Energy storage
Energy storage media are matter that store some form of energy that can be drawn upon at a later time to perform some useful operation. A device that stores energy is sometimes called an accumulator. All forms of energy are either potential energy (eg. chemical, gravitational or electrical energy) or kinetic energy (eg. thermal energy). A wind up clock stores potential energy (in this case mechanical, in the spring tension), a battery stores readily convertible chemical energy to keep a clock chip in a computer running (electrically) even when the computer is turned off, and a hydroelectric dam stores power in a reservoir as gravitational potential energy. Ice storage tanks store ice (thermal energy)at night to meet peak demand for cooling . Even food is a form of energy storage, chemical in this case.
History
Energy storage as a natural process is as old as the universe itself - the energy present at the initial creation of the Universe has been stored in stars such as the Sun, and is now being used by humans directly (e.g. through solar heating), or indirectly (e.g. by growing crops or conversion into electricity in solar cells). Storing energy allows humans to balance the supply and demand of energy. Energy storage systems in commercial use today can be broadly categorized as mechanical, electrical, chemical, biological, thermal and nuclear.
As a purposeful activity, energy storage has existed since pre-history, though it was often not explicitly recognized as such. An example of deliberate mechanical energy storage is the use of logs or boulders as defensive measures in ancient forts - the logs or boulders were collected at the top of a hill or wall, and the energy thus stored used to attack invaders who came within range.
A more recent application is the control of waterways to drive water mills for processing grain or powering machinery. Complex systems of reservoirs and dams were constructed to store and release water (and the potential energy it contained) when required.
Energy storage became a dominant factor in economic development with the widespread introduction of electricity and refined chemical fuels, such as gasoline, kerosene and natural gas in the late 1800s. Unlike other common energy storage used in prior use, such as wood or coal, electricity has been used as it has been generated. It has not been stored on a major scale but that may soon change. In the U.S, the 2009 Stimulus plan is researching energy storage and how it may be used with the new plans for a Smart Grid. [1]. Electricity is transmitted in a closed circuit, and for essentially any practical purpose cannot be stored as electrical energy. This means that changes in demand could not be accommodated without either cutting supplies (as by brownouts or blackouts) or by storing the electric energy in another medium. Even renewable energy must be stored in order to make it reliable. Wind blows intermittently and so some form of storage is required to compensate for calm periods, and solar energy is not effective on cloudy days so stored energy must be available to compensate for the loss of sun energy.
An early solution to the problem of storing energy for electrical purposes was the development of the battery, an electrochemical storage device. It has been of limited use in electric power systems due to small capacity and high cost. A similar possible solution with the same type of problems is the capacitor. In the 1980s, a small number of manufacturers carefully researched thermal energy storage (TES) to meet the growing demand for air-conditioning during peak hours. Today a few companies continue to manufacture TES. [2] The most popular form of thermal energy storage for cooling is ice storage, since it can store more energy in less space than water storage and it is also cheaper than fuel cells & flywheels. Thermal storage has shifted gigawatts of power away from daytime peaks, cost-effectively, and is used in over 3,300 buildings in over 35 countries. It works by storing ice at night when electricity is cheap, and then using the ice to cool the air in the building the next day.
Chemical fuels have become the dominant form of energy storage, both in electrical generation and energy transportation. Chemical fuels in common use are processed coal, gasoline, diesel fuel, natural gas, liquefied petroleum gas (LPG), propane, butane, ethanol, biodiesel and hydrogen. All of these materials are readily converted to mechanical energy and then to electrical energy using heat engines (turbines or other internal combustion engines, or boilers or other external combustion engines) used for electrical power generation. Heat-engine-powered generators are nearly universal, ranging from small engines producing only a few kilowatts to utility-scale generators with ratings up to 800 megawatts.
Electrochemical devices called fuel cells were invented about the same time as the battery. However, for many reasons, fuel cells were not well-developed until the advent of manned spaceflight (the Gemini Program) when lightweight, non-thermal (and therefore efficient) sources of electricity were required in spacecraft. Fuel cell development has increased in recent years due to an attempt to increase conversion efficiency of chemical energy stored in hydrocarbon or hydrogen fuels into electricity.
At this time, liquid hydrocarbon fuels are the dominant forms of energy storage for use in transportation. However, these produce greenhouse gases when used to power cars, trucks, trains, ships and aircraft. Carbon-free energy carriers, such as hydrogen, or carbon-neutral energy carriers, such as some forms of ethanol or biodiesel, are being sought in response to concerns about the possible consequences of greenhouse gas emissions.
Some areas of the world (Washington and Oregon in the USA, and Wales in the United Kingdom are examples) have used geographic features to store large quantities of water in elevated reservoirs, using excess electricity at times of low demand to pump water up to the reservoirs, then letting the water fall through turbine generators to retrieve the energy when demand peaks.
Several other technologies have also been investigated, such as flywheels or compressed air storage in underground caverns, but to date no widely available solution to the challenge of mass energy storage has been deployed commercially.
Grid energy storage
Grid energy storage lets energy producers send excess electricity over the electricity transmission grid to temporary electricity storage sites that become energy producers when electricity demand is greater. Grid energy storage is particularly important in matching supply and demand over a 24 hour period of time.
Storage methods
- Chemical
- Biological
- Electrochemical
- Electrical
- Mechanical
- Thermal
- Fuel Conservation storage
Hydrogen
Hydrogen is also being developed as an electrical power storage medium. Hydrogen is not a primary energy source, but a portable energy storage method, because it must first be manufactured by other energy sources in order to be used. However, as a storage medium, it may be a significant factor in using renewable energies. See hydrogen storage. Hydrogen may be used in conventional internal combustion engines, or in fuel cells which convert chemical energy directly to electricity without flames, similar to the way the human body burns fuel. The hydrogen production requires either reforming natural gas with steam, or, for a possibly renewable and more ecologic source, the electrolysis of water into hydrogen and oxygen. The former process has carbon dioxide as a by-product. With high pressure electrolysis, the greenhouse burden depends on the source of the power.
Energy losses are involved in the hydrogen storage cycle of production for vehicle applications with electrolysis of water, liquification or compression, and conversion back to electricity.[3] and the hydrogen storage cycle of production for the stationary fuel cell applications like microchp with biohydrogen, liquification or compression, and conversion to electricity.
With intermittent renewables such as solar and wind, the output may be fed directly into an electricity grid. At penetrations below 20% of the grid demand, this does not severely change the economics; but beyond about 20% of the total demand, external storage will become important. If these sources are used for electricity to make hydrogen, then they can be utilized fully whenever they are available, opportunistically. Broadly speaking, it does not matter when they cut in or out, the hydrogen is simply stored and used as required. A community based pilot program using wind turbines and hydrogen generators is being undertaken from 2007 for five years in the remote community of Ramea, Newfoundland and Labrador.[4] A similar project has been going on since 2004 on Utsira, a small Norwegian island municipality.
Nuclear advocates note that using nuclear power to manufacture hydrogen would help solve plant inefficiencies. Here the plant would be run continuously at full capacity, with perhaps all the output being supplied to the grid in peak periods, and any not needed to meet demand being used to make hydrogen at other times. This would mean far better efficiency for the nuclear power plants. High temperature (950-1,000°C) gas cooled nuclear generation IV reactors have the potential to separate hydrogen from water by thermochemical means using nuclear heat as in the sulfur-iodine cycle.
The efficiency for hydrogen storage is typically 50 to 60%[citation needed] overall, which is lower than pumped storage systems or batteries. About 50 kWh (180 MJ) is required to produce a kilogram of hydrogen by electrolysis, so the cost of the electricity clearly is crucial, even for hydrogen uses other than storage for electrical generation. At $0.03/kWh, common off-peak high-voltage line rate in the U.S., this means hydrogen costs $1.50 a kilogram for the electricity, equivalent to $1.50 a US gallon for gasoline if used in a fuel cell vehicle. Other costs would include the electrolyzer plant, hydrogen compressors or liquefaction, storage and transportation, which will be significant.
Underground hydrogen storage is the practice of hydrogen storage in underground caverns, salt domes and depleted oil and gas fields. Large quantities of gaseous hydrogen are stored in underground caverns by ICI for many years without any difficulties[5]. The storage of large quantities of hydrogen underground can function as grid energy storage which is essential for the hydrogen economy.
Biofuels
Various biofuels such as biodiesel, straight vegetable oil, alcohol fuels, or biomass can be used to replace hydrocarbon fuels. Various chemical processes can convert the carbon and hydrogen in coal, natural gas, plant and animal biomass, and organic wastes into short hydrocarbons suitable as replacements for existing hydrocarbon fuels. Examples are Fischer-Tropsch diesel, methanol, dimethyl ether, or syngas. This diesel source was used extensively in World War II in Germany, with limited access to crude oil supplies. Today South Africa produces most of country's diesel from coal for similar reasons.[6] A long term oil price above 35 USD may make such synthetic liquid fuels economical on a large scale (See coal). Some of the energy in the original source is lost in the conversion process. Historically, coal itself has been used directly for transportation purposes in vehicles and boats using steam engines. And compressed natural gas is being used in special circumstances fuel, for instance in busses for some mass transit agencies.
Synthetic hydrocarbon fuel
Carbon dioxide in the atmosphere has been, experimentally, converted into hydrocarbon fuel with the help of energy from another source. To be useful industrially, the energy will probably have to come from sunlight using, perhaps, future artificial photosynthesis technology.[7][8] Another alternative for the energy is electricity or heat from solar energy or nuclear power.[9][10] Compared to hydrogen, many hydrocarbon fuels have the advantage of being immediately usable in existing engine technology and existing fuel distribution infrastructures. Manufacturing synthetic hydrocarbon fuel reduces the amount of carbon dioxide in the atmosphere until the fuel is burned, when the same amount of carbon dioxide returns to the atmosphere. If usable on a wide scale, this approach may help in the long term to avoid some of the deleterious effects of greenhouse gas emission.
Methane
Methane is the simplest hydrocarbon with the molecular formula CH4. Methane could be produced from electricity of renewable energies. Methane can be stored more easily than hydrogen and the transportation, storage and combustion infrastructure are mature (pipelines, gasometers, power plants).
As hydrogen and oxygen are produced in the electrolysis of water,
- 2H2O → 2H2 + O2
hydrogen would then be reacted with carbon dioxide in Sabatier process, producing methane and water.
- CO2 + 4H2 → CH4 + 2H2O
Methane would be stored and used to produce electricity later. Produced water would be recycled back to the electrolysis stage, reducing the need for new pure water. In the electrolysis stage oxygen would also be stored for methane combustion in a pure oxygen environment in an adjacent power plant, eliminating e.g. nitrogen oxides. In the combustion of methane, carbon dioxide and water are produced.
- CH4 + 2O2 → CO2 + 2H2O
Produced carbon dioxide would be recycled back to boost the Sabatier process and water would be recycled back to the electrolysis stage. The carbon dioxide produced by methane combustion would be turned back to methane, thus producing no greenhouse gases. Methane production, storage and adjacent combustion would recycle all the reaction products, creating a cycle.
Boron, silicon, and zinc
Boron,[11] silicon,[12] and zinc[13] have been proposed as energy storage solutions.
Mechanical storage
Energy can be stored in water pumped to a higher elevation using pumped storage methods, in compressed air, or in spinning flywheels.
Compressed air energy storage technology stores low cost off-peak energy, in the form of compressed air in an underground reservoir. The air is then released during peak load hours and heated with the exhaust heat of a standard combustion turbine. This heated air is converted to energy through expansion turbines to produce electricity. A CAES plant has been in existence in McIntosh, Alabama since 1991 and has run successfully.
Several companies have done preliminary design work for vehicles using compressed air power.[14][15]
Intermittent power
Many renewable energy systems produce intermittent power. Other generators on the grid can be throttled to match varying production from renewable sources, but most of the existing throttling capacity is already committed to handling load variations. Further development of intermittent renewable power will require some combination of grid energy storage, demand response, and spot pricing. Intermittent energy sources is limited to at most 20-30% of the electricity produced for the grid without such measures. If electricity distribution loss and costs are managed, then intermittent power production from many different sources could increase the overall reliability of the grid.
Non-intermittent renewable energy sources include hydroelectric power, geothermal power, solar thermal, tidal power, Energy tower, ocean thermal energy conversion, high altitude airborne wind turbines, biofuel, and solar power satellites. Solar photovoltaics, although technically intermittent, produce some electricity during peak periods (i.e., daylight), and hence do reduce the need for peak power generation, though somewhat unreliably in most areas since weather conditions interfere with terrestrially mounted solar cells. In general, peak demand periods for power in most locations do not correspond with peak availability of solar energy, which motivates producers to develop new and more effective methods of energy storage and recovery.
On the demand side, demand response programs, which send market pricing signals to consumers (or their equipment), can be a very effective way of managing variations in electricity production. For example, electrically powered hydrogen production can be set to increase when electricity is being produced beyond current demand (and prices will be lowest), and conversely, hot water heaters can be automatically set to a lower temperature when demand is high and pricing is also high.
Thermal storage
Thermal storage is the temporary storage or removal of heat for later use. An example of thermal storage is the storage of solar heat energy during the day to be used at a later time for heating at night. In the HVAC/R field, this type of application using thermal storage for heating is less common than using thermal storage for cooling. An example of the storage of "cold" heat removal for later use is ice made during the cooler night time hours for use during the hot daylight hours. This ice storage is produced when electrical utility rates are lower. This is often referred to as "off-peak" cooling.
When used for the proper application with the appropriate design, off-peak cooling systems can lower energy costs. The U.S. Green Building Council has developed the Leadership in Energy Efficiency and Environmental Design (LEED) program to encourage the design of high-performance buildings that will help protect our environment. The increased levels of energy performance by utilizing off-peak cooling may qualify of credits toward LEED Certification.
The advantages of thermal storage are: Commercial electrical rates are lower at night. It takes less energy to make ice when it is cool at night. Source energy (energy from the power plant) is saved. A smaller, more efficient system can do the job of a much larger unit by running for more hours.
[16] More information on Thermal Storage See [17] [18] [19]
See also
- Distributed generation[20]
- Energy
- Energy Density
- Grid energy storage
- List of energy topics
- Power Transmission
- Valence Technology Energy Storage Solutions
References
- ^ Read Smart Grid: An Introduction
- ^ Thermal Energy Storage Myths
- ^ Zyga, Lisa (2006-12-11:15-44). "Why a hydrogen economy doesn't make sense". Physorg.com web site. Physorg.com. Retrieved 2007-11-17.
{{cite news}}
: Check date values in:|date=
(help); Cite has empty unknown parameter:|coauthors=
(help) - ^ Introduction of Hydrogen Technologies to Ramea Island
- ^ 1994 - ECN abstract
- ^ http://www.eere.energy.gov/afdc/pdfs/epa_fischer.pdf
- ^ Designing a Better Catalyst for “Artificial Photosynthesis”
- ^ Science@Berkeley Lab: Solar to Fuel: Catalyzing the Science
- ^ Carbon dioxide turned into hydrocarbon fuel - 02 August 2002 - New Scientist
- ^ CO2 Recycling
- ^ Boron: A Better Energy Carrier than Hydrogen? (12 June 2007)
- ^ Silicon as an intermediary between renewable energy and hydrogen
- ^ The Ergosphere: Zinc: Miracle metal?
- ^ http://www.freep.com/money/autonews/aircar18_20040318.htm
- ^ Slashdot | Car Powered by Compressed Air
- ^ Air-Conditioning, Heating and Refrigeration Institute, Fundamentals of HVAC/R, Page 1263
- ^ [Case Studies]
- ^ Air-Conditioning Contractors of America
- ^ Choose efficiency
- ^ Fire and Ice based storage
External links
- U.S. Dept of Energy - Energy Storage Systems Government research center on energy storage technology.
- Electricity Storage Association Good comparison of technologies.