose. The title of a map may provide the "needed link" necessary for communicating that message, but the overall design of the map fosters the manner in which the reader interprets it (Monmonier, 1993, pp. 93).

In the 21st Century it is possible to find a map of virtually anything from the inner workings of the human body to the virtual worlds of cyberspace. Therefore there are now a huge variety of different styles and types of map - for example, one area which has evolved a specific and recognisable variation are those used by transit organisations to guide passengers, namely Urban rail and metro maps, many of which are losely based on 45 degree angles as originally perfected by Harry Beck and George Dow.


Naming conventions

Most maps use text to label places and for such things as a map title, legend, and other information. Maps are made in specific languages, except for textless maps. Names of places often differ from language to language. So a map made in English may use the name Germany for that country, while a German map would use Deutschland, and French map Allemagne. In some cases the proper name is not clear. For example, the nation of Burma officially changed its name to Myanmar, but many nations do not recognize the ruling junta and continue to use Burma. Sometimes an official name change is resisted in other languages and the older name may remain in common use. Examples include the use of Saigon for Ho Chi Minh City, Bangkok for Krung Thep, and Ivory Coast for Côte d'Ivoire.

Difficulties arise when transliteration or transcription between writing systems is required. National names tend to have well established names in other languages and writing systems, such as Russia for Росси́я, but for many placenames a system of transliteration or transcription is required. In transliteration the symbols of one language are represented by symbols in another. For example, the Cyrillic letter Р is traditionally written as R in the Latin alphabet. Systems exist for transliteration of Arabic, but the results may vary. For example, the Yemeni city of Mocha is written variously in English as Mocha, Al Mukha, al-Mukhā, Mocca, and Moka. Transliteration systems are based on relating written symbols to one another, while transcription is the attempt to spell in one language the phonetic sounds of another. Chinese writing is transformed into the Latin alphabet through the Pinyin phonetic transcription systems. Other systems were used in the past, such as Wade-Giles, resulting in the city of 北京 being spelled Beijing on newer English maps and Peking on older ones.

Further difficulties arise when countries, especially former colonies, do not have a strong national cartographic naming systems. In such cases cartographers may have to choose between various phonetic spellings of often varying local names and older imposed, sometimes resented, colonial names. Some counties have multiple official languages, resulting in multiple official placenames. For example, the capital of Belgium is both Brussel and Bruxelles. In Canada, English and French are official languages and places have names in both languages. British Columbia is also officially named la Colombie-Britannique. English maps rarely show the French names outside Quebec, which itself is spelled Québec in French.[8]

The study of placenames is called toponymy and the origin of placenames is placename etymology.

Map symbolization

The quality of a map’s design affects its reader’s ability to extract information, and to learn from the map. Cartographic symbology has been developed in an effort to portray the world accurately and effectively convey information to the map reader. A legend explains the pictorial language of the map known as its symbology. The title indicates the region the map portrays; the map image portrays the region and so on. Although every map element serves some purpose, convention only dictates inclusion of some elements while others are considered optional. A menu of map elements includes the neatline (border), compass rose or north arrow, overview map, scale bar, projection, and information about the map sources, accuracy and publication.

When examining a landscape, scale can be intuited from trees, houses and cars. Not so with a map. Even such a simple thing as a north arrow is crucial. It may seem obvious that the top of a map should point north but this might not be the case.

Color likewise is equally important. How the cartographer displays the data in different hues can greatly affect the understanding or feel of the map. Different intensities of hue portray different objectives the cartographer is attempting to get across to the audience. Today, personal computers can display up to 16 million distinct colors at a time even though the human eye can distinguish only a minimum number of these (Jeer, 1997). This fact allows for a multitude of color options for even for the most demanding maps. Moreover, computers can easily hatch patterns in colors to give even more options. This is very beneficial when symbolizing data in categories such as quintile and equal interval classifications.

Quantitative symbols give a visual measure of the relative size/importance/number that a symbol represents and to symbolize this data on a map there are two major classes of symbols used for portraying quantitative properties: Proportional symbols change their visual weight according to a quantitative property. These are appropriate for extensive statistics. Choropleth maps portray data collection areas (such as counties, or census tracts) with color. Using color this way, the darkness and intensity (or value) of the color is evaluated by the eye as a measure of intensity or concentration (Harvard Graduate School of Design, 2005).

See also


Footnotes

  1. ^ http://www.henry-davis.com/MAPS/Ancient%20Web%20Pages/100mono.html Article: The earliest known maps
  2. ^ http://www.atamanhotel.com/catalhoyuk/oldest-map.html
  3. ^ http://www-oi.uchicago.edu/OI/PROJ/NIP/PUB93/NSC/NSCFIG7.html The Nippur Expedition
  4. ^ "Map Imitation" in Detecting the Truth: Fakes, Forgeries and Trickery, a virtual museum exhibition at Library and Archives Canada
  5. ^ Robinson, A.H. (1953). Elements of Cartography. New York: John Wiley & Sons. ISBN.
  6. ^ Robinson, A.H. (1982). Early Thematic Mapping: In the History of Cartography. Chicago: The University of Chicago Press. ISBN.
  7. ^ MacEachren, A.M. (1995). How Maps Work. New York: The Guilford Press. ISBN.
  8. ^ This section based on: "Transliteration Systems". Illustrated Atlas of the World. Rand McNally. 1992. pp. A16–A17. ISBN 0-528-83492-4.

References

  • Belyea, B. 1992. Amerindian Maps: the Explorer as Translator. Journal of Historical Geography 18, no.3 :267-277.
  • Bender, B. 1999. Subverting the Western Gaze: mapping alternative worlds. In The Archaeology and Anthropology of Landscape: Shaping your landscape (eds) P.J. Ucko & R. Layton. London: Routledge.
  • Crawford, P.V. 1973. The perception of graduated squares as cartographic symbols. Cartographic Journal 10, no.2:85-88.
  • J. B. Harley and David Woodward (eds) (1987). The History of Cartography Volume 1: Cartography in Prehistoric, Ancient, and Medieval Europe and the Mediterranean. Chicago and London: University of Chicago Press. ISBN 0-226-31633-5. {{cite book}}: |author= has generic name (help)
  • J. B. Harley and David Woodward (eds) (1992). The History of Cartography Volume 2, Book 1: Cartography in the Traditional Islamic and South Asian Societies. Chicago and London: University of Chicago Press. ISBN 0-226-31635-1. {{cite book}}: |author= has generic name (help)
  • J. B. Harley and David Woodward (eds) (1994). The History of Cartography Volume 2, Book 2: Cartography in the Traditional East and Southeast Asian Societies. Chicago and London: University of Chicago Press. ISBN 0-226-31637-8. {{cite book}}: |author= has generic name (help)
  • J. B. Harley and David Woodward (eds) (1998). The History of Cartography Volume 2, Book 3: Cartography in the Traditional African, American, Arctic, Australian, and Pacific Societies. [Full text of the Introduction by David Woodward and G. Malcolm Lewis]. Chicago and London: University of Chicago Press. ISBN 0-226-90728-7. {{cite book}}: |author= has generic name (help)
  • J. B. Harley and David Woodward (eds) (2005). The History of Cartography Volume 3 (in press, 2005): Cartography in the European Renaissance. Chicago and London: University of Chicago Press. ISBN 0-226-90733-3. {{cite book}}: |author= has generic name (help)
  • J. B. Harley and David Woodward (eds) (1987). The History of Cartography Volume 4 (edited by D. Graham Burnett, Matthew Edney, and Mary G. Sponberg Pedley with Founding Editor David Woodward): Cartography in the European Enlightenment. Chicago and London: University of Chicago Press. ISBN 0-226-31633-5. {{cite book}}: |author= has generic name (help)
  • J. B. Harley and David Woodward (eds). The History of Cartography Volume 5: Cartography in the Nineteenth Century. Chicago and London: University of Chicago Press. ISBN. {{cite book}}: |author= has generic name (help)
  • J. B. Harley and David Woodward (eds). The History of Cartography Volume 4: Cartography in the Twentieth Century. Chicago and London: University of Chicago Press. ISBN. {{cite book}}: |author= has generic name (help)
  • MacEachren, A.M. (1994). Some Truth with Maps: A Primer on Symbolization & Design. University Park: The Pennsylvania State University. ISBN.
  • Monmonier, Mark (1991). How to Lie with Maps. Chicago: University of Chicago Press. ISBN 0-226-53421-9.
  • Monmonier, Mark (1993). Mapping It Out. Chicago: University of Chicago Press. ISBN.
  • ESRI. 2004. ESRI Cartography: Capabilities and Trends. Redlands, CA. White Paper
  • Harvard Graduate School of Design, 2005. http://www.gsd.harvard.edu/gis/manual/style/index.htm
  • Jeer, S. 1997. Traditional Color Coding for Land Uses. American Planning Association. pp. 4-5
  • Kent, A.J. 2005. "Aesthetics: A Lost Cause in Cartographic Theory?" The Cartographic Journal 42(2) pp.182-188
  • Imus, D. and Dunlavey, P. 2002. Back to the Drawing Board: Cartography vs the Digital Workflow. MT. Hood, Oregon.
  • Oliver, J. 2007. The Paradox of Progress: Land Survey and the Making of Agrarian Society in Colonial British Columbia. In Contemporary and Historical Archaeology in Theory (eds) L. McAtackney, M. Palus & A. Piccini. Oxford: BAR, International Series.
  • Olson, Judy M. 1975. Experience and the improvement of cartographic communication. Cartographic Journal 12, no. 2:94-108
  • Phillips, R., De Lucia, A., and Skelton, A. 1975. Some Objective Tests of the Legibility of Relief Maps. The Cartographic Journal. 12, pp. 39-46
  • Phillips, R. 1980. A Comparison of Color and Visual Texture as Codes for use as Area Symbols on Relief Maps. Ergonomics. 23, pp. 1117-1128.
  • Pickles, John (2003). A History of Spaces: Cartographic Reason, Mapping, and the Geo-Coded World. Taylor & Francis. ISBN 0-415-14497-3.
  • Rice, M., Jacobson, R., Jones. D. 2003. Object Size Discrimination and Non-visual Cartographic Symbolization. CA. pp. 1-12.
  • Slocum, T. (2003). Thematic Cartography and Geographic Visualization. Upper Saddle River, New Jersey: Prentice Hall. ISBN 0-130-35123-7.
  • Wilford, John Noble (2000). The Mapmakers. Vintage Books. ISBN 0-375-70850-2.
  • "Map Imitations" in Detecting the Truth: Fakes, Forgeries and Trickery, a virtual museum exhibition at Library and Archives Canada

External links

See Maps for more links to modern and historical maps; however, most of the largest sites are listed at the sites linked below.